تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,501 |
تعداد مشاهده مقاله | 124,098,022 |
تعداد دریافت فایل اصل مقاله | 97,205,602 |
ارزیابی فعالیتهای انسانی در حوزه آبخیز (مطالعه موردی: حوزه آبخیز لالهزار کرمان) | ||
نشریه علمی - پژوهشی مرتع و آبخیزداری | ||
دوره 75، شماره 1، خرداد 1401، صفحه 119-136 اصل مقاله (841.7 K) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/jrwm.2022.340423.1650 | ||
نویسنده | ||
ناصر مشهدی* | ||
استادیار، دپارتمان علوم زمین، مرکز تحقیقات بین المللی بیابان، دانشگاه تهران | ||
چکیده | ||
پویایی فعالیتهای انسانی، پایداری سامانههای پشتیبانی زندگی جهانی را تهدید میکند. تحلیل دادههای تحولات انسانی نقش محوری در ارزیابی مشکلات محیطزیستی ایفا میکند. این مطالعه با هدف تجزیه و تحلیل فعالیتهای انسانی در حوزه آبخیز انجام شده است. مطالعات و تجزیه و تحلیلها نشان داد که متغیرهای تحول انسانی شامل نوع، شدت و روند مداخله انسان است. الگوهای فضایی و زمانی نوع فعالیت (کاربری سرزمین)، شدت و روند دخالت انسان با استفاده تصاویر ماهواره و بازدیدهای صحرایی مورد مطالعه قرار گرفتند. طبقهبندی و نقشه کاربری سرزمین در دو مرحله انجام شد. فاز عملکردی، شامل کاربریهای اصلی زمین از جمله کشاورزی، مرتع، شهری و منابع آب و فاز فعالیت، شامل ده نوع کاربری زمین بود. مطالعه شدت مداخلات انسان در واحدهای کاربری سرزمین، بر اساس گسترش زمانی توسعه زمینهای کشاورزی (کاربری کشاورزی)، ارزیابی وضعیت مرتع (کاربری مرتع) و وسعت تحت تاثیر بودن سرزمین (کاربری شهری و منابع آب) انجام شد. نتایج مطالعات کاربری سرزمین نشان داد که اراضی مرتعی 2/77 درصد و کاربریهای کشاورزی، محدوده شهری و منابع آب به ترتیب 5/21، 1/1 و 2/0 درصد را به خود اختصاص داده اند. نتایج روند مداخلات نشان داد که روند از شرایط طبیعی به سمت جایگزینی ساختارهای با فعالیتهای انسان ساخت ادامه دارد. روند دخالت انسان ، رشدی از فعالیت کشاورزی در اراضی مرتعی و همچنین از دسترفتن زیاد زمینهای زراعی را در رشد ناهمگن شهری و صنعتی، نشان داده است. نتایج مطالعه، سازگاری بین سه متغیر تغییر و تحول انسانی نوع، شدت و روند دخالت انسان را نشان میدهد. | ||
کلیدواژهها | ||
روند دخالت؛ شدت دخالت؛ عملکرد سرزمین؛ کاربری سرزمین؛ کشاورزی | ||
مراجع | ||
[1] Alexander, P., Rounsevell, M. D., Dislich, C., Dodson, J. R., Engström, K., & Moran, D. (2015). Drivers for global agricultural land use change: The nexus of diet, population, yield and bioenergy. Global Environmental Change, 35, 138-147. [2] Anderson, J. R. (1976). A land use and land cover classification system for use with remote sensor data (Vol. 964). US Government Printing Office. [3] Barnosky, A. D., Hadly, E. A., Bascompte, J., Berlow, E. L., Brown, J. H., Fortelius, M., ... & Smith, A. B. (2012). Approaching a state shift in Earth’s biosphere. Nature, 486(7401), 52-58. [4] CEC. (1995). CORINE - Guide Technique. Commission of the European Communities, Brussels. [5] Di Gregorio, A. (2005). Land cover classification system: classification concepts and user manual: LCCS (Vol. 2). Food & Agriculture Org. [6] Dirmeyer, P. A., Niyogi, D., de Noblet-Ducoudré, N., Dickinson, R. E., & Snyder, P. K. (2010). Impacts of land use change on climate. Int. J. Climatol, 30(13), 1905-1907. [7] Dissanayake, D. M. S. L. B. (2020). Land use change and its impacts on land surface temperature in Galle City, Sri Lanka. Climate, 8(5), 65. [8] ECE-UN (. (1989). Proposed ECE Standard International Classification of Land Use. [9] Ellis, E. C., Kaplan, J. O., Fuller, D. Q., Vavrus, S., Goldewijk, K. K., & Verburg, P. H. (2013). Used planet: A global history. Proceedings of the National Academy of Sciences, 110(20), 7978-7985. [10] Feddema, J. J., Oleson, K. W., Bonan, G. B., Mearns, L. O., Buja, L. E., Meehl, G. A., & Washington, W. M. (2005). The importance of land-cover change in simulating future climates. Science, 310(5754), 1674-1678. [11] Fisher, P., Comber, A. J., & Wadsworth, R. (2005). Land use and land cover: contradiction or complement. Re-presenting GIS, 85-98. [12] Foley, J. A., DeFries, R., Asner, G. P., Barford, C., Bonan, G., Carpenter, S.R., Chapin, F.S., Coe, M.T., Daily, G.C., Gibbs, H.K. and Helkowski, J.H. (2005). Global consequences of land use. Science, 309(5734), 570-574. [13] Ghorbani, A., & Pakravan, M. (2013). Land use mapping using visual vs. digital image interpretation of TM and Google earth derived imagery in Shrivan-Darasi watershed (Northwest of Iran). European Journal of Experimental Biology, 3(1), 576-582. [14] Gomarasca, M. A. (2009). Land use/land cover classification systems. In Basics of Geomatics (pp. 561-598). Springer, Dordrecht. [15] Jansen, L. J., & Di Gregorio, A. (2003). Land-use data collection using the “land cover classification system”: results from a case study in Kenya. Land Use Policy, 20(2), 131-148. [16] Kaplan, J. O., Krumhardt, K. M., Ellis, E. C., Ruddiman, W. F., Lemmen, C., & Goldewijk, K. K. (2011). Holocene carbon emissions as a result of anthropogenic land cover change. The Holocene, 21(5), 775-791. [17] Kareiva, P., Watts, S., McDonald, R., & Boucher, T. (2007). Domesticated nature: shaping landscapes and ecosystems for human welfare. Science, 316(5833), 1866-1869. [18] Karimi, S. (2019). Determine the Beginning and End of the Thermal Seasons with the Scrutiny Approach of the Natural Seasons (Case Study: Different Areas of Kerman Province). Journal of Natural Environmental Hazards, 7(18), 147-168. [19] Klein Goldewijk, K., Beusen, A., Van Drecht, G., & De Vos, M. (2011). The HYDE 3.1 spatially explicit database of human‐induced global land‐use change over the past 12,000 years. Global Ecology and Biogeography, 20(1), 73-86. [20] Krausmann, F., Erb, K. H., Gingrich, S., Haberl, H., Bondeau, A., Gaube, V., Lauk, C., Plutzar, C. and Searchinger, T.D. (2013). Global human appropriation of net primary production doubled in the 20th century. Proceedings of the national academy of sciences, 110(25), 10324-10329. [21] Kuemmerle, T., Erb, K., Meyfroidt, P., Müller, D., Verburg, P. H., Estel, S., & Reenberg, A. (2013). Challenges and opportunities in mapping land use intensity globally. Current opinion in environmental sustainability, 5(5), 484-493. [22] Liu, J., Liu, M., Zhuang, D., Zhang, Z., & Deng, X. (2003). Study on spatial pattern of land-use change in China during 1995–2000. Science in China Series D: Earth Sciences, 46(4), 373-384. [23] Liu, J., Zhang, Z., Xu, X., Kuang, W., Zhou, W., Zhang, S., Li, R., Yan, C., Yu, D., Wu, S. and Jiang, N. (2010). Spatial patterns and driving forces of land use change in China during the early 21st century. Journal of Geographical Sciences, 20(4), 483-494. [24] Liu, J., Zhang, C., Kou, L., & Zhou, Q. (2017). Effects of climate and land use changes on water resources in the Taoer River. Advances in Meteorology, 2017. [25] Mainguet, M. (1986). The wind and desertification processes in the Saharo-Sahelian and Sahelian regions. In Physics of desertification (pp. 210-240). Springer, Dordrecht. [26] Mashhadi, N. (2019). Land use change in sand sources as an agent on changing wind erosion process (case study: Damghan erg. Geography (Regional Planning), 9(3), 61-79. [27] Mashhadi, N., Karimpour reihan, M. (2021). Analysis of geomorphologic- anthropogenic changes in sources of Sand and dust storms (Case study: Damghan Erg). Scientific-Research Quarterly of New Attitudes in Human Geography, 13 (1), pp. 100-111. (In Persian). [28] Milanova, E. V., & Kushlin, A. V. (1993). World map of present-day landscapes: An explanatory note (No. 551.4 912.15514). Programa de las Naciones Unidas para el Medio Ambiente. United Nations Environment Programme. [29] Mosca, N., Di Gregorio, A., Henry, M., Jalal, R., & Blonda, P. (2020). Object-Based Similarity Assessment Using Land Cover Meta-Language (LCML): Concept, Challenges, and Implementation. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, 3790-3805. [30] Musa, M. K., & Odera, P. A. (2015). Land use land cover changes and their effects on agricultural land a case study of Kiambu County Kenya. [31] Mucher, C., Stomph, T. J., & Fresco, L. O. (1993). Proposal for a global land use classification. FAO/ITC/WAU. [32] Oldfield, F., & Dearing, J. A. (2003). The role of human activities in past environmental change. In Paleoclimate, global change and the future (pp. 143-162). Springer, Berlin, Heidelberg. [33] Scanlon, B. R., Reedy, R. C., Stonestrom, D. A., Prudic, D. E., & Dennehy, K. F. (2005). Impact of land use and land cover change on groundwater recharge and quality in the southwestern US. Global Change Biology, 11(10), 1577-1593. [34] Syvitski, J. P., & Kettner, A. (2011). Sediment flux and the Anthropocene. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 369(1938), 957-975. [35] UNEP/FAO. (1994). Report of the UNEP/FAO Expert Meeting on Harmonizing Land Cover and Land Use Classifications. [36] Veldkamp, A., & Lambin, E. F. (2001). Predicting land-use change. Agriculture, ecosystems & environment, 85(1-3), 1-6. [37] Verburg, P. H., Neumann, K., & Nol, L. (2011). Challenges in using land use and land cover data for global change studies. Global change biology, 17(2), 974-989. [38] Vlek, L.G. and Braimoh, A.K. eds. (2007). Land use and soil resources. Springer. [39] Walker, B., & Steffen, W. (1997). An overview of the implications of global change for natural and managed terrestrial ecosystems. Conservation ecology, 1(2). [40] Walker, B., Steffen, W., Canadell, J., & Ingram, J. (Eds.). (1999). The terrestrial biosphere and global change: implications for natural and managed ecosystems (Vol. 4). Cambridge University Press. [41] Wu, J. (2013). Landscape sustainability science: ecosystem services and human well-being in changing landscapes. Landscape ecology, 28(6), 999-1023. [42] Zhai, R., Zhang, C., Li, W., Zhang, X., & Li, X. (2020). Evaluation of driving forces of land use and land cover change in New England area by a mixed method. ISPRS International Journal of Geo-Information, 9(6), 350. [43] Zalasiewicz, J., Waters, C. and Williams, M. (2020). The anthropocene. In Geologic Ti | ||
آمار تعداد مشاهده مقاله: 233 تعداد دریافت فایل اصل مقاله: 227 |