تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,504 |
تعداد مشاهده مقاله | 124,123,814 |
تعداد دریافت فایل اصل مقاله | 97,231,989 |
بررسی تأثیر کاربرد ضایعات آلی و تلقیح باکتری رودوکوکوس در کاهش هیدروکربنهای نفتی کل یک خاک شور آلوده | ||
نشریه محیط زیست طبیعی | ||
دوره 75، شماره 2، تیر 1401، صفحه 253-263 اصل مقاله (807.05 K) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/jne.2022.338883.2389 | ||
نویسندگان | ||
هانیه جعفری وفا1؛ احمد علی پوربابایی* 1؛ حسینعلی علیخانی1؛ نجمه یزدانفر2؛ مجید خانعلی3 | ||
1گروه علوم و مهندسی خاک، دانشکده مهندسی و فناوری کشاورزی، دانشگاه تهران، کرج، ایران | ||
2پژوهشکده توسعه صنایع شیمیایی جهاد دانشگاهی، تهران، ایران | ||
3گروه مهندسی ماشینهای کشاورزی، دانشکده مهندسی و فناوری کشاورزی، دانشگاه تهران، ایران | ||
چکیده | ||
پاکسازی آلودگی نفتی در محیط ناهمگون خاک با پیچیدگی هایی روبهرو است که عواملی نظیر شوری خاک و سن آلودگی به سختی آن می افزایند. این پژوهش با هدف ارزیابی تأثیر یکی از سویه های بومی باکتری رودوکوکوس و انواع پسماندهای آلی در کاهش هیدروکربن های نفتی کل یک خاک شور آلوده به نفت خام در شرایط انکوباسیون اجرا شد. بدین منظور، آزمایشی به صورت فاکتوریل کامل در قالب طرح کاملاً تصادفی با چهار فاکتور تلقیح باکتریاییRhodococcus cercidiphylli Y1M65003 ، پنجدرصد ضایعات کمپوست قارچ، پنجدرصد باگاس نیشکر و افزودن منبع نیتروژن و فسفر با نسبت 100:10:1 از منبع اوره و سوپرفسفات تریپل طراحی گردید. نتایج تجزیه واریانس داده های حذف هیدروکربن های کل نشان داد که چهار فاکتور مورد بررسی توانستند اثر معنی داری (0/001>P) بر کاهش هیدروکربن های کل خاک داشته باشند که از میان آنها فاکتور تلقیح باکتریایی سهم بیشتری در واریانس متغیر وابسته داشت. اثرات متقابل مایة تلقیح باکتریایی با هر یک از فاکتورهای ضایعات کمپوست قارچ، باگاس و منبع نیتروژن و فسفر نیز بر تجزیۀ هیدروکربن های کل خاک معنی دار بود (0/01>P). کاراترین تیمار در کاهش هیدروکربن های کل نفت خاک تلفیقی از فاکتورهای مایه تلقیح باکتریایی، ضایعات کمپوست قارچ و منبع نیتروژن و فسفر بود. این تیمار توانست در طی 60 روز، 35/4درصد از هیدروکربن های کل نفت خاک را کاهش دهد. نتایج نشان داد که افزودن ضایعات کمپوست قارچ و تحریک زیستی ناشی از منبع نیتروژن و فسفر می تواند توان باکتری رودوکوکوس را در تجزیۀ هیدروکربن های نفتی افزایش دهد. | ||
کلیدواژهها | ||
ضایعات کمپوست قارچ؛ باگاس؛ آلودگی نفتی؛ تحریک زیستی؛ تقویت زیستی | ||
مراجع | ||
Abolhasani Sooraki, M., Poozesh, V., Salimi, F., Mehrabian, A. R., 2020. Rhodococcus ruber KE1 augmented phytoremediation of crude oil contamination using Lolium perenne and Festuca rubra rubra. Advanced Research in Microbial Metabolites and Technology 3(1), 1-18. Adesodun, J. K., Mbagwu, J. S. C., 2008. Biodegradation of waste-lubricating petroleum oil in a tropical alfisol as mediated by animal droppings. Bioresource Technology 99(13), 5659-5665. Asemoloye, M. D., Chukwuka, K. S., Jonathan, S. G., 2020. Spent mushroom compost enhances plant response and phytoremediation of heavy metal polluted soil. Journal of Plant Nutrition and Soil Science 183(4), 492-499. Babaei, A. A., Safdari, F., Alavi, N., Bakhshoodeh, R., Motamedi, H., Paydary, P., 2020. Co-composting of oil-based drilling cuttings by bagasse. Bioprocess and Biosystems Engineering 43(1). Bodor, A., Petrovszki, P., Kis, Á. E., Vincze, G. E., Laczi, K., Bounedjoum, N., Szilágyi, Á., Szalontai, B., Feigl, G., Kovács, K. L., Rákhely, G., Perei, K., 2020. Intensification of Ex Situ Bioremediation of Soils Polluted with Used Lubricant Oils: A Comparison of Biostimulation and Bioaugmentation with a Special Focus on the Type and Size of the Inoculum. International Journal of Environmental Research and Public Health 17(11), 4106-4116. Bremner, J. M., 1996. Nitrogen total. In: Methods of soil analysis Part 3: Chemical methods. Soil Science Society of American and American Society of Agronomy, pp: 1085-1122. Chen, C., Zhang, X., Chen, J., Chen, F., Li, J., Chen, Y., Hou, H., Shi, F., 2020. Assessment of site contaminated soil remediation based on an input output life cycle assessment. Journal of Cleaner Production 263, 121422. EPA, 1994. How to evaluate alternative cleanup technologies for underground storage tank sites: a guide for corrective action plan reviewers. https://www.epa.gov/ust/how-evaluate-alternative-cleanup-technologies-underground-storage-tank-sites-guide-corrective. United States Environmental Protection Agency. Garousin, H., Pourbabaee, A. A., Alikhani, H. A., Yazdanfar, N., 2021. A Combinational Strategy Mitigated Old-Aged Petroleum Contaminants: Ineffectiveness of Biostimulation as a Bioremediation Technique. Frontiers in Microbiology 0, 363. Gee, G. W., Bauder, J. W., 1986. Particle-Size analysis. In: A. Klute (Ed.), Method of soil analysis, part 1. American Society of Agronomy/Soil Science Society of America, pp. 383–411. Gitipour, S., Hedayati, M., Madadian, E., 2015. Soil Washing for Reduction of Aromatic and Aliphatic Contaminants in Soil. CLEAN – Soil, Air, Water 43(10), 1419-1425. Hamzah, A., Phan, C.-W., Yong, P.-H., Mohd Ridzuan, N. H., 2014. Oil Palm Empty Fruit Bunch and Sugarcane Bagasse Enhance the Bioremediation of Soil Artificially Polluted by Crude Oil. Soil and Sediment Contamination: An International Journal 23(7), 751-762. Kalami, R., Pourbabaee, A., 2021. Investigating the potential of bioremediation in aged oil-polluted hypersaline soils in the south oilfields of Iran. Environmental Monitoring and Assessment 193(8). Kuyukina, M. S., Ivshina, I. B., 2019. Bioremediation of Contaminated Environments Using Rhodococcus. 231-270. Li, Q., Huang, Y., Wen, D., Fu, R., Feng, L., 2020. Application of alkyl polyglycosides for enhanced bioremediation of petroleum hydrocarbon-contaminated soil using Sphingomonas changbaiensis and Pseudomonas stutzeri. Science of the Total Environment 719, 137456. Liu, J., Chen, S., Ding, J., Xiao, Y., Han, H., Zhong, G., 2015. Sugarcane bagasse as support for immobilization of Bacillus pumilus HZ-2 and its use in bioremediation of mesotrione-contaminated soils. Applied Microbiology and Biotechnology 99(24), 10839–10851. Mohammadi, F., Roedl, A., Abdoli, M. A., Amidpour, M., Vahidi, H., 2020. Life cycle assessment (LCA) of the energetic use of bagasse in Iranian sugar industry. Renewable Energy 145, 1870-1882. Nelson, D. W., Sommers, L. E., 1996. Total carbon, organic carbon and organic matter. In: D. L. Sparks (Ed.), Methods of soil analysis Part 3: Chemical methods. Soil Science Society of American and American Society of Agronomy, pp: 961-1010. Nikkhah, M., 2015. Study of ability of two plants, Sparganium (Sparganium sp.) and Typha (Typha sp.) rhizospheric bacteria to decolorization of some azo dyes. University of Tehran, Iran, 53 p. Nwankwegu, A. S., Onwosi, C. O., 2017. Bioremediation of gasoline contaminated agricultural soil by bioaugmentation. Environmental Technology & Innovation 7, 1-11. Obieze, C. C., Chikere, C. B., Selvarajan, R., Adeleke, R., Ntushelo, K., & Akaranta, O., 2020. Functional attributes and response of bacterial communities to nature-based fertilization during hydrocarbon remediation. International Biodeterioration & Biodegradation 154, 105084. Okerentugba, P.O., Orji, F.A., Ibiene, A.A., Elemo, G.N., 2015. Spent mushroom compost for bioremediation of petroleum hydrocarbon polluted soil: A review. Global Advanced Research Journal of Environmental Science and Toxicology 4(1), 001-007. Olsen, S. R., Sommers, L. E., 1982. Phosphorus. In: A. L. Page (Ed.), Methods of soil analysis Part 2: Chemical and microbiological properties. Soil Science Society of American and American Society of Agronomy, pp: 403-430. Ossai, I. C., Ahmed, A., Hassan, A., Hamid, F. S., 2020. Remediation of soil and water contaminated with petroleum hydrocarbon: A review. Environmental Technology and Innovation 17, 100526. Pacwa-Płociniczak, M., Czapla, J., Płociniczak, T., Piotrowska-Seget, Z., 2019. The effect of bioaugmentation of petroleum-contaminated soil with Rhodococcus erythropolis strains on removal of petroleum from soil. Ecotoxicology and Environmental Safety 169, 615-622. Pham, V. H. T., Chaudhary, D. K., Jeong, S. W., Kim, J., 2018. Oil-degrading properties of a psychrotolerant bacterial strain, Rhodococcus sp. Y2-2, in liquid and soil media. World Journal of Microbiology & Biotechnology 34(2). Rey, A., Petsikos, C., Jarvis, P. G., Grace, J., 2005. Effect of temperature and moisture on rates of carbon mineralization in a Mediterranean oak forest soil under controlled and field conditions. European Journal of Soil Science 56(5), 589–599. Rhoads, J. D., 1996. Electrical conductivity and total dissolved solids. In: D.L. Sparks, A.L. Page, P.A. Helmke, R. H. Loeppert, P.N. Soltanpour, M.A. Tabatabai, C.T. Johnston, M. Sumner (Eds.), Methods of soil analysis Part 3. Soil Science Society of American and American Society of Agronomy, pp: 417-435. Sarkar, J., Roy, A., Sar, P., Kazy, S. K., 2020. Accelerated bioremediation of petroleum refinery sludge through biostimulation and bioaugmentation of native microbiome. Emerging Technologies in Environmental Bioremediation 23–65. Sluiter, A., Hames, B., Ruiz, R., Scarlata, C., Sluiter, J., Templeton, D., Crocker, D., 2011. Determination of Structural Carbohydrates and Lignin in Biomass: Laboratory Analytical Procedure (LAP). Song, Y.F., Jing, X., Fleischmann, S., Wilke, B.M., 2002. Comparative study of extraction methods for the determination of PAHs from contaminated soils and sediments. Chemosphere 48(9), 993-1001. Speight, J.G., Arjoon, K.K., 2012. Bioremediation of Petroleum and Petroleum Products. John Wiley and Sons, Inc. Tabachnick, B.G., Fidell, L.S., 2012. Using multivariate statistics (6th ed.). New York: Harper and Row. Tandon, H.L.S., 2005. Methods of analysis of soils, plants, waters, fertilisers & organic manures. Fertiliser Development and Consultation Organisation. Thomas, G.W., 1996. Soil pH and soil acidity. In: D. L. Sparks (Ed.), Methods of soil analysis Part 3: Chemical methods. Soil Science Society of American and American Society of Agronomy, pp. 475-490. Umor, N. A., Ismail, S., Abdullah, S., Huzaifah, M.H.R., Huzir, N.M., Mahmood, N.A.N., Zahrim, A.Y., 2021. Zero waste management of spent mushroom compost. Journal of Material Cycles and Waste Management 23(5). Viesser, J.A., Sugai-Guerios, M.H., Malucelli, L.C., Pincerati, M.R., Karp, S.G., Maranho, L.T., 2020. Petroleum-Tolerant Rhizospheric Bacteria: Isolation, Characterization and Bioremediation Potential. Scientific Reports 10(1), 1-11. Wang, W. J., Dalal, R. C., Moody, P.W., Smith, C.J., 2003. Relationships of soil respiration to microbial biomass, substrate availability and clay content. Soil Biology and Biochemistry 35(2), 273-284. Wei, Y., Chen, J., Wang, Y., Meng, T., Li, M., 2021. Bioremediation of the Petroleum Contaminated Desert Steppe Soil with Rhodococcus erythropolis KB1 and Its Effect on the Bacterial Communities of the Soils. Geomicrobiology Journal 38(10), 842-849. Wu, M., Dick, W. A., Li, W., Wang, X., Yang, Q., Wang, T., Xu, L., Zhang, M., Chen, L., 2016. Bioaugmentation and biostimulation of hydrocarbon degradation and the microbial community in a petroleum-contaminated soil. International Biodeterioration & Biodegradation 107, 158-164. Wu, T., Xie, W.J., Yi, Y.L., Li, X.B., Yang, H.J., Wang, J., 2012. Surface activity of salt-tolerant Serratia spp. and crude oil biodegradation in saline soil. Plant, Soil and Environment 58(9), 412-416.
| ||
آمار تعداد مشاهده مقاله: 358 تعداد دریافت فایل اصل مقاله: 243 |