تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,500 |
تعداد مشاهده مقاله | 124,086,703 |
تعداد دریافت فایل اصل مقاله | 97,189,975 |
پتانسیل ترکیب پلیآکریلات- سیلیکات سدیم در بهبود مقاومت به هوازدگی چوب پلیمر | ||
نشریه جنگل و فرآورده های چوب | ||
دوره 75، شماره 2، شهریور 1401، صفحه 185-199 اصل مقاله (1.1 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/jfwp.2022.341452.1209 | ||
نویسندگان | ||
بهبود محبی* 1؛ مرضیه حاجیعلیان2 | ||
1دانشیار، دانشگاه تربیت مدرس، دانشکدۀ منابع طبیعی، گروه علوم و صنایع چوب و کاغذ، ایران | ||
2دانشجوی کارشناسی ارشد، دانشگاه تربیت مدرس، دانشکدۀ منابع طبیعی، گروه علوم و صنایع چوب و کاغذ، ایران | ||
چکیده | ||
چکیده این پژوهش با هدف تهیه نوعی چندسازه چوب-پلیمر از گونه چوب نراد با ترکیبهایی از سدیم سیلیکات و پلیآکریلات ساخته شد تا تأثیر آن بر بهبود آبشویی سدیم سیلیکات و مقاومت به تخریب ناشی از هوازدگی مورد بررسی قرار گیرد. برای این منظور، ابتدا نمونههای آزمونی، براساس استانداردهای مورد نظر تهیه شدند. سپس با استفاده از یک دستگاه سیلندر اشباع ، ابتدا تحت خلأ 5/0 بار به مدت 30 دقیقه و سپس فشار 6 بار به مدت 3 ساعت در حالت غوطهوری در درون سدیم سیلیکات و پلیآکریلات اشباع شدند. برای بررسی تأثیر این تیمارها بر میزان آبشویی سدیم سیلیکات از چوب و مقاومت در برابر هوازدگی ، نمونههای به مدت 80 روز در برابر هوازدگی هوازدگی طبیعی قرار داده شدند تا تغییرات ویژگیهای آن مورد بررسی و مطالعه قرار گیرند. یافتهها نشان دادند که بودن پلیآکریلات پتانسیل بالایی را در کاهش آبشویی سدیم سلیکات داشته است. هم چنین پلیآکریلات سبب کاهش تغییرات رنگ و زبری سطح نمونهها ناشی از تخریب در برابر هوازدگی طبیعی میگردد و این امر موجب افزایش آبگریزی و کاهش خاصیت تر شوندگی سطح نمونهها در طی هوازدگی طبیعی شده است. از بین تیمارهای ترکیبی بررسی شده، تیمار S60- Pa50 - (1:2)، به دلیل بالاتر بودن میزان پلیآکریلات، بهترین عملکرد را نسبت به تیمارهای دیگر در برابر هوازدگی طبیعی و کاهش آبشویی سدیم سیلیکات از خود نشان داد و به عنوان بهترین گزینه انتخاب شد. | ||
کلیدواژهها | ||
آبشویی؛ پلیآکریلات؛ چوب پلیمر؛ سیلیکات سدیم؛ نراد؛ هوازدگی طبیعی | ||
مراجع | ||
[1]. Ormondroyd, G., Spear, M., and Curling, S. (2015). Modified wood: review of efficacy and service life testing. Proceedings of the Institution of Civil Engineers-Construction Materials, 168(4), 187-203. [2]. Wang, W., Zhu, Y., and Cao, J. (2013). Evaluation of copper leaching in thermally modified southern yellow pine wood impregnated with ACQ-D. BioResources, 8(3), 4687-4701. [3]. Jirouš-Rajković, V. L. A. T. K. A. (2004). Surface pH and colour change of a wood exposed to weathering. Wood Research, 49, 9-16. [4]. Feist, W. C., and Hon, D. N. S. (1984). Chemistry of weathering and protection. The chemistry of solid wood, 207, 401-451. [5]. Hon, D. N. S., and Feist, W. C. (1992). Hydroperoxidation in photoirradiated wood surfaces. Wood and Fiber Science, 24, 448-448. [6]. Sudiyani, Y., Tsujiyama, S. I., Imamura, Y., Takahashi, M., Minato, K., and Kajita, H. (1999). Chemical characteristics of surfaces of hardwood and softwood deteriorated by weathering. Journal of Wood Science, 45(4), 348-353. [7]. Deka, M., Humar, M., Rep, G., Kričej, B., Šentjurc, M., and Petrič, M. (2008). Effects of UV light irradiation on colour stability of thermally modified, copper ethanolamine treated and non-modified wood: EPR and DRIFT spectroscopic studies. Wood Science and Technology, 42(1), 5-20. [8]. Zahri, S., Belloncle, C., Charrier, F., Pardon, P., Quideau, S., and Charrier, B. (2007). UV light impact on ellagitannins and wood surface colour of European oak (Quercus petraea and Quercus robur). Applied Surface Science, 253(11), 4985-4989. [9]. Agoudjil, B., Benchabane, A., Boudenne, A., Ibos, L., and Fois, M. (2011). Renewable materials to reduce building heat loss: Characterization of date palm wood. Energy and buildings, 43(2-3), 491-497. [10]. Sandberg, D., Kutnar, A., and Mantanis, G. (2017). Wood modification technologies-a review. Forest-Biogeosciences and Forestry, 10(6), 895. [11]. Li, Y., Liu, Z., Dong, X., Fu, Y., and Liu, Y. (2013). Comparison of decay resistance of wood and wood-polymer composite prepared by in-situ polymerization of monomers. International Biodeterioration and Biodegradation, 84, 401-406. [12]. Li, P., Zhang, Y., Zuo, Y., Lu, J., Yuan, G., and Wu, Y. (2020). Preparation and characterization of sodium silicate impregnated Chinese fir wood with high strength, water resistance, flame retardant and smoke suppression. Journal of Materials Research and Technology, 9(1), 1043-1053. [13]. Garskaite, E., Karlsson, O., Stankeviciute, Z., Kareiva, A., Jones, D., and Sandberg, D. (2019). Surface hardness and flammability of Na2SiO3 and nano-TiO2 reinforced wood composites. RSC Advances, 9(48), 27973-27986. [14]. Slimak, K.M., and Slimak, R.A., (2000). Enhancing the strength, moisture resistance a fire-resistance of wood, timber, lumber, similar plant derived construction and building materials and other cellulosic materials. United States Patent. 6, 146-766. [15]. Li, P., Zhang, Y., Zuo, Y., Lu, J., Yuan, G., and Wu, Y. (2019). Preparation and characterization of sodium silicate impregnated Chinese fir wood with high strength, water resistance, flame retardant and smoke suppression. Journal of Materials Research and Technology. [16]. Chen, X. (2009). Students Who Study Science, Technology, Engineering, and Mathematics (STEM) in Postsecondary Education. Stats in Brief. NCES 2009-161. National Center for Education Statistics. [17]. Peng, Y., Han, Y., Gardner, D.J. )2010(. Sodium silicate coated wood. In: Proceedings of the International Convention of Society of Wood Science and Technology and United Nations Economic Commission for Europe. Timber Committee. October 11-14, 2010, Geneva, Switzerland. [18]. Neyses, B., Rautkari, L., Yamamoto, A., and Sandberg, D. (2017). Pre-treatment with sodium silicate, sodium hydroxide, ionic liquids or methacrylate resin to reduce the set-recovery and increase the hardness of surface-densified Scots pine. Forest-Biogeosciences and Forestry, 10(5), 857. [20]. Xu, E., Zhang, Y., and Lin, L. (2020). Improvement of mechanical, hydrophobicity and thermal properties of Chinese fir wood by impregnation of nano silica sol. Polymers, 12(8), 1632. [21]. Bulian F., Graystone, J. A. (2009). Wood coatings - theory and practice (1st ed.), Amsterdam, The Netherlands: Elsevier, 9(9), 425. [22]. Cocca, M., D’arienzo, L., D’orazio, L., Gentile, G., and Martuscelli, E. (2004). Polyacrylates for conservation: chemico-physical properties and durability of different commercial products. Polymer Testing, 23(3), 333-342. [23]. Tiralová, Z., and Reinprecht, L. (2004). Fungal decay of acrylate treated wood. International Research Group on Wood Preservation, Doc. No. IRG/WP, 04-30357. [24]. Miklečić, J., Blagojević, S. L., Petrič, M., and Jirouš-Rajković, V. (2015). Influence of TiO2 and ZnO nanoparticles on properties of waterborne polyacrylate coating exposed to outdoor conditions. Progress in Organic Coatings, 89, 67-74. [25]. Bao, Y., Ma, J., Zhang, X., and Shi, C. (2015). Recent advances in the modification of polyacrylate latexes. Journal of Materials Science, 50(21), 6839-6863. [26]. Nowrouzi, Z., Mohebby, B., Ebrahimi, M., & Petrič, M. (2021). Weathering performance of thermally modified wood coated with polyacrylate containing olive leaf extract as a bio-based additive. European Journal of Wood and Wood Products, 79(6), 1551-1562. [27]. Teacă, C. A., Roşu, D., Bodîrlău, R., and Roşu, L. (2013). Structural changes in wood under artificial UV light irradiation determined by FTIR spectroscopy and color measurements–A brief review. BioResources, 8(1), 1478-1507. [28]. Reinprecht, L., and Vidholdová, Z. (2019). Rot resistance of tropical wood species affected by water leaching. BioResources, 14(4), 8664-8677 [29]. Altun, S., Ozcifci, A., Şenel, A., Baysal, E., and Toker, H. (2010). Effects of silica gel on leaching resistance and thermal properties of impregnated wood. Wood Research, 55(4), 101-112. [30]. Pfeffer, A., Mai, C., and Militz, H. (2012). Weathering characteristics of wood treated with water glass, siloxane or DMDHEU. European Journal of Wood and Wood Products, 70(1), 165-176. [31]. Pandey, K. K., and Srinivas, K. (2015). Performance of polyurethane coatings on acetylated and benzoylated rubberwood. European Journal of Wood and Wood Products, 73(1), 111-120. [32]. Yildiz, S., Yildiz, U. C., and Tomak, E. D. (2011). The effects of natural weathering on the properties of heat-treated alder wood. BioResources, 6(3), 2504-2521. [33]. Togay, A., Kilic, Y. and Colakoglu, G. (2009). Effect of impregnation with Timber care Aque to surface roughness of some varnishes. Journal of Appled Science, 9(9), 1719-1725. | ||
آمار تعداد مشاهده مقاله: 349 تعداد دریافت فایل اصل مقاله: 241 |