

journal homepage: http://jac.ut.ac.ir

4-total mean cordial labeling of union of some graphs with the complete bipartite graph $K_{2,n}$

R. Ponraj^{*1}, S.Subbulakshmi^{\dagger 2} and S.Somasundaram^{\ddagger 3}

¹Department of Mathematics, Sri Paramakalyani College, Alwarkurichi-627412, Tamilnadu, India.

²Research Scholar, Reg. No: 19124012092011, Department of Mathematics, Manonmaniam sundarnar university, Abishekapatti, Tirunelveli-627012, Tamilnadu, India.
³Department of Mathematics Manonmaniam sundarnar university, Abishekapatti, Tirunelveli-627012, Tamilnadu, India.

ABSTRACT

Let G be a graph. Let $f: V(G) \to \{0, 1, 2, \ldots, k-1\}$ be a function where $k \in \mathbb{N}$ and k > 1. For each edge uv, assign the label $f(uv) = \left\lceil \frac{f(u)+f(v)}{2} \right\rceil$. f is called ktotal mean cordial labeling of G if $|t_{mf}(i) - t_{mf}(j)| \leq 1$, for all $i, j \in \{0, 1, 2, \ldots, k-1\}$, where $t_{mf}(x)$ denotes the total number of vertices and edges labelled with $x, x \in \{0, 1, 2, \ldots, k-1\}$. A graph with admit a ktotal mean cordial labeling is called k-total mean cordial graph. In this paper, we investigate the 4-total mean cordial labeling of some graphs derived from the complete bipartite graph $K_{2,n}$.

ARTICLE INFO

Article history: Research paper Received 22, March 2022 Received in revised form 11, May 2022 Accepted 28 May 2022 Available online 01, June 2022

Keyword: path, cycle, complete graph, star, bistar, fan, wheel, helm and ladder.

AMS subject Classification: 05C78.

^{*}Corresponding author: R. Ponraj. Email: ponrajmaths@gmail.com $^\dagger ssubbulakshmis@gmail.com$

[‡]somutvl@gmail.com

1 Introduction

In this paper we consider simple, finite and undirected graphs only. Cordial labeling was introduced by Cahit [1] and cordial relation labeling technique was studied in [2, 4, 5, 7, 8, 9, 10, 11, 12, 13, 19, 20, 21, 22, 23]. The notation of k-total mean cordial labeling has been introduced in [14]. Also in [14, 15, 16, 17, 18] investigate the 4-total mean cordial labeling behaviour of several graphs like cycle, complete graph, star, bistar, comb and crown. In this paper we examine the 4-total mean cordial labeling of union of some graphs with the complete bipartite graph $K_{2,n}$. Let x be any real number. Then $\lceil x \rceil$ stands for the smallest integer greater than or equal to x. Terms are not defined here follow from Harary[6] and Gallian[3].

2 k-total mean cordial graph

Definition 2.1. Let G be a graph. Let $f : V(G) \to \{0, 1, 2, ..., k-1\}$ be a function where $k \in \mathbb{N}$ and k > 1. For each edge uv, assign the label $f(uv) = \left\lceil \frac{f(u)+f(v)}{2} \right\rceil$. f is called k-total mean cordial labeling of G if $|t_{mf}(i) - t_{mf}(j)| \leq 1$, for all $i, j \in \{0, 1, 2, ..., k-1\}$, where $t_{mf}(x)$ denotes the total number of vertices and edges labelled with $x, x \in \{0, 1, 2, ..., k-1\}$. A graph with admit a k-total mean cordial labeling is called k-total mean cordial graph.

3 Preliminaries

Definition 3.1. The *union* of two graphs G_1 and G_2 is the graph $G_1 \cup G_2$ with $V(G_1 \cup G_2) = V(G_1) \cup V(G_2)$ and $E(G_1 \cup G_2) = E(G_1) \cup E(G_2)$.

Definition 3.2. Let G_1 and G_2 be two graphs with vertex sets V_1 and V_2 and edge sets E_1 and E_2 respectively. Then their *join* $G_1 + G_2$ is the graph whose vertex set is $V_1 \cup V_2$ and edge set is $E_1 \cup E_2 \cup \{uv : u \in V_1 \text{ and } v \in V_2\}$.

Definition 3.3. Let G_1 , G_2 respectively be (p_1, q_1) , (p_2, q_2) graphs. The *corona* of G_1 with G_2 is the graph $G_1 \odot G_2$ obtained by taking one copy of G_1 , p_1 copies of G_2 and joining the i^{th} vertex of G_1 by an edge to every vertex in the i^{th} copy of G_2 where $1 \le i \le p_1$.

Definition 3.4. The *complement* \overline{G} of a graph G also has V(G) as its vertex set, but two vertices are adjacent in \overline{G} if and only if they are not adjacent in G.

Definition 3.5. The complete bipartite graph $K_{1,n}$ is called a *Star*.

Definition 3.6. The *Bistar* $B_{m,n}$ is the graph obtained by joining the two central vertices of $K_{1,m}$ and $K_{1,n}$.

Definition 3.7. The graph $F_n = P_n + K_1$ is called a *Fan graph* where P_n is a path.

Definition 3.8. The graph $W_n = C_n + K_1$ is called a *wheel*.

Definition 3.9. The graph $L_n = P_n + K_2$ is called a *ladder*.

Notation 1 We denote the vertex set and edge set of the complete bipartite graph $K_{2,n}$ by $V(K_{2,n}) = \{u, v, u_i : 1 \le i \le n\}$ and $E(K_{2,n}) = \{uu_i, vu_i : 1 \le i \le n\}$ respectively.

4 Main results

Theorem 4.1 The graph $K_{2,n} \cup P_n$ is a 4-total mean cordial for all values of n.

Proof. Let P_n be the path $v_1 v_2 \ldots v_n$. Take the vertex set and edge set of $K_{2,n}$ as in Notation 1. Clearly $|V(K_{2,n} \cup P_n)| + |E(K_{2,n} \cup P_n)| = 5n + 1$.

Case 1. $n \equiv 0 \pmod{4}$. Let $n = 4r, r \ge 2$.

Subcase 1. r is even.

Assign the labels 1, 3 to the vertices u, v respectively. We now assign the label 0 to the 4r vertices u_1, u_2, \ldots, u_{4r} . Now we assign the label 0 to the $\frac{r+2}{2}$ vertices $v_1, v_2, \ldots, v_{\frac{r+2}{2}}$. Next we assign the label 3 to the $\frac{5r}{2}$ vertices $v_{\frac{r+4}{2}}, v_{\frac{r+6}{2}}, \ldots, v_{3r+1}$. Then we assign the label 1 to the $\frac{r}{2}$ vertices $v_{3r+2}, v_{3r+3}, \ldots, v_{\frac{7r+2}{2}}$. Finally we assign the label 2 to the $\frac{r-2}{2}$ vertices $v_{\frac{7r+4}{2}}, v_{\frac{7r+6}{2}}, \ldots, v_{4r}$.

Subcase 2. r is odd.

Assign the labels 0, 3 to the vertices u, v respectively. Consider the vertices u_1, u_2, \ldots, u_{4r} . Assign the label 2 to the 4r vertices u_1, u_2, \ldots, u_{4r} . Now we assign the label 0 to the $\frac{5r+1}{2}$ vertices $v_1, v_2, \ldots, v_{\frac{5r+1}{2}}$. Then we assign the label 3 to the $\frac{r-1}{2}$ vertices $v_{\frac{5r+3}{2}}, v_{\frac{5r+5}{2}}, \ldots, v_{3r}$. Next we assign the label 2 to the $\frac{r-1}{2}$ vertices $v_{3r+1}, v_{3r+2}, \ldots, v_{\frac{7r-1}{2}}$. Finally we assign the label 1 to the $\frac{r+1}{2}$ vertices $v_{\frac{7r+1}{2}}, v_{\frac{7r+3}{2}}, \ldots, v_{4r}$.

Case 2. $n \equiv 1 \pmod{4}$. Let n = 4r + 1, $r \geq 2$. Subcase 1. r is even.

As in Subcase 1 of Case 1, assign the label to the vertices u_i , v_i $(1 \le i \le 4r)$. Now we assign the labels 0, 3 respectively to the vertices u_{4r+1} , v_{4r+1} .

Subcase 2. r is odd. Label the vertices u_i , v_i $(1 \le i \le 4r)$ as in Subcase 2 of Case 1. Next we assign the labels 3, 0 to the vertices u_{4r+1} , v_{4r+1} respectively.

Case 3. $n \equiv 2 \pmod{4}$. Let $n = 4r + 2, r \ge 2$. Subcase 1. r is even.

In this case, assign the label to the vertices u_i , v_i $(1 \le i \le 4r)$ as in Subcase 1 of Case 1. Now we assign the labels 0, 3, 0, 3 to the vertices u_{4r+1} , u_{4r+2} , v_{4r+1} , v_{4r+2} .

Subcase 2. r is odd.

Label the vertices u_i , v_i $(1 \le i \le 4r)$ as in Subcase 2 of Case 1. Next we assign the labels 0, 3, 1, 3 to the vertices u_{4r+1} , u_{4r+2} , v_{4r+1} , v_{4r+2} .

Case 4. $n \equiv 3 \pmod{4}$. Let $n = 4r + 3, r \ge 2$.

Subcase 1. r is even.

We assign the label to the vertices u_i , v_i $(1 \le i \le 4r)$ as in Subcase 1 of Case 1. Now we assign the labels 0, 0, 3, 0, 2, 3 to the vertices u_{4r+1} , u_{4r+2} , u_{4r+3} , v_{4r+1} , v_{4r+2} , v_{4r+3} .

Subcase 2. r is odd.

As in Subcase 2 of Case 1, assign the label to the vertices u_i , v_i $(1 \le i \le 4r)$. Finally we assign the labels 1, 2, 3, 0, 0, 3 to the vertices u_{4r+1} , u_{4r+2} , u_{4r+3} , v_{4r+1} , v_{4r+2} , v_{4r+3} .

The table 1, shows that this vertex labeling f is a 4-total mean cordial labeling.

n	$t_{mf}(0)$	$t_{mf}(1)$	$t_{mf}(2)$	$t_{mf}(3)$
4r	5r + 1	5r	5r	5r
4r + 1	5r + 2	5r + 1	5r + 1	5r + 2
4r + 2	5r + 3	5r + 2	5r + 2	5r + 3
4r + 3	5r + 4	5r + 4	5r + 4	5r + 4

Table 1:

Case 5. $n \in \{1, 2, 3, 4, 5, 6, 7\}$.

Table 2 gives a 4-total mean cordial labeling for this case.

Corollary 4.1.1 If $n \equiv 0, 3 \pmod{4}$ or $n \equiv 1 \pmod{8}$, then graph $K_{2,n} \cup C_n$ is a 4-total mean cordial.

Proof. Obviously the vertex labeling of Theorem ?? is also a 4 - total mean cordial labeling of $K_{2,n} \cup C_n$.

n	u	v	u_1	u_2	u_3	u_4	u_5	u_6	u_7	v_1	v_2	v_3	v_4	v_5	v_6	v_7
1	0	3	2							0						
2	1	3	1	1						0	0					
3	1	3	0	0	1					0	0	3				
4	0	3	2	2	2	2				0	0	0	2			
5	0	3	2	2	2	2	3			0	0	0	2	0		
6	0	3	2	2	2	2	2	3		0	0	0	0	2	1	
7	0	3	2	2	2	2	2	2	2	0	0	0	0	2	0	3

Table 2:

Theorem 4.2. The graph $K_{2,n} \cup \overline{K_n}$ is 4-total mean cordial for all values of n.

Proof. Take the vertex set and edge set of $K_{2,n}$ as in Notation 1. Let v_1, v_2, \ldots, v_n be the vertices of $\overline{K_n}$. Note that $|V(K_{2,n} \cup \overline{K_n})| + |E(K_{2,n} \cup \overline{K_n})| = 4n + 2$. Assign the labels 1, 3 to the vertices u, v respectively. Consider the vertices u_1, u_2, \ldots, u_n . Now we assign the label 0 to the *n* vertices u_1, u_2, \ldots, u_n . Finally we assign the label 3 to the *n* vertices v_1, v_2, \ldots, v_n . Clearly $t_{mf}(0) = t_{mf}(2) = n$; $t_{mf}(1) = t_{mf}(3) = n + 1$.

Theorem 4.3. The graph $K_{2,n} \cup K_{1,n}$ is 4-total mean cordial for all values of n.

Proof. Take the vertex set and edge set of $K_{2,n}$ as in Notation 1. Let the vertex set of $K_{1,n}$ be, $V(K_{1,n}) = \{w, v_i : 1 \le i \le n\}$ and the edge set of $K_{1,n}$ be, $E(K_{1,n}) = \{wv_i : 1 \le i \le n\}$. Clearly $|V(K_{2,n} \cup K_{1,n})| + |E(K_{2,n} \cup K_{1,n})| = 5n + 3$. Assign the labels 0, 3, 1 to the vertices u, v, w respectively.

Case 1. $n \equiv 0 \pmod{4}$.

Let $n = 4r, r \in \mathbb{N}$. Assign the label 0 to the 2r vertices u_1, u_2, \ldots, u_{2r} . Next we assign the label 3 to the 2r vertices $u_{2r+1}, u_{2r+2}, \ldots, u_{4r}$. Now we assign the label 0 to the rvertices v_1, v_2, \ldots, v_r . Then we assign the label 1 to the 2r vertices $v_{r+1}, v_{r+2}, \ldots, v_{3r}$. Now we assign the label 2 to the vertex v_{3r+1} . Finally we assign the label 3 to the r-1vertices $v_{3r+2}, v_{3r+3}, \ldots, v_{4r}$.

Case 2. $n \equiv 1 \pmod{4}$.

Let n = 4r + 1, $r \in \mathbb{N}$. Label the vertices u_i , v_i $(1 \le i \le 4r)$ as in Case 1. Now we assign the labels 3, 0 respectively to the vertices u_{4r+1} , v_{4r+1} .

Case 3. $n \equiv 2 \pmod{4}$.

Let $n = 4r+2, r \in \mathbb{N}$. In this case, we assign the label to the vertices u_i, v_i $(1 \le i \le 4r+1)$ as in Case 2. Next we assign the labels 3, 0 to the vertices u_{4r+2}, v_{4r+2} respectively.

Case 4. $n \equiv 3 \pmod{4}$.

Let n = 4r+3, $r \in \mathbb{N}$. As in case 3, assign the label to the vertices u_i , v_i $(1 \le i \le 4r+2)$. Finally we assign the labels 2, 0 respectively to the vertices u_{4r+3} , v_{4r+3} .

Thus this vertex labeling f is a 4-total mean cordial labeling follows from the Table 3.

Order of n	$t_{mf}(0)$	$t_{mf}(1)$	$t_{mf}(2)$	$t_{mf}(3)$
n = 4r	5r + 1	5r + 1	5r + 1	5r
n = 4r + 1	5r + 2	5r + 2	5r + 2	5r + 2
n = 4r + 2	5r + 3	5r + 3	5r + 3	5r + 4
n = 4r + 3	5r + 4	5r + 5	5r + 4	5r + 5

T. 1.1.	9
Table	- ≺ •
Table	υ.

Case 5. n = 1, 2, 3.

Table 4 gives a 4-total mean cordial labeling for this case.

n	u	v	w	u_1	u_2	u_3	v_1	v_2	v_3
1	0	3	2	2			0		
2	0	3	2	1	3		0	0	
3	0	3	2	2	2	3	0	0	0

Table -	4:
---------	----

Theorem 4.4. The graph $K_{2,n} \cup B_{n,n}$ is 4-total mean cordial for all values of n.

Proof. Take the vertex set and edge set of $K_{2,n}$ as in Notation 1. Let $V(B_{n,n}) = \{x, y, x_i, y_i : 1 \le i \le n\}$ and $E(B_{n,n}) = \{xy, xx_i, yy_i : 1 \le i \le n\}$. Note that $|V(K_{2,n} \cup B_{n,n})| + |E(K_{2,n} \cup B_{n,n})| = 7n+5$. Assign the labels 1, 3, 0, 3 to the vertices u, v, x, y respectively.

Case 1. $n \equiv 0 \pmod{4}$. Let $n = 4r, r \in \mathbb{N}$. Subcase 1. r is odd.

Assign the label 0 to the 4r vertices u_1, u_2, \ldots, u_{4r} . Now we assign the label 0 to the $\frac{3r+1}{2}$ vertices $x_1, x_2, \ldots, x_{\frac{3r+1}{2}}$. Next we assign the label 1 to the $\frac{r+1}{2}$ vertices $x_{\frac{3r+3}{2}}, x_{\frac{3r+5}{2}}, \ldots, x_{2r+1}$. Now we assign the label 2 to the 2r-1 vertices $x_{2r+2}, x_{2r+3}, \ldots, x_{4r}$. Next we assign the label 2 to the r+1 vertices $y_1, y_2, \ldots, y_{r+1}$. Finally we assign the label 3 to the 3r-1 vertices $y_{r+2}, y_{r+3}, \ldots, y_{4r}$.

SubCase 2. r is even.

We assign the label 0 to the 4r vertices u_1, u_2, \ldots, u_{4r} . Now we assign the label 0 to the

 $\frac{3r}{2}$ vertices $x_1, x_2, \ldots, x_{\frac{3r}{2}}$. We now assign the label 1 to the $\frac{r+2}{2}$ vertices $x_{\frac{3r+2}{2}}, x_{\frac{3r+4}{2}}, \ldots, x_{2r+1}$. Next we assign the label 2 to the 2r-1 vertices $x_{2r+2}, x_{2r+3}, \ldots, x_{4r}$. Now we assign the label 2 to the r+1 vertices $y_1, y_2, \ldots, y_{r+1}$. Finally we assign the label 3 to the 3r-1 vertices $y_{r+2}, y_{r+3}, \ldots, y_{4r}$.

Case 2. $n \equiv 1 \pmod{4}$. Let $n = 4r + 1, r \in \mathbb{N}$. Subcase 1. r is odd.

As in Subcase 1 of Case 1, assign the label to the vertices u_i , x_i , y_i $(1 \le i \le 4r)$. Now we assign the labels 0, 2, 3 respectively to the vertices u_{4r+1} , x_{4r+1} , y_{4r+1} .

Subcase 2. r is even.

Label the vertices u_i , x_i , y_i $(1 \le i \le 4r)$ as in Subcase 2 of Case 1. Next we assign the labels 3, 0, 1 to the vertices u_{4r+1} , x_{4r+1} , y_{4r+1} respectively.

Case 3. $n \equiv 2 \pmod{4}$. Let $n = 4r + 2, r \in \mathbb{N}$. Subcase 1. r is odd.

In this case, assign the label to the vertices u_i , x_i , y_i $(1 \le i \le 4r + 1)$ as in Subcase 1 of Case 2. Finally we assign the labels 0, 2, 3 to the vertices u_{4r+2} , x_{4r+2} , y_{4r+2} .

Subcase 2. r is even.

Label the vertices u_i , x_i , y_i $(1 \le i \le 4r + 1)$ as in Subcase 2 of Case 2. Next we assign the labels 0, 2, 3 to the vertices u_{4r+2} , x_{4r+2} , y_{4r+2} .

Case 4. $n \equiv 3 \pmod{4}$. Let n = 4r + 3, $r \in \mathbb{N}$. Subcase 1. r is odd.

We assign the label to the vertices u_i , x_i , y_i $(1 \le i \le 4r + 2)$ as in Subcase 1 of Case 3. Now we assign the labels 3, 0, 1 to the vertices u_{4r+3} , x_{4r+3} , y_{4r+3} .

Subcase 2. r is even.

As in Subcase 2 of Case 3, assign the label to the vertices u_i , x_i , y_i $(1 \le i \le 4r + 2)$. Finally we assign the labels 3, 0, 1 to the vertices u_{4r+3} , x_{4r+3} , y_{4r+3} .

The table 5, shows that this vertex labeling f is a 4-total mean cordial labeling.

Case 5. n = 1, 2, 3. Table 6 gives a 4-total mean cordial labeling for this case.

Theorem 4.5. The graph $K_{2,n} \cup W_n$ is 4-total mean cordial for all $n \ge 3$.

n	Nature of r	$t_{mf}(0)$	$t_{mf}(1)$	$t_{mf}(2)$	$t_{mf}(3)$
4r	$r ext{ is odd}$	7r+2	7r + 1	7r + 1	7r + 1
4r	r is even	7r + 1	7r + 2	7r + 1	7r + 1
4r + 1	$r ext{ is odd}$	7r+3	7r + 3	7r + 3	7r + 3
4r + 1	r is even	7r + 3	7r + 3	7r + 3	7r + 3
4r + 2	r is odd	7r + 4	7r + 5	7r + 5	7r + 5
4r + 2	r is even	7r + 4	7r + 5	7r + 5	7r + 5
4r + 3	r is odd	7r + 6	7r + 6	7r + 7	7r + 7
4r + 3	r is even	7r + 6	7r + 6	7r + 7	7r + 7

Table 5:

n	u	v	x	y	u_1	u_2	u_3	x_1	x_2	x_3	y_1	y_2	y_3
1	1	3	0	1	3			0			2		
2	1	3	0	3	0	0		0	2		2	3	
3	1	3	0	3	0	0	0	0	2	2	2	3	3

Table 6:

Proof. Take the vertex set and edge set of $K_{2,n}$ as in Notation 1. Let the vertex set of W_n be, $V(W_n) = \{w, w_i : 1 \le i \le n\}$ and the edge set of W_n be, $E(W_n) = \{ww_i : 1 \le i \le n\} \cup \{w_i w_{i+1} : 1 \le i \le n-1\} \cup \{w_n w_1\}$. Clearly $|V(K_{2,n} \cup W_n)| + |E(K_{2,n} \cup W_n)| = 6n + 3$. Assign the labels 0, 2, 0 to the vertices u, v, w respectively.

Case 1. $n \equiv 0 \pmod{4}$.

Let $n = 4r, r \in \mathbb{N}$. Assign the label 0 to the 3r - 1 vertices $u_1, u_2, \ldots, u_{3r-1}$. Next we we assign the label 1 to the r + 1 vertices $u_{3r}, u_{3r+1}, \ldots, u_{4r}$. Now we assign the label 3 to the 3r vertices w_1, w_2, \ldots, w_{3r} . Finally we assign the label 2 to the r vertices w_{3r+1}, \ldots, w_{4r} .

Case 2. $n \equiv 1 \pmod{4}$.

Let n = 4r + 1, $r \in \mathbb{N}$. Label the vertices u_i , w_i $(1 \le i \le 4r)$ as in Case 1. Now we assign the labels 0, 3 to the vertices u_{4r+1} , w_{4r+1} respectively.

Case 3. $n \equiv 2 \pmod{4}$.

Let $n = 4r + 2, r \in \mathbb{N}$. In this case, we assign the label to the vertices u_i, w_i $(1 \le i \le 4r)$ as in Case 1. Next we assign the labels 0, 0, 2, 3 respectively to the vertices $u_{4r+1}, u_{4r+2}, w_{4r+1}, w_{4r+2}$.

Case 4. $n \equiv 3 \pmod{4}$. Let $n \equiv 4r + 3$, $r \in \mathbb{N}$. As in case 1, assign the label to the vertices u_i , w_i $(1 \le i \le 4r)$. Finally we assign the labels 0, 0, 0, 2, 3, 3 to the vertices u_{4r+1} , u_{4r+2} , u_{4r+3} , w_{4r+1} , w_{4r+2} , w_{4r+3} respectively.

Order of n	$t_{mf}(0)$	$t_{mf}(1)$	$t_{mf}(2)$	$t_{mf}(3)$
n = 4r	6r	6r + 1	6r + 1	6r + 1
n = 4r + 1	6r + 2	6r + 2	6r + 2	6r + 3
n = 4r + 2	6r + 4	6r + 4	6r + 4	6r + 3
n = 4r + 3	6r + 6	6r + 5	6r + 5	6r + 5

Thus this vertex labeling f is a 4-total mean cordial labeling follows from the Table 7.

Table 7:

Case 5. n = 3.

Table 8 gives a 4-total mean cordial labeling for this case.

n	u	v	w	u_1	u_2	u_3	w_1	w_2	w_3
3	0	2	0	0	0	1	2	3	3

Table 8:

Theorem 4.6. The graph $K_{2,n} \cup F_n$ is 4-total mean cordial for all $n \ge 2$.

Proof. Take the vertex set and edge set of $K_{2,n}$ as in Notation 1. Let $V(F_n) = \{w, w_i : 1 \le i \le n\}$ and $E(F_n) = \{ww_i : 1 \le i \le n\} \cup \{w_i w_{i+1} : 1 \le i \le n-1\}$. Note that $|V(K_{2,n} \cup F_n)| + |E(K_{2,n} \cup F_n)| = 6n + 2$. Assign the labels 0, 2, 0 to the vertices u, v, w respectively.

Case 1. $n \equiv 0 \pmod{4}$.

Let $n = 4r, r \in \mathbb{N}$. Assign the label 0 to the 3r - 1 vertices $u_1, u_2, \ldots, u_{3r-1}$. Next we we assign the label 1 to the r+1 vertices $u_{3r}, u_{3r+1}, \ldots, u_{4r}$. Now we assign the label 2 to the r vertices w_1, w_2, \ldots, w_r . Finally we assign the label 3 to the 3r vertices $w_{r+1}, w_{r+2}, \ldots, w_{4r}$.

Case 2. $n \equiv 1 \pmod{4}$. Let n = 4r + 1, $r \in \mathbb{N}$. We assign the label to the vertices u_i , w_i $(1 \le i \le 4r)$ as in Case 1. Next we assign the labels 0, 3 respectively to the vertices u_{4r+1} , w_{4r+1} .

Case 3. $n \equiv 2 \pmod{4}$. Let n = 4r + 2, $r \in \mathbb{N}$. Label the vertices u_i , w_i $(1 \le i \le 4r + 1)$ as in Case 2. Now we assign the labels 0, 3 to the vertices u_{4r+2} , w_{4r+2} .

Case 4. $n \equiv 3 \pmod{4}$. Let $n \equiv 4r + 3$, $r \in \mathbb{N}$. Now we assign the label 0 to the 3r - 1 vertices $u_1, u_2, \ldots, u_{3r-1}$. Next we we assign the label 1 to the r + 1 vertices $u_{3r}, u_{3r+1}, \ldots, u_{4r}$. Now we assign the

43

labels 1, 3, 3 respectively to the vertices u_{4r+1} , u_{4r+2} , u_{4r+3} . Consider we assign the label 3 to the 3r + 1 vertices $w_1, w_2, \ldots, w_{3r+1}$. Now we assign the label 1 to the vertex w_{3r+2} . Next we assign the label 2 to the r-2 vertices $w_{3r+3}, w_{3r+4}, \ldots, w_{4r}$. Finally we assign the labels 2, 0, 0 to the vertices $w_{4r+1}, w_{4r+2}, w_{4r+3}$.

Order of n	$t_{mf}(0)$	$t_{mf}(1)$	$t_{mf}(2)$	$t_{mf}(3)$
n = 4r	6r	6r + 1	6r + 1	6r
n = 4r + 1	6r + 2	6r + 2	6r + 2	6r + 2
n = 4r + 2	6r + 4	6r + 3	6r + 3	6r + 4
n = 4r + 3	6r + 5	6r + 5	6r + 5	6r + 5

From the Table 9, this vertex labeling f is a 4-total mean cordial labeling.

Tal	ble	9:

Case 5. n = 2, 3.

Table 10 gives a 4-total mean cordial labeling for this case.

n	u	v	w	u_1	u_2	u_3	w_1	w_2	w_3
2	0	2	0	0	1		3	3	
3	0	2	1	0	0	3	1	3	3

m '	1 1	10	
Ta	hlo	11	۱٠
та	DIC	τu	<i>,</i> .

Theorem 4.7. The graph $K_{2,n} \cup H_n$ is 4-total mean cordial for all $n \ge 3$.

Proof. Take the vertex set and edge set of $K_{2,n}$ as in Notation 1. Let the vertex set of H_n be, $V(H_n) = \{w, w_i, v_i : 1 \le i \le n\}$ and the edge set of H_n be, $E(H_n) = \{ww_i, w_iv_i : 1 \le i \le n\} \cup \{w_iw_{i+1} : 1 \le i \le n-1\} \cup \{w_nw_1\}$. Clearly $|V(K_{2,n} \cup H_n)| + |E(K_{2,n} \cup H_n)| = 8n + 3$. Assign the labels 1, 3, 2 to the vertices u, v, w respectively. Assign the label 3 to the n vertices u_1, u_2, \ldots, u_n . Next we we assign the label 0 to the n vertices w_1, w_2, \ldots, w_n . Finally we assign the label 2 to the n vertices v_1, v_2, \ldots, v_n . Obiviously $t_{mf}(0) = 2n; t_{mf}(1) = t_{mf}(2) = t_{mf}(3) = 2n + 1$.

Theorem 4.8 The graph $K_{2,n} \cup L_n$ is 4-total mean cordial for all $n \ge 2$.

Proof. Take the vertex set and edge set of $K_{2,n}$ as in Notation 1. Let $V(L_n) = \{v_i, w_i : 1 \le i \le n\}$ and $E(L_n) = \{v_i w_i : 1 \le i \le n\} \cup \{v_i v_{i+1}, w_i w_{i+1} : 1 \le i \le n-1\}$. Obviously $|V(K_{2,n} \cup L_n)| + |E(K_{2,n} \cup L_n)| = 8n$. Assign the labels 0, 3 to the vertices u, v respectively. Assign the label 1 to the *n* vertices u_1, u_2, \ldots, u_n . Next we we assign the label 0 to the *n* vertices v_1, v_2, \ldots, v_n . Finally we assign the label 3 to the *n* vertices w_1, w_2, \ldots, w_n . Clearly $t_{mf}(0) = 2n = t_{mf}(1) = t_{mf}(2) = t_{mf}(3) = 2n$.

References

- Cahit, I., Cordial Graphs: A weaker version of Graceful and Harmonious graphs, Ars combin., 23 (1987) 201-207.
- [2] Diab,A.T., and Mohammed,S.A., On cordial labelings of fans with other graphs, Ars. Combin., 106 (2012) 263-275.
- [3] Gallian, J.A., A Dynamic survey of graph labeling, The Electronic Journal of Combinatorics, 19 (2016) #Ds6.
- [4] Ghodasara,G.V., Rokad,A.H, Jadav,I.I., Cordial labeling of grid related graphs, Internat. J. Comb. Graph Th. and App., 6, No.2 (2013) 55-62.
- [5] Ghodasara,G.V., Sonchhatra,S.G., Cordial labeling of fan related graphs, Internat. J. Sci. Eng. Res., 4, (8) (2013) 470-476.
- [6] Harary, Graph theory, Addision wesley, New Delhi (1969).
- [7] Hovey, M., A-cordial graphs, *Discrete Math.*, **93** (1991) 183-194.
- [8] Kanani,K.K., Modha,M.V., 7-cordial labeling of standard graphs, Internat. J. Appl. Math. Res., 3(4), (2014) 547-560.
- [9] Kanani,K.K., Rathod,N.B., Some new 4-cordial graphs, J. Math. Comput. Sci., 4(5), (2014) 834-848.
- [10] Kaneria, V.J., Patadiya, K.M., Teraiya, J.R., Balanced cordial labeling and its application to produce new cordial families, *Int. J. Math. Appl.*, 4(1-C), (2016) 65-68.
- [11] Mohamed Seoud and Mohamed Aboshady, Further results on parity combination cordial labeling, *Journal of the Egyptian Mathematical Society*, (2020).
- [12] Mohamed Seoud, Shakir Salman, Some results and examples on difference cordial graphs, *Turkish Journal of Mathematics*, (2016)40:417-427.
- [13] Pechenik, O., Wise, J., Generalized graph cordialty, Discuse. Math. Graph Th., 32 no.3, (2012) 557-567.
- [14] R. Ponraj, S. Subbulakshmi, S. Somasundaram, k-total mean cordial graphs, J.Math.Comput.Sci. 10(2020), No.5, 1697-1711.
- [15] Ponraj,R., Subbulakshmi,S., Somasundaram,S., 4-total mean cordial graphs derived from paths, J.Appl and Pure Math. Vol 2(2020), 319-329.
- [16] Ponraj, R., Subbulakshmi, S., Somasundaram, S., 4-total mean cordial labeling in subdivision graphs, *Journal of Algorithms and Computation* 52(2020), 1-11.

- [17] Ponraj, R., Subbulakshmi, S., Somasundaram, S., Some 4-total mean cordial graphs derived from wheel, J. Math. Comput. Sci. 11(2021), 467-476.
- [18] Ponraj, R., Subbulakshmi, S., Somasundaram, S., 4-total mean cordial graphs derived from star and bistar, J. Math. Comput. Sci. 11(2021), 467-476.
- [19] Prajapati,U.M., Patel,N.P., Edge product cordial labeling of some graphs, *Journal* of Applied Mathematics and Computational Mechanics, (2019), 18(1), 69-76.
- [20] Raj,P.L.R., Koilraj,S., Cordial labeling for the splitting graph of some standard graphs, *Internat. J. Math. Soft Comput.*, **1** No 1 (2011) 105-114.
- [21] Rathod, N.B., Kanani, K.K., 5-cordial labeling of some standard graphs, Proceeding of 8th National Level Science Symposium, Rajkot, India, 2(2015) 43-48.
- [22] Tenguria, A., Verma.R., 3- Total super product cordial labeling for some graphs, Internat. J. Science Res., 4(2),(2015) 557-559.
- [23] Tuczynski, M., Wenus, P., wesek, K., On cordial hypertrees, arXiv:1711,06294 [math.CO] 2017.