تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,501 |
تعداد مشاهده مقاله | 124,092,949 |
تعداد دریافت فایل اصل مقاله | 97,197,182 |
تنوع ژنتیکی برخی استرینهای مهم سودوموناس فلورسنت و تاثیر آنها بر آنزیمهای دفاعی و پارامترهای رشدی گندم نان | ||
کنترل بیولوژیک آفات و بیماری های گیاهی | ||
دوره 10، شماره 1، خرداد 1400، صفحه 17-30 اصل مقاله (895.19 K) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/jbioc.2021.315643.301 | ||
نویسندگان | ||
مریم خضری1؛ حسین دشتی1؛ روح اله صابری ریسه* 2؛ مژگان قلی زاده وزوانی2 | ||
1گروه ژنتیک و تولید گیاهی، دانشکده کشاورزی، دانشگاه ولی عصر (عج) رفسنجان | ||
2گروه گیاهپزشکی، دانشکده کشاورزی، دانشگاه ولی عصر (عج) رفسنجان | ||
چکیده | ||
باکتریهای سودوموناس فلورسنت مهمترین باکتریهای ریزوسفری میباشند که دارای اثر مثبت روی صفات رویشی و بیوشمیایی گیاه میباشند. در این پژوهش تنوع ژنتیکی 22 استرین سودوموناس فلورسنت و تاثیر آنها بر آنزیمهای دفاعی و فاکتورهای رویشی گیاه گندم در ارزیابیهای گلخانهای، مولکولی و بیوشیمیایی انجام شد. در ارزیابی مولکولی 12 آغازگر RAPD به منظور بررسی تنوع ژنتیکی استرینها مورد استفاده قرار گرفت. ارزیابی بیوشیمیایی در 4 مرحله صفر، 3، 6 و 9 روز بعد از تلقیح روی گیاه گندم به منظور اندازهگیری آنزیمهای دفاعی پراکسیداز و فنیلآلانینآمونیالیاز صورت پذیرفت. استرین VUPF5 روی گندم باعث افزایش وزن اندام هوایی و بیولوژیک گردید. RAPD-PCR تا حدودی استرینهای دارای مکان جغرافیایی مشابه و میزبان مشابه را تفکیک نمود. گروهبندیهای گلخانهای، مولکولی و بیوشیمیایی تقریبا استرینهای برتر را شناسایی نمود. استرینهای 680، 738، 50، 354، 49، 58 و VUPF5 که در ارزیابی مولکولی در یک گروه و دارای اثر مثبت بودند، با گروه برتر آنزیمها مشترک بودند. T26-2 وF-68 در آغازگرهای OP-I15 و OP-H8 به ترتیب نوارهایی با طول bp1300 و bp1200 را تکثیر نمودند که این نوارها میتوانند بعد از بررسیهای بیشتر به عنوان نوارهای کاندید در بیان این آنزیمها در گندم مورد مطالعه قرار گیرند. | ||
کلیدواژهها | ||
تجزیه خوشهای؛ تنوع ژنتیکی؛ گندم؛ VUPF5؛ OP-H8 | ||
مراجع | ||
Abbass Z, Okon Y (1993) Plant growth promotion by Azotobacter paspali in the rhizosphere. Soil biology and biochemistry 25: 1075-1083.
Acosta M, Rodriguez-Lopez JN, Pendent MA (2002) Plant peroxidases. University of Murcia.
Anderson AJ, Guerra D (1985) Responses of bean to root colonization with Pseudomonas putida in a hydroponic system. Phytopathology 75: 992-995.
Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (1992) Short Protocols in Molecular Biology. Jonh Willey & Sons Inc., London.
Avis TJ, Gravel V, Antoun H, Tweddell RJ (2008) Multifaceted beneficial effects of rhizosphere microorganisms on plant health and productivity. Soil biology and biochemistry 40: 1733-1740.
Bais, HP, Prithiviraj B, Jha AK, Ausubel FM, Vivanco JM (2005) Mediation of pathogen resistance by exudation of antimicrobials from roots. Nature 434: 217-221.
Bradford MM (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical of Biochemistry 72: 248–254.
D'cunha GB, Satyanarayan V, Nair PM (1996) Purification of phenylalanine ammonialyase from rhodotorula glutinis. Journal of Phytochemistry 42: 17-20.
Diaz MH, Hauser AR (2010) Pseudomonas aeruginosa cytotoxin ExoU is injected into phagocytic cells during acute pneumonia. Infection and immunity 78: 1447-1456.
Guerinot ML (1991) Iron Uptake and metabolism in the rhizobia/legume symbioses. Plant and soil 130: 199-209.
Hoft M, Seong K, Jurkevitch E, Verstraete W (1991) Pyoverdin production by the plant growth beneficial Pseudomonas strain 7NSK 2: Ecological significance in soil. Plant and soil 130: 249-257.
Holt JG, Williams ST (1989) Bergey's manual of systematic bacteriology, Vol. 4. Lippincott Williams & Wilkins.
Kang BR, Yang KY, Cho BH, Han TH, Kim IS, Lee MC, Anderson AJ, Kim YC (2006) Production of indole-3-acetic acid in the plant-beneficial strain Pseudomonas chlororaphis O6 is negatively regulated by the global sensor kinase GacS. Current microbiology 52: 473-476.
Kloepper JW, Gutierrez-Estrada A, Mclnroy JA (2007) Photoperiod regulates elicitation of growth promotion but not induced resistance by plant growth-promoting rhizobacteria. Microbiology 53(2): 159-167.
Ktari S, Mnif B, Znazen A, Rekik M, Mezghani S, Mahjoubi-Rhimi F, Hammami A (2011) Diversity of β-lactamases in Pseudomonas aeruginosa isolates producing metallo-β-lactamase in two Tunisian hospitals. Microbial Drug Resistance 17: 25-30.
Kumar NR, Arasu VT, Gunasekaran P (2002) Genotyping of antifungal compounds producing plant growth-promoting rhizobacteria, Pseudomonas fluorescens. Current Science.
Mavrodi OV, McSpadden Gardener BB, Mavrodi DV, Bonsall RF, Weller DM, Thomashow LS (2001) Genetic diversity of phlD from 2, 4-diacetylphloroglucinol-producing Pseudomonas fluorescent spp. Phytopathology 91: 35-43.
Milbourne D, Meyer R, Bradshaw JE, Baird E, Bonar N, Provan J, Powell W, Waugh R (1997) Comparison of PCR-based marker systems for the analysis of genetic relationships in cultivated potato. Molecular breeding 3(2):127-36.
M'piga P, Belanger R, Paulitz T, Benhamou N (1997) Increased resistance toFusarium oxysporumf. sp. radicis-lycopersiciin tomato plants treated with the endophytic bacterium Pseudomonas fluorescensstrain 63-28. Physiological and Molecular Plant Pathology 50: 301-320.
Ping L, Boland W (2004) Signals from the underground: Bacterial volatiles promote growth in Arabidopsis. Trends in plant science 9: 263-266.
Pirdashti H, Mottaghian A, Tajick Ghanbary MA (2010) Response of growth characters and yield of wheat (Triticum aestivum L.) to co-inoculation of farmyard manure, Trichoderma spp. and Pseudomonas spp. Journal of Agronomy 2(3): 448-458 (In Persian).
Plewa MJ, Smith SR, Wagner ED. (1991) Diethyldithiocarbamate suppresses the plant activation of aromatic amines into mutagens by inhibiting tobacco cell peroxidase. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 247(1): 57-64.
Powell W, Morgante, M, Andre C, Hanafey M, Vogel J, Tingey S, Rafalski A (1996) The comparison of RFLP, RAPD, AFLP and SSR (microsatellite) markers for germplasm analysis. Molecular breeding 2: 225-238.
Prabhukarthikeyan SR, Umapathy K, Thiruvengadam R, Yadav MK (2010) Comparative analysis of genetic diversity among fluorescent pseudomonads using RAPD and ISSR fingerprinting. Research Journal of Biotechnology 14(7): 86-93.
Rayar JK, Arif M, Singh US (2015) Relative efficiency of RAPD and ISSR markers in assessment of DNA polymorphism and genetic diversity among Pseudomonas strains. African Journal of Biotechnology 14(13):1097-106.
Rezvan Beidokhti S, Dashtban A, Kafi M, Sanjani S (2009) Evaluating the effect of some Pseudomonas bacteria strains on wheat yield and its components at various levels of phosphorus fertilization. Journal of Agroecology 1(1): 33-40 (In Persian).
Souframanien J, Gopalakrishna TA (2004) Comparative analysis of genetic diversity in blackgram genotypes using RAPD and ISSR markers. Theoretical and Applied Genetics 109: 1687-1693.
Todar M (2004) Pseudomonas aeruginosa in Web Review of Todar's Online Textbook of Bacteriology" The Good, the Bad, and the Deadly. Science Magazine 304: 1-12.
Van Peer R, Niemann G, Schippers B (1991) Induced resistance and phytoalexin accumulation in biological control of Fusarium wilt of carnation by Pseudomonas sp. strain WCS 417 r. Phytopathology 81: 728-734.
Ward Jr JH (1963) Hierarchical Grouping to Optimize an Objective Function. Journal of the American Statistical Association, 58: 236–244. | ||
آمار تعداد مشاهده مقاله: 247 تعداد دریافت فایل اصل مقاله: 292 |