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Abstract,  

The mathematical formulation of thermoelasticity problems includes 

coupled non-self-adjoint differential equations of motion and heat 

conduction. The problem of integrating them and constructing a general 

solution leads, as a rule, to the study of only the heat conduction equation or 

to the analysis of thermoelasticity problems in an unconnected formulation. 

However, for a better assessment of thermomechanical fields, it becomes 

necessary to construct coupled analytical solutions in a three-dimensional 

formulation. Therefore, the development of effective analytical methods and 

algorithms for calculating elastic systems is currently one of the urgent 

problems of modern science. In this problem, a mathematical calculation 

model is developed and a closed solution of the coupled axisymmetric non-

stationary problem of the theory of thermoelasticity for a rigidly fixed 

isotropic plate is constructed. Design ratios are obtained by the method of 

finite biorthogonal transformations and are valid for an external 

temperature effect arbitrary in time (boundary conditions for thermal 

conductivity of the 1st kind). Software that allows to analyze the effect of 

coupled thermoelastic fields on the temperature field and the stress-strain 

state of the structure has been developed. Numerical analysis of the results 

shows that for a given external temperature effect, the rigidity of an elastic 

system (physical and mechanical characteristics and geometric dimensions) 

has a significant effect on its thermoelastic field. The developed calculation 

algorithm finds its application in the design of enclosing structures in the 

form of single-layer and multi-layer plates. 

Keywords: round plate, theory of thermoelasticity, non-stationary temperature action, finite integral 

transformations. 

1. Introduction 

Uneven non-stationary heating of structures for various purposes leads to thermal deformations and stress 

occurrence, which must be taken into account in the case of a comprehensive analysis of the strength characteristics 

of elastic systems of finite dimensions [1-5]. At present, various theories of thermoelasticity have been developed 

(CTE, GHI – GHIII, LS) [8, 20, 49, 55], which solve this problem with varying accuracy degrees. Various theories 

and assumptions are also widely used in modern works [6-15]. 

The mathematical formulation of the considered initial-boundary value problems in a linear three-dimensional 

formulation includes coupled non-self-adjoint differential equations of motion and heat conduction. As a rule, this 
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system of differential equations is considered in an unrelated setting [16-22] this case, when an external non-

stationary heat load acts on the elastic system, the effect of the rate of change in the volume of the body on the 

temperature field is not taken into account. 

In a related formulation, closed solutions of dynamic problems of thermoelasticity are presented in a few works. 

In particular, studies [23-26] were carried out for a finite isotropic cylinder with membrane fixing of its end surfaces. 

In [27] using the generalized method of finite integral transformations [28] and [24, 26] the biorthogonal integral 

transform [23, 29]. 

Research [30, 31] was carried out using hyperbolic (GHII, GHIII) theories of thermoelasticity and helps to 

analyze the frequency equations, as well as the forms of harmonic waves in an infinite cylindrical waveguide. 

Modern works devoted to the analysis and stability of structural elements under the influence of various thermal, 

thermomechanical, and electrical loads include the works [3, 4, 6-8, 10-14, 16, 32-52].  

In this work, a rigidly fixed round isotropic plate is investigated. The case of the action on the upper and lower 

surfaces of an unsteady axisymmetric temperature load (boundary conditions of the 1st kind) is considered. The 

numerical results of calculating this problem in an unconnected formulation [53] allow us to conclude that the 

inertial forces of an elastic system affect its stress-strain state only in very thin structures (
01.0



b
h

, 

− bh , thickness and radius of the plate) under the action of a high-frequency load. Taking into account these results, 

the inertia forces are not taken into account when solving the system of non-self-adjoint differential equations of the 

classical (CTE) theory of thermoelasticity, i.e., the constraint is used for the considered constructions
01.0



b
h

. 

The constructed solution of the coupled problem in a three-dimensional formulation makes it possible to take 

into account the effect of the rate of change in its volume (rate of dilatation) on the nature of the distribution of the 

temperature field and the stress strain. 

 

2. Materials and Methods 

As noted earlier, the purpose of this work is to construct a closed solution to the unsteady axisymmetric problem 

of thermoelasticity for an isotropic rigidly fixed disk in the case of uneven temperature heating of its surfaces. In this 

regard, the main tasks of the study are to solve the heat conductivity problem and determine the temperature load 

function by the method of finite integral transformations, then solve the thermoelasticity problem taking into 

account the known temperature function, construct the final expressions for determining the functions of 

displacement and temperature, and then confirm the analytical calculation by experiment. 

As an example, consider an isotropic plate, on the end surfaces of which a temperature load acts. Let a round 

rigidly fixed plate occupy the region  :  
  hzbr 0,20,0   in the cylindrical coordinate system 

( ) zr ,,
. On the upper and lower surfaces, the temperature is set, the value of which depends on the radial 

coordinate r  and time t : at  
0=z ),( **1 tr

, at 
*hz =  

),( **2 tr
  (Fig. 1).  
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Fig. 1: Calculation scheme. "Compiled by the authors" 

 

The mathematical formulation of the initial boundary value problem under consideration in a dimensionless form 

includes 

- a system of linear axisymmetric non-self-adjoint differential equations for the components of the displacement 

vector 
),,(),,,( tzrWtzrU

 and temperature 
),,( tzr

: 
2 2

1 22
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r z r z r
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- boundary conditions:  

0,1r =             
( ) ( ) ( ) 0, , , 0, , , 0, , ,U z t W z t z t  

 | 1

0
rr



 =


=

, 
( ) ( ) 1, , , 1, , 0U z t W z t =

;                         (2) 

hz ,0=               
 1 2,

1

v W
U

v z


 


 + =

− , 
0=+

z

U

r

W









, 
( )  1 2| 0,

, , ,
z h

r z t  
=

 =
;                

- initial conditions: 

0t =                                                                            
( ), ,0 0r z =

.                                                                     (3) 

where    bhzrWUhzrWU /,,,,,,,, **
** = , 

   1 2 4 1 0 2 0, , , , ,a T T      =  − −
 ( )vaа 2121 −= , 

( ) 1
2 15.0

−
−= vа  , 

2

3 0

(1 )(1 2 )
,

(1 )
a T

Е c

  



+ −
=

−  
4

1

1
tа


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

+
=

− , 
* 2

,t t
b c


=

 
( ) ( ) ( ), , , , , , , ,U r z t W r z t r z t   −

 displacement 

vector components and temperature increment in dimensional form; 0T Т = −
, 0, ,T Т −

 current 

temperature and temperature of the initial state of the body, in which there are no mechanical stresses; ,E v −  

elastic modulus and Poisson's ratio of the material;
,c ,t   −

 coefficients of linear thermal expansion, volumetric 

heat capacity and thermal conductivity of the material. 

 

3. Results 

The initial boundary value problem (1) – (3) is solved by the method of integral transformations, using 

successively the Hankel transform [18] with finite limits in the variable and the degenerate biorthogonal finite 

transformation [29] in the coordinate z . At each stage of the solution, the procedure of standardization of the 

corresponding boundary conditions is carried out [54]. 

Transformants 
( ), ,R n z t

, 
( ), ,inG n t

 and the inversion formulas of the corresponding transformations have the 

following form: 

 

( ) ( ) ( )
1

0

, , , , ,R n z t N r z t P n r rdr= 
, 

( ) 1

0

, , n

n

N r z t RP


−

=

= 
;                                   (4) 

 

( ) ( ) ( )
0

, , , , ,

t

in inG n t R n z t Y z dz = 
, 

1

1

in

i

R GH K


−

=

= 
;                                      (5) 

 

where 
( ) ( ) ( ) ( ), , , , , , , , , ,

T

N r z t U r z t W r z t r z t=    , mpP s = −   3-order diagonal matrix, 

( ) ( )( )11 1 22 33 0,n ns J j r s s J j r= = =
, 

( ) ( )3, 0,0, ,
T

in inY z K z =    , 
( ) ( ) ( ) ( )1 2 3, , , , , ,

T

in in in inH z N z N z N z   =    , 

3 1 2 3, , ,K N N N −
 components of the vector-function of biorthogonal transformations; 

,n inK −
 square of the norm 

of transformation kernels; 
,n inj  −

 eigenvalues ( 0,1,2...n = , 1,2,3...i = ). 

As a result, we obtain an expression for the functions 
( ) ( ), , , , ,U r z t W r z t

,
( ), ,r z t

 in the form of spectral 

expansions: 

 

( ) ( ) ( ) ( )
11

0 1

, , , , , ,n k in in in

n i

N r z t P n r F G n t H z K 
 

−−

= =

 
=  + 

 
 

,                              (6) 

where kF −
matrix is a column of standardizing functions. 

The algorithm for solving the initial – boundary value problem of thermoelasticity (1) - (3) is described in detail 
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in [53]. 

As an example, we consider a rigidly fixed round plate ( 1b = m) made of steel, which has the following physical 

and mechanical characteristics of the material: 
112 10E =   Pa, 50 = , W/(m0K), 0.28v = ,  

63.8 10c = 
 J/(m3 

0K ), 
51.2 10t −= 
 1/0K. 

The case of the action of (
0=z

) a temperature load on the upper front surface in the form of:   
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






−+−







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
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

maxmax

max

max1
2

sin1, ttHttHt
t

Trtr




,  
( ) 0,2 =

 tr
,                     (7) 

where ( )−tH
~

 the single function of Heaviside ( ( ) 1
~

=tH  at 0
~

t , ( ) 0
~

=tH  at 0
~

t ), 0maxmax TTT −= 

, 

−

maxmax , tT
 the maximum value of the external temperature effect and the corresponding time in the dimensional 

form (
0

max 373T K =
 (

0100 С
), 

0

0 293T K=
, (

020 С
)). 

Figures 2–4 show graphs of temperature changes 
( )0, ,

2
h t

, components of the vector of displacements 

( ) ( )0.5, , , 0, ,U z t W z t 

 in time and axial coordinate with allowance for (solid line) and also without (dashed line) for 

the coupling of thermoelastic fields ( max 10t =
с, 

4

max max2
1.3 10t t

b c

 −
= = 

). The temperature field and stress-strain 

state are analyzed for plates with a thickness 0.1,0.2h = . 
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Fig. 2: Graphs of temperature 

0, ,
2

h
t  

  
 

 changes over time t  (Compiled by the authors) 

 

 

 

 

 

 

( )0, , ,мW z t
                                                                                      

       \ 
         1                                                                                      

       \ 
         1                                                                                      

0 0.02 0.04 0.06 0.08 0.1

6.5− 10
4−



6− 10
4−



WWW 0 z 2 PT T ( ) 1.2

WK 0 z 2 PT T ( ) 1.42

WWW 0 z 5 PT T ( )

WK 0 z 5 PT T ( )

z

 

                
z                                                                                       

       \ 
         2                                                                                      

             

 

 

 

 

 

( )0, , ,мW z t
                                                                                      

      \ 
        1                                                                                      

0 0.05 0.1 0.15 0.2

2− 10
4−



1.5− 10
4−


WWW 0 z 2 PT T ( )

WK 0 z 2 PT T ( )

WWW 0 z 4 PT T ( )

WK 0 z 4 PT T ( )

z

 

                
z                                                                                       

       \ 
        2                                                                                      

 
а)  0.1h =                                                                          b)  0.2h =  

 

Fig. 3: Graphs of the 
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change in the height of the plate (1– maxt t=
,2– max5t t=

) (Compiled by the authors) 
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Fig. 4: Graphs of change 
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 along the height of the plate (1– maxt t=
,3– max100t t=

) (Compiled by the authors) 
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Fig. 5: Graphs of changes
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 in the radial coordinate ( 0.1h = ) (Compiled by the authors) 

 

4. Discussion 

Analysis of the calculation results allows us to draw the following conclusions: 

• the connectivity of thermoelastic fields at a given temperature load (7) leads to a slower heating of the plate over 

time (Fig. 2). In this case, the rate of change in the volume of the body, which is taken into account in the heat 

conduction equation (1), has a significant effect at the first stage of the study of the temperature regime, when 

max max10t t t 
. In the future, this effect is not observed; 

• a decrease in the rate of temperature change inside the plate due to its dilation gives an increase in the gradients 

,
r z

 
   that are used in the initial differential equations of thermoelasticity (1). As a result, there is an increase 

in the numerical values of the axial component of the displacement vector (Fig. 3, graphs 1, 2); 

• at a given temperature load, the coupling of thermoelastic fields decreases over time (Fig. 3). In addition, as a 

result of warming up the structure, an increase in displacements is observed (Fig. 3,4), and with a steady 

temperature regime on the lower surface there are no radial displacements (Fig. 4, graph 3); 

• the linear nature of the change in the radial component of the displacement vector along the height of the plate, 

allows us to conclude that when solving thermoelasticity problems for homogeneous elastic systems with the help 

of applied theories, it is possible to use the kinematic hypothesis of plane sections; 

• the numerical values of radial displacements 
( )0.5, ,U z t

 at a steady temperature regime do not depend on the 

thickness of the plate (Fig. 4, graphs 3). 

Figure 5 shows graphs of changes in normal mechanical stresses along 
( ),0,rr r t

 the radial coordinate at 

different points in time taking into account (solid line), as well as disregarding (dashed line) the connectivity of 

thermoelastic fields.  

 



Journal of Computational Applied Mechanics 2022, 53(3): 348-355 353 

5. Conclusion 

As a conclusion, we can note the following: 

• the greatest influence of the field coupling on the stress tensor component 
( ),0,rr r t

 is observed at maxt t=
. 

Subsequently, this effect sharply decreases (fig. 5); 

• in the process of warming up maxt t
 the structure, when there is a decrease in normal stresses 

( ),0,rr r t
. At 

maxt t=
 this component of the stress tensor is higher at a faster temperature loading of the plate; 

• it should be noted that when the condition is met ( ) 0,2 =

 tr  the lower face plane 
( )z h=

 is a neutral surface 

( ), , 0rr r h t =
, since |

0
z h

W
z



=

 =
  (fig. 3) and (fig. 4). 

In conclusion, we can conclude that when calculating structures of finite dimensions in the case of a high-speed 

thermal load, the coupling of temperature and elastic fields has a significant effect on its stress-strain state. 

Moreover, this feature is more pronounced in thin plates. As a result of the work performed, it will be possible to 

conduct a thermoelastic calculation of the design in question, which allows you to choose the geometric dimensions 

of the plate, as well as the physical characteristics of the material that ensure its most efficient operation. 
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