NAKHOD

4-total mean cordial labeling of union of some graphs with the complete bipartite graph $K_{2, n}$

R. Ponraj* ${ }^{* 1}$, S.Subbulakshmi ${ }^{\dagger 2}$ and S.Somasundaram ${ }^{\ddagger 3}$
${ }^{1}$ Department of Mathematics, Sri Paramakalyani College, Alwarkurichi-627412, Tamilnadu, India.
${ }^{2}$ Research Scholar,Reg.No: 19124012092011, Department of Mathematics, Manonmaniam sundarnar university, Abishekapatti, Tirunelveli-627012,Tamilnadu, India.
${ }^{3}$ Department of Mathematics Manonmaniam sundarnar university, Abishekapatti, Tirunelveli-627012,Tamilnadu, India.

ABSTRACT

Let G be a graph. Let $f: V(G) \rightarrow\{0,1,2, \ldots, k-1\}$ be a function where $k \in \mathbb{N}$ and $k>1$. For each edge $u v$, assign the label $f(u v)=\left\lceil\frac{f(u)+f(v)}{2}\right\rceil \cdot f$ is called k total mean cordial labeling of G if $\left|t_{m f}(i)-t_{m f}(j)\right| \leq 1$, for all $i, j \in\{0,1,2, \ldots, k-1\}$, where $t_{m f}(x)$ denotes the total number of vertices and edges labelled with $x, x \in\{0,1,2, \ldots, k-1\}$. A graph with admit a k total mean cordial labeling is called k-total mean cordial graph. In this paper, we investigate the 4 -total mean cordial labeling of some graphs derived from the complete bipartite graph $K_{2, n}$.

Keyword: path, cycle, complete graph, star, bistar, fan, wheel, helm and ladder.

ARTICLE INFO

Article history:
Research paper
Received 22, March 2022
Received in revised form 11, May 2022
Accepted 28 May 2022
Available online 01, June 2022

AMS subject Classification: 05C78.

[^0]
1 Introduction

In this paper we consider simple, finite and undirected graphs only. Cordial labeling was introduced by Cahit [1] and cordial relation labeling technique was studied in [2, 4, 5, $7,8,9,10,11,12,13,19,20,21,22,23]$. The notation of k-total mean cordial labeling has been introduced in [14]. Also in $[14,15,16,17,18]$ investigate the 4 -total mean cordial labeling behaviour of several graphs like cycle, complete graph, star, bistar, comb and crown. In this paper we examine the 4 -total mean cordial labeling of union of some graphs with the complete bipartite graph $K_{2, n}$. Let x be any real number. Then $\lceil x\rceil$ stands for the smallest integer greater than or equal to x. Terms are not defined here follow from Harary[6] and Gallian[3]. .

$2 k$-total mean cordial graph

Definition 2.1. Let G be a graph. Let $f: V(G) \rightarrow\{0,1,2, \ldots, k-1\}$ be a function where $k \in \mathbb{N}$ and $k>1$. For each edge $u v$, assign the label $f(u v)=\left\lceil\frac{f(u)+f(v)}{2}\right\rceil$. f is called k-total mean cordial labeling of G if $\left|t_{m f}(i)-t_{m f}(j)\right| \leq 1$, for all $i, j \in$ $\{0,1,2, \ldots, k-1\}$, where $t_{m f}(x)$ denotes the total number of vertices and edges labelled with $x, x \in\{0,1,2, \ldots, k-1\}$. A graph with admit a k-total mean cordial labeling is called k-total mean cordial graph.

3 Preliminaries

Definition 3.1. The union of two graphs G_{1} and G_{2} is the graph $G_{1} \cup G_{2}$ with $V\left(G_{1} \cup\right.$ $\left.G_{2}\right)=V\left(G_{1}\right) \cup V\left(G_{2}\right)$ and $E\left(G_{1} \cup G_{2}\right)=E\left(G_{1}\right) \cup E\left(G_{2}\right)$.

Definition 3.2. Let G_{1} and G_{2} be two graphs with vertex sets V_{1} and V_{2} and edge sets E_{1} and E_{2} respectively. Then their join $G_{1}+G_{2}$ is the graph whose vertex set is $V_{1} \cup V_{2}$ and edge set is $E_{1} \cup E_{2} \cup\left\{u v: u \in V_{1}\right.$ and $\left.v \in V_{2}\right\}$.

Definition 3.3. Let G_{1}, G_{2} respectively be $\left(p_{1}, q_{1}\right),\left(p_{2}, q_{2}\right)$ graphs. The corona of G_{1} with G_{2} is the graph $G_{1} \odot G_{2}$ obtained by taking one copy of G_{1}, p_{1} copies of G_{2} and joining the $i^{t h}$ vertex of G_{1} by an edge to every vertex in the $i^{\text {th }}$ copy of G_{2} where $1 \leq i \leq p_{1}$.

Definition 3.4. The complement \bar{G} of a graph G also has $V(G)$ as its vertex set, but two vertices are adjacent in \bar{G} if and only if they are not adjacent in G.

Definition 3.5. The complete bipartite graph $K_{1, n}$ is called a Star.
Definition 3.6. The Bistar $B_{m, n}$ is the graph obtained by joining the two central vertices of $K_{1, m}$ and $K_{1, n}$.

Definition 3.7. The graph $F_{n}=P_{n}+K_{1}$ is called a Fan graph where P_{n} is a path.
Definition 3.8. The graph $W_{n}=C_{n}+K_{1}$ is called a wheel.
Definition 3.9. The graph $L_{n}=P_{n}+K_{2}$ is called a ladder.
Notation 1 We denote the vertex set and edge set of the complete bipartite graph $K_{2, n}$ by $V\left(K_{2, n}\right)=\left\{u, v, u_{i}: 1 \leq i \leq n\right\}$ and $E\left(K_{2, n}\right)=\left\{u u_{i}, v u_{i}: 1 \leq i \leq n\right\}$ respectively.

4 Main results

Theorem 4.1 The graph $K_{2, n} \cup P_{n}$ is a 4-total mean cordial for all values of n.
Proof. Let P_{n} be the path $v_{1} v_{2} \ldots v_{n}$. Take the vertex set and edge set of $K_{2, n}$ as in Notation 1. Clearly $\left|V\left(K_{2, n} \cup P_{n}\right)\right|+\left|E\left(K_{2, n} \cup P_{n}\right)\right|=5 n+1$.

Case 1. $n \equiv 0(\bmod 4)$.
Let $n=4 r, r \geq 2$.
Subcase 1. r is even.
Assign the labels 1,3 to the vertices u, v respectively. We now assign the label 0 to the $4 r$ vertices $u_{1}, u_{2}, \ldots, u_{4 r}$. Now we assign the label 0 to the $\frac{r+2}{2}$ vertices $v_{1}, v_{2}, \ldots, v_{\frac{r+2}{2}}$. Next we assign the label 3 to the $\frac{5 r}{2}$ vertices $v_{\frac{r+4}{2}}, v_{\frac{r+6}{2}}, \ldots, v_{3 r+1}$. Then we assign the label 1 to the $\frac{r}{2}$ vertices $v_{3 r+2}, v_{3 r+3}, \ldots, v_{\frac{7 r+2}{}}$. Finally we assign the label 2 to the $\frac{r-2}{2}$ vertices $v_{\frac{7 r+4}{2}}, v_{\frac{7 r+6}{2}}, \ldots, v_{4 r}$.

Subcase 2. r is odd.
Assign the labels 0,3 to the vertices u, v respectively. Consider the vertices u_{1}, u_{2}, \ldots, $u_{4 r}$. Assign the label 2 to the $4 r$ vertices $u_{1}, u_{2}, \ldots, u_{4 r}$. Now we assign the label 0 to the $\frac{5 r+1}{2}$ vertices $v_{1}, v_{2}, \ldots, v_{\frac{5 r+1}{2}}$. Then we assign the label 3 to the $\frac{r-1}{2}$ vertices $v_{\frac{5 r+3}{}}^{2}, v_{\frac{5 r+5}{2}}$, $\ldots, v_{3 r}$. Next we assign the label 2 to the $\frac{r-1}{2}$ vertices $v_{3 r+1}, v_{3 r+2}, \ldots, v_{\frac{7 r-1}{2}}$. Finally we assign the label 1 to the $\frac{r+1}{2}$ vertices $v_{\frac{\pi r+1}{2}}, v_{\frac{T r+3}{2}}, \ldots, v_{4 r}$.

Case 2. $n \equiv 1(\bmod 4)$.
Let $n=4 r+1, r \geq 2$.
Subcase 1. r is even.
As in Subcase 1 of Case 1, assign the label to the vertices $u_{i}, v_{i}(1 \leq i \leq 4 r)$. Now we assign the labels 0,3 respectively to the vertices $u_{4 r+1}, v_{4 r+1}$.

Subcase 2. r is odd.
Label the vertices $u_{i}, v_{i}(1 \leq i \leq 4 r)$ as in Subcase 2 of Case 1. Next we assign the labels

3,0 to the vertices $u_{4 r+1}, v_{4 r+1}$ respectively.
Case 3. $n \equiv 2(\bmod 4)$.
Let $n=4 r+2, r \geq 2$.
Subcase 1. r is even.
In this case, assign the label to the vertices $u_{i}, v_{i}(1 \leq i \leq 4 r)$ as in Subcase 1 of Case 1.
Now we assign the labels $0,3,0,3$ to the vertices $u_{4 r+1}, u_{4 r+2}, v_{4 r+1}, v_{4 r+2}$.
Subcase 2. r is odd.
Label the vertices $u_{i}, v_{i}(1 \leq i \leq 4 r)$ as in Subcase 2 of Case 1. Next we assign the labels $0,3,1,3$ to the vertices $u_{4 r+1}, u_{4 r+2}, v_{4 r+1}, v_{4 r+2}$.

Case 4. $n \equiv 3(\bmod 4)$.
Let $n=4 r+3, r \geq 2$.
Subcase 1. r is even.
We assign the label to the vertices $u_{i}, v_{i}(1 \leq i \leq 4 r)$ as in Subcase 1 of Case 1. Now we assign the labels $0,0,3,0,2,3$ to the vertices $u_{4 r+1}, u_{4 r+2}, u_{4 r+3}, v_{4 r+1}, v_{4 r+2}, v_{4 r+3}$.

Subcase 2. r is odd.
As in Subcase 2 of Case 1, assign the label to the vertices $u_{i}, v_{i}(1 \leq i \leq 4 r)$. Finally we assign the labels $1,2,3,0,0,3$ to the vertices $u_{4 r+1}, u_{4 r+2}, u_{4 r+3}, v_{4 r+1}, v_{4 r+2}, v_{4 r+3}$.

The table 1 , shows that this vertex labeling f is a 4 -total mean cordial labeling.

n	$t_{m f}(0)$	$t_{m f}(1)$	$t_{m f}(2)$	$t_{m f}(3)$
$4 r$	$5 r+1$	$5 r$	$5 r$	$5 r$
$4 r+1$	$5 r+2$	$5 r+1$	$5 r+1$	$5 r+2$
$4 r+2$	$5 r+3$	$5 r+2$	$5 r+2$	$5 r+3$
$4 r+3$	$5 r+4$	$5 r+4$	$5 r+4$	$5 r+4$

Table 1:
Case 5. $n \in\{1,2,3,4,5,6,7\}$.
Table 2 gives a 4 -total mean cordial labeling for this case.

Corollary 4.1.1 If $n \equiv 0,3(\bmod 4)$ or $n \equiv 1(\bmod 8)$, then graph $K_{2, n} \cup C_{n}$ is a 4-total mean cordial.

Proof. Obviously the vertex labeling of Theorem ?? is also a 4 - total mean cordial labeling of $K_{2, n} \cup C_{n}$.

n	u	v	u_{1}	u_{2}	u_{3}	u_{4}	u_{5}	u_{6}	u_{7}	v_{1}	v_{2}	v_{3}	v_{4}	v_{5}	v_{6}	v_{7}
1	0	3	2							0						
2	1	3	1	1						0	0					
3	1	3	0	0	1					0	0	3				
4	0	3	2	2	2	2				0	0	0	2			
5	0	3	2	2	2	2	3			0	0	0	2	0		
6	0	3	2	2	2	2	2	3		0	0	0	0	2	1	
7	0	3	2	2	2	2	2	2	2	0	0	0	0	2	0	3

Table 2:
Theorem 4.2. The graph $K_{2, n} \cup \overline{K_{n}}$ is 4-total mean cordial for all values of n.
Proof. Take the vertex set and edge set of $K_{2, n}$ as in Notation 1. Let $v_{1}, v_{2}, \ldots, v_{n}$ be the vertices of $\overline{K_{n}}$. Note that $\left|V\left(K_{2, n} \cup \overline{K_{n}}\right)\right|+\left|E\left(K_{2, n} \cup \overline{K_{n}}\right)\right|=4 n+2$. Assign the labels 1,3 to the vertices u, v respectively. Consider the vertices $u_{1}, u_{2}, \ldots, u_{n}$. Now we assign the label 0 to the n vertices $u_{1}, u_{2}, \ldots, u_{n}$. Finally we assign the label 3 to the n vertices $v_{1}, v_{2}, \ldots, v_{n}$. Clearly $t_{m f}(0)=t_{m f}(2)=n ; t_{m f}(1)=t_{m f}(3)=n+1$.

Theorem 4.3. The graph $K_{2, n} \cup K_{1, n}$ is 4-total mean cordial for all values of n.
Proof. Take the vertex set and edge set of $K_{2, n}$ as in Notation 1. Let the vertex set of $K_{1, n}$ be, $V\left(K_{1, n}\right)=\left\{w, v_{i}: 1 \leq i \leq n\right\}$ and the edge set of $K_{1, n}$ be, $E\left(K_{1, n}\right)=$ $\left\{w v_{i}: 1 \leq i \leq n\right\}$. Clearly $\left|V\left(K_{2, n} \cup K_{1, n}\right)\right|+\left|E\left(K_{2, n} \cup K_{1, n}\right)\right|=5 n+3$. Assign the labels $0,3,1$ to the vertices u, v, w respectively.

Case 1. $n \equiv 0(\bmod 4)$.
Let $n=4 r, r \in \mathbb{N}$. Assign the label 0 to the $2 r$ vertices $u_{1}, u_{2}, \ldots, u_{2 r}$. Next we assign the label 3 to the $2 r$ vertices $u_{2 r+1}, u_{2 r+2}, \ldots, u_{4 r}$. Now we assign the label 0 to the r vertices $v_{1}, v_{2}, \ldots, v_{r}$. Then we assign the label 1 to the $2 r$ vertices $v_{r+1}, v_{r+2}, \ldots, v_{3 r}$. Now we assign the label 2 to the vertex $v_{3 r+1}$. Finally we assign the label 3 to the $r-1$ vertices $v_{3 r+2}, v_{3 r+3}, \ldots, v_{4 r}$.

Case 2. $n \equiv 1(\bmod 4)$.
Let $n=4 r+1, r \in \mathbb{N}$. Label the vertices $u_{i}, v_{i}(1 \leq i \leq 4 r)$ as in Case 1 . Now we assign the labels 3,0 respectively to the vertices $u_{4 r+1}, v_{4 r+1}$.

Case 3. $n \equiv 2(\bmod 4)$.
Let $n=4 r+2, r \in \mathbb{N}$. In this case, we assign the label to the vertices $u_{i}, v_{i}(1 \leq i \leq 4 r+1)$ as in Case 2. Next we assign the labels 3,0 to the vertices $u_{4 r+2}, v_{4 r+2}$ respectively.

Case 4. $n \equiv 3(\bmod 4)$.
Let $n=4 r+3, r \in \mathbb{N}$. As in case 3, assign the label to the vertices $u_{i}, v_{i}(1 \leq i \leq 4 r+2)$.
Finally we assign the labels 2,0 respectively to the vertices $u_{4 r+3}, v_{4 r+3}$.
Thus this vertex labeling f is a 4 -total mean cordial labeling follows from the Table 3.

Order of n	$t_{m f}(0)$	$t_{m f}(1)$	$t_{m f}(2)$	$t_{m f}(3)$
$n=4 r$	$5 r+1$	$5 r+1$	$5 r+1$	$5 r$
$n=4 r+1$	$5 r+2$	$5 r+2$	$5 r+2$	$5 r+2$
$n=4 r+2$	$5 r+3$	$5 r+3$	$5 r+3$	$5 r+4$
$n=4 r+3$	$5 r+4$	$5 r+5$	$5 r+4$	$5 r+5$

Table 3:
Case 5. $n=1,2,3$.
Table 4 gives a 4 -total mean cordial labeling for this case.

n	u	v	w	u_{1}	u_{2}	u_{3}	v_{1}	v_{2}	v_{3}
1	0	3	2	2			0		
2	0	3	2	1	3		0	0	
3	0	3	2	2	2	3	0	0	0

Table 4:

Theorem 4.4. The graph $K_{2, n} \cup B_{n, n}$ is 4-total mean cordial for all values of n.
Proof. Take the vertex set and edge set of $K_{2, n}$ as in Notation 1. Let $V\left(B_{n, n}\right)=$ $\left\{x, y, x_{i}, y_{i}: 1 \leq i \leq n\right\}$ and $E\left(B_{n, n}\right)=\left\{x y, x x_{i}, y y_{i}: 1 \leq i \leq n\right\}$. Note that $\left|V\left(K_{2, n} \cup B_{n, n}\right)\right|+$ $\left|E\left(K_{2, n} \cup B_{n, n}\right)\right|=7 n+5$. Assign the labels $1,3,0,3$ to the vertices u, v, x, y respectively.

Case 1. $n \equiv 0(\bmod 4)$.
Let $n=4 r, r \in \mathbb{N}$.
Subcase 1. r is odd.
Assign the label 0 to the $4 r$ vertices $u_{1}, u_{2}, \ldots, u_{4 r}$. Now we assign the label 0 to the $\frac{3 r+1}{2}$ vertices $x_{1}, x_{2}, \ldots, x_{\frac{3 r+1}{2}}$. Next we assign the label 1 to the $\frac{r+1}{2}$ vertices $x_{\frac{3 r+3}{2}}, x_{\frac{3 r+5}{2}}$, $\ldots, x_{2 r+1}$. Now we assign the label 2 to the $2 r-1$ vertices $x_{2 r+2}, x_{2 r+3}, \ldots, x_{4 r}$. Next we assign the label 2 to the $r+1$ vertices $y_{1}, y_{2}, \ldots, y_{r+1}$. Finally we assign the label 3 to the $3 r-1$ vertices $y_{r+2}, y_{r+3}, \ldots, y_{4 r}$.

SubCase 2. r is even.
We assign the label 0 to the $4 r$ vertices $u_{1}, u_{2}, \ldots, u_{4 r}$. Now we assign the label 0 to the
$\frac{3 r}{2}$ vertices $x_{1}, x_{2}, \ldots, x_{\frac{3 r}{2}}$. We now assign the label 1 to the $\frac{r+2}{2}$ vertices $x_{\frac{3 r+2}{2}}, x_{\frac{3 r+4}{2}}, \ldots$, $x_{2 r+1}$. Next we assign the label 2 to the $2 r-1$ vertices $x_{2 r+2}, x_{2 r+3}, \ldots, x_{4 r}$. Now we assign the label 2 to the $r+1$ vertices $y_{1}, y_{2}, \ldots, y_{r+1}$. Finally we assign the label 3 to the $3 r-1$ vertices $y_{r+2}, y_{r+3}, \ldots, y_{4 r}$.

Case 2. $n \equiv 1(\bmod 4)$.
Let $n=4 r+1, r \in \mathbb{N}$.
Subcase 1. r is odd.
As in Subcase 1 of Case 1, assign the label to the vertices $u_{i}, x_{i}, y_{i}(1 \leq i \leq 4 r)$. Now we assign the labels $0,2,3$ respectively to the vertices $u_{4 r+1}, x_{4 r+1}, y_{4 r+1}$.

Subcase 2. r is even.
Label the vertices $u_{i}, x_{i}, y_{i}(1 \leq i \leq 4 r)$ as in Subcase 2 of Case 1. Next we assign the labels $3,0,1$ to the vertices $u_{4 r+1}, x_{4 r+1}, y_{4 r+1}$ respectively.

Case 3. $n \equiv 2(\bmod 4)$.
Let $n=4 r+2, r \in \mathbb{N}$.
Subcase 1. r is odd.
In this case, assign the label to the vertices $u_{i}, x_{i}, y_{i}(1 \leq i \leq 4 r+1)$ as in Subcase 1 of Case 2. Finally we assign the labels $0,2,3$ to the vertices $u_{4 r+2}, x_{4 r+2}, y_{4 r+2}$.

Subcase 2. r is even.
Label the vertices $u_{i}, x_{i}, y_{i}(1 \leq i \leq 4 r+1)$ as in Subcase 2 of Case 2. Next we assign the labels $0,2,3$ to the vertices $u_{4 r+2}, x_{4 r+2}, y_{4 r+2}$.

Case 4. $n \equiv 3(\bmod 4)$.
Let $n=4 r+3, r \in \mathbb{N}$.
Subcase 1. r is odd.
We assign the label to the vertices $u_{i}, x_{i}, y_{i}(1 \leq i \leq 4 r+2)$ as in Subcase 1 of Case 3.
Now we assign the labels $3,0,1$ to the vertices $u_{4 r+3}, x_{4 r+3}, y_{4 r+3}$.
Subcase 2. r is even.
As in Subcase 2 of Case 3, assign the label to the vertices $u_{i}, x_{i}, y_{i}(1 \leq i \leq 4 r+2)$. Finally we assign the labels $3,0,1$ to the vertices $u_{4 r+3}, x_{4 r+3}, y_{4 r+3}$.

The table 5 , shows that this vertex labeling f is a 4 -total mean cordial labeling.
Case 5. $n=1,2,3$.
Table 6 gives a 4 -total mean cordial labeling for this case.

Theorem 4.5. The graph $K_{2, n} \cup W_{n}$ is 4-total mean cordial for all $n \geq 3$.

n	Nature of r	$t_{m f}(0)$	$t_{m f}(1)$	$t_{m f}(2)$	$t_{m f}(3)$
$4 r$	r is odd	$7 r+2$	$7 r+1$	$7 r+1$	$7 r+1$
$4 r$	r is even	$7 r+1$	$7 r+2$	$7 r+1$	$7 r+1$
$4 r+1$	r is odd	$7 r+3$	$7 r+3$	$7 r+3$	$7 r+3$
$4 r+1$	r is even	$7 r+3$	$7 r+3$	$7 r+3$	$7 r+3$
$4 r+2$	r is odd	$7 r+4$	$7 r+5$	$7 r+5$	$7 r+5$
$4 r+2$	r is even	$7 r+4$	$7 r+5$	$7 r+5$	$7 r+5$
$4 r+3$	r is odd	$7 r+6$	$7 r+6$	$7 r+7$	$7 r+7$
$4 r+3$	r is even	$7 r+6$	$7 r+6$	$7 r+7$	$7 r+7$

Table 5:

n	u	v	x	y	u_{1}	u_{2}	u_{3}	x_{1}	x_{2}	x_{3}	y_{1}	y_{2}	y_{3}
1	1	3	0	1	3			0			2		
2	1	3	0	3	0	0		0	2		2	3	
3	1	3	0	3	0	0	0	0	2	2	2	3	3

Table 6:

Proof. Take the vertex set and edge set of $K_{2, n}$ as in Notation 1. Let the vertex set of W_{n} be, $V\left(W_{n}\right)=\left\{w, w_{i}: 1 \leq i \leq n\right\}$ and the edge set of W_{n} be, $E\left(W_{n}\right)=\left\{w w_{i}: 1 \leq i \leq n\right\} \cup$ $\left\{w_{i} w_{i+1}: 1 \leq i \leq n-1\right\} \cup\left\{w_{n} w_{1}\right\}$. Clearly $\left|V\left(K_{2, n} \cup W_{n}\right)\right|+\left|E\left(K_{2, n} \cup W_{n}\right)\right|=6 n+3$. Assign the labels $0,2,0$ to the vertices u, v, w respectively.

Case 1. $n \equiv 0(\bmod 4)$.
Let $n=4 r, r \in \mathbb{N}$. Assign the label 0 to the $3 r-1$ vertices $u_{1}, u_{2}, \ldots, u_{3 r-1}$. Next we we assign the label 1 to the $r+1$ vertices $u_{3 r}, u_{3 r+1}, \ldots, u_{4 r}$. Now we assign the label 3 to the $3 r$ vertices $w_{1}, w_{2}, \ldots, w_{3 r}$. Finally we assign the label 2 to the r vertices $w_{3 r+1}$, $w_{3 r+2}, \ldots, w_{4 r}$.

Case 2. $n \equiv 1(\bmod 4)$.
Let $n=4 r+1, r \in \mathbb{N}$. Label the vertices $u_{i}, w_{i}(1 \leq i \leq 4 r)$ as in Case 1 . Now we assign the labels 0,3 to the vertices $u_{4 r+1}, w_{4 r+1}$ respectively.

Case 3. $n \equiv 2(\bmod 4)$.
Let $n=4 r+2, r \in \mathbb{N}$. In this case, we assign the label to the vertices $u_{i}, w_{i}(1 \leq i \leq 4 r)$ as in Case 1. Next we assign the labels $0,0,2,3$ respectively to the vertices $u_{4 r+1}, u_{4 r+2}$, $w_{4 r+1}, w_{4 r+2}$.

Case 4. $n \equiv 3(\bmod 4)$.
Let $n=4 r+3, r \in \mathbb{N}$. As in case 1 , assign the label to the vertices $u_{i}, w_{i}(1 \leq i \leq 4 r)$. Finally we assign the labels $0,0,0,2,3,3$ to the vertices $u_{4 r+1}, u_{4 r+2}, u_{4 r+3}, w_{4 r+1}, w_{4 r+2}$, $w_{4 r+3}$ respectively.

Thus this vertex labeling f is a 4 -total mean cordial labeling follows from the Table 7 .

Order of n	$t_{m f}(0)$	$t_{m f}(1)$	$t_{m f}(2)$	$t_{m f}(3)$
$n=4 r$	$6 r$	$6 r+1$	$6 r+1$	$6 r+1$
$n=4 r+1$	$6 r+2$	$6 r+2$	$6 r+2$	$6 r+3$
$n=4 r+2$	$6 r+4$	$6 r+4$	$6 r+4$	$6 r+3$
$n=4 r+3$	$6 r+6$	$6 r+5$	$6 r+5$	$6 r+5$

Table 7:
Case 5. $n=3$.
Table 8 gives a 4 -total mean cordial labeling for this case.

n	u	v	w	u_{1}	u_{2}	u_{3}	w_{1}	w_{2}	w_{3}
3	0	2	0	0	0	1	2	3	3

Table 8:

Theorem 4.6. The graph $K_{2, n} \cup F_{n}$ is 4-total mean cordial for all $n \geq 2$.
Proof. Take the vertex set and edge set of $K_{2, n}$ as in Notation 1.
Let $V\left(F_{n}\right)=\left\{w, w_{i}: 1 \leq i \leq n\right\}$ and $E\left(F_{n}\right)=\left\{w w_{i}: 1 \leq i \leq n\right\} \cup\left\{w_{i} w_{i+1}: 1 \leq i \leq n-1\right\}$.
Note that $\left|V\left(K_{2, n} \cup F_{n}\right)\right|+\left|E\left(K_{2, n} \cup F_{n}\right)\right|=6 n+2$. Assign the labels $0,2,0$ to the vertices u, v, w respectively.

Case 1. $n \equiv 0(\bmod 4)$.
Let $n=4 r, r \in \mathbb{N}$. Assign the label 0 to the $3 r-1$ vertices $u_{1}, u_{2}, \ldots, u_{3 r-1}$. Next we we assign the label 1 to the $r+1$ vertices $u_{3 r}, u_{3 r+1}, \ldots, u_{4 r}$. Now we assign the label 2 to the r vertices $w_{1}, w_{2}, \ldots, w_{r}$. Finally we assign the label 3 to the $3 r$ vertices $w_{r+1}, w_{r+2}, \ldots, w_{4 r}$.

Case 2. $n \equiv 1(\bmod 4)$.
Let $n=4 r+1, r \in \mathbb{N}$. We assign the label to the vertices $u_{i}, w_{i}(1 \leq i \leq 4 r)$ as in Case 1. Next we assign the labels 0,3 respectively to the vertices $u_{4 r+1}, w_{4 r+1}$.

Case 3. $n \equiv 2(\bmod 4)$.
Let $n=4 r+2, r \in \mathbb{N}$. Label the vertices $u_{i}, w_{i}(1 \leq i \leq 4 r+1)$ as in Case 2. Now we assign the labels 0,3 to the vertices $u_{4 r+2}, w_{4 r+2}$.

Case 4. $n \equiv 3(\bmod 4)$.
Let $n=4 r+3, r \in \mathbb{N}$. Now we assign the label 0 to the $3 r-1$ vertices $u_{1}, u_{2}, \ldots, u_{3 r-1}$. Next we we assign the label 1 to the $r+1$ vertices $u_{3 r}, u_{3 r+1}, \ldots, u_{4 r}$. Now we assign the
labels $1,3,3$ respectively to the vertices $u_{4 r+1}, u_{4 r+2}, u_{4 r+3}$. Consider we assign the label 3 to the $3 r+1$ vertices $w_{1}, w_{2}, \ldots, w_{3 r+1}$. Now we assign the label 1 to the vertex $w_{3 r+2}$. Next we assign the label 2 to the $r-2$ vertices $w_{3 r+3}, w_{3 r+4}, \ldots, w_{4 r}$. Finally we assign the labels 2, 0,0 to the vertices $w_{4 r+1}, w_{4 r+2}, w_{4 r+3}$.

From the Table 9 , this vertex labeling f is a 4 -total mean cordial labeling.

Order of n	$t_{m f}(0)$	$t_{m f}(1)$	$t_{m f}(2)$	$t_{m f}(3)$
$n=4 r$	$6 r$	$6 r+1$	$6 r+1$	$6 r$
$n=4 r+1$	$6 r+2$	$6 r+2$	$6 r+2$	$6 r+2$
$n=4 r+2$	$6 r+4$	$6 r+3$	$6 r+3$	$6 r+4$
$n=4 r+3$	$6 r+5$	$6 r+5$	$6 r+5$	$6 r+5$

Table 9:
Case 5. $n=2,3$.
Table 10 gives a 4 -total mean cordial labeling for this case.

n	u	v	w	u_{1}	u_{2}	u_{3}	w_{1}	w_{2}	w_{3}
2	0	2	0	0	1		3	3	
3	0	2	1	0	0	3	1	3	3

Table 10:

Theorem 4.7. The graph $K_{2, n} \cup H_{n}$ is 4 -total mean cordial for all $n \geq 3$.
Proof. Take the vertex set and edge set of $K_{2, n}$ as in Notation 1.
Let the vertex set of H_{n} be, $V\left(H_{n}\right)=\left\{w, w_{i}, v_{i}: 1 \leq i \leq n\right\}$ and the edge set of H_{n} be, $E\left(H_{n}\right)=\left\{w w_{i}, w_{i} v_{i}: 1 \leq i \leq n\right\} \cup\left\{w_{i} w_{i+1}: 1 \leq i \leq n-1\right\} \cup\left\{w_{n} w_{1}\right\}$. Clearly $\left|V\left(K_{2, n} \cup H_{n}\right)\right|+$ $\left|E\left(K_{2, n} \cup H_{n}\right)\right|=8 n+3$. Assign the labels 1, 3, 2 to the vertices u, v, w respectively. Assign the label 3 to the n vertices $u_{1}, u_{2}, \ldots, u_{n}$. Next we we assign the label 0 to the n vertices $w_{1}, w_{2}, \ldots, w_{n}$. Finally we assign the label 2 to the n vertices $v_{1}, v_{2}, \ldots, v_{n}$. Obiviously $t_{m f}(0)=2 n ; t_{m f}(1)=t_{m f}(2)=t_{m f}(3)=2 n+1$.

Theorem 4.8 The graph $K_{2, n} \cup L_{n}$ is 4-total mean cordial for all $n \geq 2$.
Proof. Take the vertex set and edge set of $K_{2, n}$ as in Notation 1. Let $V\left(L_{n}\right)=\left\{v_{i}, w_{i}: 1 \leq i \leq n\right\}$ and $E\left(L_{n}\right)=\left\{v_{i} w_{i}: 1 \leq i \leq n\right\} \cup\left\{v_{i} v_{i+1}, w_{i} w_{i+1}: 1 \leq i \leq n-1\right\}$.
Obviously $\left|V\left(K_{2, n} \cup L_{n}\right)\right|+\left|E\left(K_{2, n} \cup L_{n}\right)\right|=8 n$. Assign the labels 0,3 to the vertices u, v respectively. Assign the label 1 to the n vertices $u_{1}, u_{2}, \ldots, u_{n}$. Next we we assign the label 0 to the n vertices $v_{1}, v_{2}, \ldots, v_{n}$. Finally we assign the label 3 to the n vertices $w_{1}, w_{2}, \ldots, w_{n}$. Clearly $t_{m f}(0)=2 n=t_{m f}(1)=t_{m f}(2)=t_{m f}(3)=2 n$.

References

[1] Cahit,I., Cordial Graphs: A weaker version of Graceful and Harmonious graphs, Ars combin., 23 (1987) 201-207.
[2] Diab,A.T., and Mohammed,S.A., On cordial labelings of fans with other graphs, Ars. Combin., 106 (2012) 263-275.
[3] Gallian,J.A., A Dynamic survey of graph labeling, The Electronic Journal of Combinatorics, 19 (2016) \#Ds6.
[4] Ghodasara,G.V., Rokad,A.H, Jadav,I.I., Cordial labeling of grid related graphs, Internat. J. Comb. Graph Th. and App., 6, No. 2 (2013) 55-62.
[5] Ghodasara,G.V., Sonchhatra,S.G., Cordial labeling of fan related graphs, Internat. J. Sci. Eng. Res., 4, (8) (2013) 470-476.
[6] Harary, Graph theory, Addision wesley, New Delhi (1969).
[7] Hovey,M., A-cordial graphs, Discrete Math., 93 (1991) 183-194.
[8] Kanani,K.K., Modha,M.V., 7-cordial labeling of standard graphs, Internat. J. Appl. Math. Res., 3(4), (2014) 547-560.
[9] Kanani,K.K., Rathod,N.B., Some new 4-cordial graphs, J. Math. Comput. Sci., 4(5), (2014) 834-848.
[10] Kaneria,V.J., Patadiya,K.M., Teraiya,J.R., Balanced cordial labeling and its application to produce new cordial families, Int. J. Math. Appl., 4(1-C), (2016) 65-68.
[11] Mohamed Seoud and Mohamed Aboshady, Further results on parity combination cordial labeling, Journal of the Egyptian Mathematical Society, (2020).
[12] Mohamed Seoud, Shakir Salman, Some results and examples on difference cordial graphs, Turkish Journal of Mathematics, (2016)40:417-427.
[13] Pechenik,O., Wise,J., Generalized graph cordialty, Discuse. Math. Graph Th., 32 no.3, (2012) 557-567.
[14] R. Ponraj, S. Subbulakshmi, S. Somasundaram, k-total mean cordial graphs, J.Math.Comput.Sci. 10(2020), No.5, 1697-1711.
[15] Ponraj,R., Subbulakshmi,S., Somasundaram,S., 4-total mean cordial graphs derived from paths, J.Appl and Pure Math. Vol 2(2020), 319-329.
[16] Ponraj,R., Subbulakshmi,S., Somasundaram,S., 4-total mean cordial labeling in subdivision graphs, Journal of Algorithms and Computation 52(2020), 1-11.
[17] Ponraj,R., Subbulakshmi,S., Somasundaram,S., Some 4-total mean cordial graphs derived from wheel, J. Math. Comput. Sci. 11(2021), 467-476.
[18] Ponraj,R., Subbulakshmi,S., Somasundaram,S., 4-total mean cordial graphs derived from star and bistar, J. Math. Comput. Sci. 11(2021), 467-476.
[19] Prajapati,U.M., Patel,N.P., Edge product cordial labeling of some graphs, Journal of Applied Mathematics and Computational Mechanics, (2019), 18(1), 69-76.
[20] Raj,P.L.R., Koilraj,S., Cordial labeling for the splitting graph of some standard graphs, Internat. J. Math. Soft Comput., 1 No 1 (2011) 105-114.
[21] Rathod,N.B., Kanani,K.K., 5-cordial labeling of some standard graphs, Proceeding of 8th National Level Science Symposium, Rajkot, India, 2(2015) 43-48.
[22] Tenguria,A., Verma.R., 3- Total super product cordial labeling for some graphs, Internat. J. Science Res., 4(2),(2015) 557-559.
[23] Tuczynski,M., Wenus,P., wesek,K., On cordial hypertrees, arXiv:1711,06294 [math.CO] 2017.

[^0]: *Corresponding author: R. Ponraj. Email: ponrajmaths@gmail.com
 ${ }^{\dagger}$ ssubbulakshmis@gmail.com
 ${ }^{\ddagger}$ somutvl@gmail.com

