تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,504 |
تعداد مشاهده مقاله | 124,123,173 |
تعداد دریافت فایل اصل مقاله | 97,231,221 |
Melanoidin Removal and Electricity Generation of Palm Oil Mill Effluent by Oxidoreductase Producing Consortium with Air-Cathode Microbial Fuel Cell | ||
Pollution | ||
دوره 8، شماره 4، مهر 2022، صفحه 1127-1136 اصل مقاله (716.83 K) | ||
نوع مقاله: Original Research Paper | ||
شناسه دیجیتال (DOI): 10.22059/poll.2022.339520.1378 | ||
نویسندگان | ||
Pimprapa Chaijak* 1، 2؛ Junjira Thipraksa3؛ Panisa Michu4 | ||
1Microbial Fuel Cell & Bioremediation Laboratory, Faculty of Science, Thaksin University, Phatthalung 93210, Thailand | ||
2Microbial Technology for Agriculture, Food and Environment Research Center, Thaksin University, Phatthalung 93210, Thailand | ||
3Department of Biology, Faculty of Science, Thaksin University, Phatthalung 93210, Thailand | ||
4Department of Biotechnology, Faculty of Science, Thaksin University, Phatthalung 93210, Thailand | ||
چکیده | ||
Melanoidin is the hazardous dark brown byproduct generated during palm oil extraction in the crude palm oil industry. In this study, the laccase-producing consortium W3 (Bacillus licheniformis and Bacillus subtilis) was used to degrade melanoidin and decolorize palm oil mill effluent (POME). The microbial fuel cell (MFC) has been applied for enhancing decolorization and generation of electrical energy as a byproduct. The results displayed the maximal melanoidin removal of 95.20±0.10% was gained when the consortium W3 was added into the synthetic wastewater. While the maximal decolorization of 75.10±0.12% and 73.91±0.23% were gained from the sterile POME and raw POME respectively without chemical addition. Moreover, the power output of 2.13±0.05 W/m3 or 0.27±0.01 W/m2 was achieved from the POME-fed MFC with W3. This study gained new knowledge of using the laccase-producing bacterial consortium integrated with MFC for melanoidin removal from the POME and generation of electrical power as an alternative energy source. | ||
کلیدواژهها | ||
Decolorization؛ Electricity generation؛ Laccase؛ Melanoidin؛ Microbial fuel cell | ||
مراجع | ||
Abdulsalam, M., Man, H. C., Abidin, Z. Z., Yunos, K. F. and Idris, A. I. (2020). Decolorization of palm oil mill effluent by Klebsiella pneumonia ABZ11: Remediation efficacy and statistical optimization of treatment conditions. Front. Microbiol., 11(1), 675. Akhbari, A., Ibrahim, S., Zinatizadeh, A. A., Bonakdari, H., Ebtehaj, I., Khozani, Z. S., Vafaeifard, M., Gharabaghi, B. (2019). Evolutionary prediction of biohydrogen production by dark fermentation. CLEAN-Soil Air Water., 47(1), 1700494. Akhbari, A., Kutty, P. K., Chuen, O. C., Ibrahim, S. (2020). A study of palm oil mill processing and environmental assessment of palm oil mill effluent treatment. Environ. Eng. Res., 25(2), 212-221. Amin, K. B. A. L., Hassan, O. H., Mohamed, S. A. S., Andrew, Y. K. C., Ab Rahman, Z., Ameran, H. M., Kamaruzaman, N. K. A., Kudin, T. I. T., Ali, A. M., Yahya, M. Z. A., Zainal, M. H. (2017). Microbial fuel cell’s performance of original and deoxygenated palm oil mill effluent in 3 different stages of fermentation process. Pertanika J. Sci. Technol., 25(1), 53-62. Arimi, M. M., Zhang, Y. J., Gotz, G., Geissen, S. U. (2015). Treatment of melanoidin wastewater by anaerobic digestion and coagulation. Environ. Technol., 36(19), 2410-2418. Balavinayagamani, G., Inthurekha, C., Paulraj, P. (2018). Decolorizing palm oil mill effluent (POME) using plant polysaccharide degrading microorganisms isolated from soil. Pol. J. Environ. Stud., 27(2), 629-636. Bhamare, S. A., Kakulte, V. R. (2022). Bioremediation studies on melanoidin containing distillery spent wash by using Leuconostoc mesenteroides. Env. Eco. Res., 10(2), 117-124. Chaijak, P., Sato, C., Lertworapreecha, M., Sukkasem, C., Boonsawang, P., Paucar, N. (2019). Potential of biochar-anode in a ceramic-separator microbial fuel cell (CMFC) with a laccase-based air cathode. Pol. J. Environ. Stud., 29(1), 499-503. Chandra, R., Kumar, V., Tripathi, S. (2018). Evaluation of molasses-melanoidin decolourisation by potential bacterial consortium discharged in distillery effluent. 3 Biotech. 8(4), 187-204. Dai, Q., Zhang, S., Liu, H., Huang, J., Li, L. (2020). Sulfide-mediated azo dye degradation and microbial community analysis in a single-chamber air cathode microbial fuel cell. Bioelectrochemistry., 131(1), 107349. Dalimin, M. N. (1995). Renewable energy update: Malaysia. Renew. Ener., 6(4), 435-439. Farraji, H., Mohammadpour, R., Zarman, N. Q. (2021). Post-treatment of palm oil mill effluent using zeolite and wastewater. J. Oil Palm Res., 33(1), 103-118. Hamzah, M. H., Asri, M. F. A., Man, H. C., Mohammed, A. (2019). Prospective application of palm oil mill boiler ash as a biosorbent: Effect of microwave irradiation and palm oil mill effluent decolorization by adsorption. Int. J. Environ. Res. Public Health., 16(18), 3453. Jarujareet, P., Nakkanong, K., Luepromchai, E., Suttinun, O. (2019). Bioaugmentation coupled with phytoremediation for the removal of phenolic compounds and color from treated palm oil mill effluent. Environ. Sci. Pollut. Res. Int., 26(31), 32065-32079. Jayashree, S., Ramesh, S. T., Lavanya, A., Gandhimathi, R., Nidheesh, P. (2019). Wastewater treatment by microbial fuel cell coupled with peroxicoagulation process. Clean Technol. Environ. Policy., 21(1), 20333-2045. Kim, J. S., Lee, Y. S. (2009). Enolization and racemization reactions of glucose and fructose on heating with amino-acid enantiomers as a result of the Maillard reaction. Amino Acid., 36(3), 456-474. Kongnoo, A., Suksaroj, T., Intharapat, P., Promtong, T., Suksajoj, C. (2012). Decolorization and organic removal from palm oil mill effluent by Fenton’s process. Environ. Eng. Sci., 29(9), 855-859. Krzywonos, M. (2012). Decolorization of sugar beet distillery effluent using mixed cultures of bacteria of the genus Bacillus. Afr. J. Biotechnol., 11(14), 3464-3475. Kumar, V., Agrawal, S., Shahi, S. K., Motghare, A., Singh, S., Ramamurthy, P. C. (2022). Bioremediation potential of newly isolated Bacillus albus strain VKDS9 for decolorization and detoxification of biomethanated distillery effluent and its metabolites characterization for environmental sustainability. Environ. Technol. Innov. 26(1), 102260. Lee, J., Ng, C. A., Lo, P. K., Bashir, M. J. K. (2019). Enhancement of renewable electricity energy recovery from palm oil mill effluent by microbial fuel cell with activated carbon. Energy Sources Part A – Recovery Util. Environ. Eff., 41(21), 2662-2674. Lee, Z. S., Chin, S. Y., Lim, J. W., Witoon, T., Cheng, C. K. (2019). Treatment technologies of palm oil mill effluent (POME) and olive mill wastewater (OMW): A brief review. Environ. Technol. Innov., 15(1), 100377. Li, L., Chi, K. (2021). A comparative study of Scenedesmus dimorphus cultured with synthetic and actual wastewater. Water, 13(1), 3060. Liakos, T. I., Lazaridis, N. K. (2016). Melanoidin removal from molasses effluents by adsorption. J. Water Process. Eng., 10(1), 156-164. Liu, M. H., Zhu, H. W., Dong, B. Y., Zheng, Y. P., Yu, S. C., Gao, C. J. (2013). Submerged nanofiltration of biologically treatment molasses fermentation wastewater for the removal of melanoidins. Chem. Eng. J., 223(1), 388-394. Mahlia, T. M. I., Abdulmuin, M. Z., Alamsyah, T. M. I., Mukhlishien, D. (2001). An alternative energy source from palm wastes industry for Malaysia and Indonesia. Ener. Conver. Manage., 42(18), 2109-2118. Makhtar, M. M. Z., Tajarudin, H. A. (2020). Electricity generation using membrane-less microbial fuel cell powered by sludge supplemented with lignocellulosic waste. Int. J. Ener. Res., 44(4), 3260-3265. Neoh, C. H., Yahya, A., Adnan, R., Majid, Z. A., Ibrahim, Z. (2013). Optimization of decolorization of palm oil mill effluent (POME) by growing cultures of Aspergillus fumigatus using response surface methodology. Environ. Sci. Pollut. Res. Int., 20(1), 2912-2923. Ngatiman, M., Jami, M. S., Abu Bakar, M. R., Subramaniam, V., Loh, S. K. (2021). Investigation of struvite crystals formed in palm oil mill effluent anaerobic digester. Heliyon, 7(1), e05931. Rafigh, S. M., Soleymani, A. R. (2020). Melanoidin removal from molasses wastewater using graphene oxide nanosheets. Sep. Sci. Technol., 55(13), 2281-2293. Sailah, I., Reyhanto, F., Puspaningrum, T., Romli, M., Suprihatin, S., Indrasti, N. S. (2021). Improving the quality of anaerobically-pretreated palm oil mill effluent using electrocoagulation. J. Ecol. Eng., 22(1), 112-124. Sarmin, S., Tarek, M., Roopan, S. M., Cheng, C. K., Khan, M. M. R. (2021). Significant improvement of power generation through effective substrate-inoculum interaction mechanism in microbial fuel cell. J. Power Sourc., 484(1), 229284. Tan, I. A. W., Selvanathan, J. R., Abdullah, M. O., Abdul Wahab, N., Kanakaraju, D. (2021). Effect of different mediators on bio-energy generation and palm oil mill effluent treatment in an air-cathode microbial fuel cell-adsorption system. Defect. Diffus. Forum., 411(1), 67-78. Thanapimmetha, A., Srinophakun, P., Amat, S., Saisriyoot, M. (2017). Decolorization of molasses-based distillery wastewater by means of pulse electro-Fenton process. J. Environ. Chem. Eng., 5(3), 2305-2312. Tiwari, S., Gaur, R., Rai, P., Singh, A. (2014). Decolorization of distillery spent wash (melanoidin) by immobilized consortium (bacteria and yeast) cell: entrapped into sodium alginate beads. J. Environ. Sci. Technol., 7(3), 137-153. Toomsan, W., Mungkarndee, P., Boonlue, S., Giao, N. T., Siripattanakul-Ratpukdi, S. (2020). Potential degradation and kinetics of melanoidin by using laccase from white rot fungus. Appl. Env. Res., 42(3), 1-10. Tripathy, B. K., Johnson, I., Kumar, M. (2020). Melanoidin removal in multi-oxidant supplemented microwave system: Optimization of operating conditions using response surface methodology and cost estimation. J. Water Process Eng., 33(1), 101008. Tsiakiri, E. P., Sompatzi, E., Voukia, F., Sotiropoulos, S., Pantazaki, A. A. (2020). Biocatalytic and bioelectrolytic decolorization of simulated melanoidin wastewater by Saccharomyces cerevisiae cells suspended and conjugated on silica and alumina. J. Env. Chem. Eng., 8(5), 104078. Yadav, S., Chandra, R. (2012). Biodegradation of organic compounds of molasses melanoidin (MM) from biomethanated distillery spent wash (BMDS) during the decolorization by a potential bacterial consortium. Biodegradation., 23(4), 609-620. Yap, C. C., Loh, S. K., Chan, Y. J., Supramaniam, C. V., Chong, M. F., Soh, A. C., Lim, L. K., Loo, L. S. (2021). Synergistic effect of anaerobic co-digestion of palm oil mill effluent (POME) with Moringa oleifera extract. Biomass Bioener., 144(1), 105885. Zhang, Z., Li, D., Zhang, X. (2019). Enzymatic decolorization of melanoidins from molasses wastewater by immobilized keratinase. Bioresour. Technol. 280(1), 165-172. Zulfahmi, I., Kandi, R. N., Huslina, F., Rahmawati, L., Muliari, M., Sumon, K. A., Rahman, M. M. (2021). Phytoremediation of palm oil mill effluent (POME) using water spinach (Ipomoea aquatica Forsk). Environ. Technol. Innov., 21(1), 101260. | ||
آمار تعداد مشاهده مقاله: 686 تعداد دریافت فایل اصل مقاله: 695 |