تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,501 |
تعداد مشاهده مقاله | 124,096,495 |
تعداد دریافت فایل اصل مقاله | 97,203,516 |
The Effect of Echinacea Purpurea L. (Eastern Purple Coneflower) Essential Oil on Hematological Parameters and Gut Microbial Population of Zebrafish (Danio Rerio) With Aflatoxicosis | ||
Iranian Journal of Veterinary Medicine | ||
مقاله 9، دوره 17، شماره 2، تیر 2023، صفحه 173-182 اصل مقاله (3.97 M) | ||
نوع مقاله: Original Articles | ||
شناسه دیجیتال (DOI): 10.32598/ijvm.17.2.1005271 | ||
نویسندگان | ||
Tina Hasankhani1؛ Donya Nikaein* 1؛ Alireza Khosravi1؛ Hooman Rahmati-Holasoo2؛ Mona Hasankhany3 | ||
1Department of Microbiology and Immunology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.; Mycology Research Center, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran. | ||
2Department of Aquatic Animals Health, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran. | ||
3Faculty of Fisheries and Environmental Sciences, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran. | ||
چکیده | ||
Background: Aflatoxin is one of the most important fungal toxins with documented hepatotoxic, teratogenic, and immunosuppressive properties. This mycotoxin is mainly produced by species of the genus Aspergillus in feed. Therefore, the application of compounds, which prevent complications of aflatoxins without losing feed quality, is highly beneficial. Objectives: This study aimed to determine the effect of the Echinacea purpurea L. essential oils on the regulation of the microbial population of the gastrointestinal tract and some blood factors of aflatoxin-fed zebrafish. Methods: Zebrafish were divided into four groups of 45 fish in three replicates: control (G1); G2, fish fed with feed containing 500 µg/kg E. purpurea L. essential oils; G3, fish fed with feed containing 500 µg/kg E. purpurea L. essential oil and 3 ppm aflatoxin B1(AFB1); and G4, fish fed with feed containing 3 ppm AFB1. The fish were fed with diets for 60 days. After this period, they were euthanized, blood was collected from the tail vein, and blood smears were prepared. Fish hepatopancreas were used to measure alanine aminotransferase, aspartate transaminase, and alkaline phosphatase enzymes with an auto-analyzer. Also, intestinal contents were cultured to evaluate microbial population. Results: Results showed that liver enzymes increased in the aflatoxin group (P<0.05), and concurrent use of the essential oil along with AFB1 reduced the liver enzymes compared with the AFB1-treated group. Moreover, AFB1 could convert the microbial population to pathogens. Differential blood counts in the G2 and G3 groups showed an increase in the percentages of neutrophils and thrombocytes. Conclusion: According to the results of this study, E. purpurea L. essential oils could reduce the adverse effects of chronic contamination with AFB1 in zebrafish. Nevertheless, more studies are needed to better understand the immunological function of E. purpurea L. in zebrafish and its mechanism of action against AFB1. | ||
کلیدواژهها | ||
Aflatoxin B1؛ Echinacea purpurea L. essential oils؛ Intestinal microbes؛ Liver enzymes؛ Zebrafish (Danio rerio)؛ Blood cells | ||
اصل مقاله | ||
1. Introduction
2. Materials and Methods Bacterial isolates
3. Results
Figure 2 shows the percentage of white blood cells in different treatment groups. The G4 group, fed with AFB1, had significantly higher percentages of lymphocytes (P<0.05). The G3 group (zebrafish fed with essential oils and aflatoxin simultaneously) had the highest counts of monocytes. However, this increase was not significant compared with other groups (P>0.05). Regarding other blood cells, there was an increase in neutrophils and thrombocytes in the G2 group; however, this increase was only significant in thrombocytes (P<0.05). Other hematological factors did not show any differences between the studied groups.
4. Discussion E. purpurea L. is known for its immunomodulatory properties (De Rosa et al., 2019; Yang et al., 2017). We demonstrated a slight increase in neutrophils and a significant increase in thrombocyte counts in groups fed with E. purpurea L. It has been documented that fish thrombocytes could act as a link between innate and adoptive immunity (Passantino et al., 2005). So, it is recommended to analyze the effect of E. purpurea L. essential oil on innate and, to some extent, adoptive immunity in response to AFB1 exposure in zebrafish in further works.
5. Conclusion
Ethical Considerations
Compliance with ethical guidelines
Funding
Authors' contributions
Conflict of interest
Acknowledgments
References Ahmadi, F., Samadi, A., Sepehr, E., Rahimi, A., & Shabala, S. (2021). Optimizing hydroponic culture media and NO 3-/NH 4+ ratio for improving essential oil compositions of purple coneflower (echinacea purpurea l.). Scientific Reports, 11(1), 8009. [DOI:10.1038/s41598-021-87391-9][PMID][PMCID] Alavinia, S. J., Mirzargar, S. S., Rahmati-Holasoo, H., & Mousavi, H. E. (2018). The in vitro and in vivo effect of tannic acid on ichthyophthirius multifiliis in zebrafish (danio rerio) to treat ichthyophthiriasis. Journal of Fish Diseases, 41(12), 1793-1802. [DOI:10.1111/jfd.12886][PMID] Borges, R. S., Keita, H., Ortiz, B. L. S., Dos Santos Sampaio, T. I., Ferreira, I. M., & Lima, E. S., et al. (2018). Anti-inflammatory activity of nanoemulsions of essential oil from rosmarinus officinalisL.: In vitro and in zebrafish studies. Inflammopharmacology, 26(4), 1057-1080. [DOI:10.1007/s10787-017-0438-9][PMID] Cantas, L., Sørby, J. R. T., Aleström, P., & Sørum, H. (2012). Culturable gut microbiota diversity in zebrafish. Zebrafish, 9(1), 26-37. [DOI:10.1089/zeb.2011.0712][PMID][PMCID] Chen, L., Hu, Y., He, J., Chen, J., Giesy, J. P., & Xie, P. (2017). Responses of the proteome and metabolome in livers of zebrafish exposed chronically to environmentally relevant concentrations of microcystin-LR. Environmental Science & Technology, 51(1), 596-607. [DOI:10.1021/acs.est.6b03990][PMID] Dalvi, R. R., & McGowan, C. (1984). Experimental induction of chronic aflatoxicosis in chickens by purified aflatoxin B1 and its reversal by activated charcoal, phenobarbital, and reduced glutathione. Poultry Science, 63(3), 485-491. [DOI:10.3382/ps.0630485][PMID] De Rosa, N., Giampaolino, P., Lavitola, G., Morra, I., Formisano, C., & Nappi, C., et al. (2019). Effect of immunomodulatory supplements basesifolia and echinacea purpurea on the posttreatment relapse incidence of genital condylomatosis: A prospective randomized study. BioMed Research International, 2019. [DOI:10.1155/2019/3548396][PMID][PMCID] De Smet, H., & Blust, R. (2001). Stress responses and changes in protein metabolism in carp cyprinus carpio during cadmium exposure. Ecotoxicology and Environmental Safety, 48(3), 255-262. [DOI:10.1006/eesa.2000.2011][PMID] Deebani, A., Iyer, N., Raman, R., & Jagadeeswaran, P. (2019). Effect of MS222 on hemostasis in zebrafish. Journal of the American Association for Laboratory Animal Science, 58(3), 390-396. [DOI:10.30802/AALAS-JAALAS-18-000069][PMID][PMCID] Dhanapal, J., Balaraman Ravindrran, M., & K Baskar, S. (2015). Toxic effects of aflatoxin B1 on embryonic development of zebrafish (danio rerio): Potential activity of piceatannol encapsulated chitosan/poly (lactic acid) nanoparticles. Anti-Cancer Agents in Medicinal Chemistry, 15(2), 248-257. [DOI:10.2174/1871520614666141016165057][PMID] Dong, M., Zhu, L., Zhu, S., Wang, J., Wang, J., & Xie, H., et al. (2013). Toxic effects of 1-decyl-3-methylimidazolium bromide ionic liquid on the antioxidant enzyme system and DNA in zebrafish (danio rerio) livers. Chemosphere, 91(8), 1107-1112. [DOI:10.1016/j.chemosphere.2013.01.013][PMID] Erfanmanesh, A., Beikzadeh, B., Mohseni, F. A., Nikaein, D., & Mohajerfar, T. (2019). Ulcerative dermatitis in barramundi due to coinfection with streptococcus iniae and shewanella algae. Diseases of Aquatic Organisms, 134(2), 89-97. [DOI:10.3354/dao03363][PMID] Freitas, J. D., Pereira Neto, L. M., Silva, T. I. B. D., Oliveira, T. F. L. D., Rocha, J. H. L. D., & Souza, M. D., et al. (2020). Counting and identification of molds and yeasts in dry salted shrimp commercialized in Rio Branco, Acre, Brazil. Food Science and Technology, 41, 284-289. [DOI:10.1590/fst.16720] Gandomi, H., Abbaszadeh, S., JebelliJavan, A., & Sharifzadeh, A. (2014). Chemical constituents, antimicrobial and antioxidative effects of t rachyspermum ammi essential oil. Journal of Food Processing and Preservation, 38(4), 1690-1695. [DOI:10.1111/jfpp.12131] Gatesoupe, F. J. (2007). Live yeasts in the gut: Natural occurrence, dietary introduction, and their effects on fish health and development. Aquaculture, 267(1-4), 20-30. [DOI:10.1016/j.aquaculture.2007.01.005] Ghafarifarsani, H., Imani, A., Niewold, T. A., Pietsch-Schmied, C., & Moghanlou, K. S. (2021). Synergistic toxicity of dietary aflatoxin B1 (AFB1) and zearalenone (ZEN) in rainbow trout (oncorhynchus mykiss) is attenuated by anabolic effects. Aquaculture, 541, 736793. [DOI:10.1016/j.aquaculture.2021.736793] Gonçalves, R. A., Schatzmayr, D., Albalat, A., & Mackenzie, S. (2020). Mycotoxins in aquaculture: Feed and food. Reviews in Aquaculture, 12(1), 145-175. [DOI:10.1111/raq.12310] Hill, L. L., Foote, J. C., Erickson, B. D., Cerniglia, C. E., & Denny, G. S. (2006). Echinacea purpurea supplementation stimulates select groups of human gastrointestinal tract microbiota. Journal of Clinical Pharmacy and Therapeutics, 31(6), 599-604. [DOI:10.1111/j.1365-2710.2006.00781.x][PMID] Ibrahim, A. A., Saleh, R. M., Hassan, A. E., & Amer, M. S. (2020). Ameliorative effect of echinacea purpurea and curcumin on dexamethasone-induced immunosuppressive rabbits. Kafrelsheikh Veterinary Medical Journal, 18(1), 10-16. [DOI:10.21608/kvmj.2020.109085] Imani, A., Bani, M. S., Noori, F., Farzaneh, M., & Moghanlou, K. S. (2017). The effect of bentonite and yeast cell wall along with cinnamon oil on aflatoxicosis in rainbow trout (oncorhynchus mykiss): Digestive enzymes, growth indices, nutritional performance and proximate body composition. Aquaculture, 476, 160-167. [DOI:10.1016/j.aquaculture.2017.04.023] Jagadeeswaran, P., Sheehan, J. P., Craig, F. E., & Troyer, D. (1999). Identification and characterization of zebrafish thrombocytes. British Journal of Haematology, 107(4), 731-738. [DOI:10.1046/j.1365-2141.1999.01763.x][PMID] López Nadal, A., Ikeda-Ohtsubo, W., Sipkema, D., Peggs, D., McGurk, C., & Forlenza, M., et al. ( 2020). Feed, microbiota, and gut immunity: Using the zebrafish model to understand fish health. Frontiers in Immunology, 11, 114. [DOI:10.3389/fimmu.2020.00114][PMID][PMCID] Marijani, E., Kigadye, E., & Okoth, S. (2019). Occurrence of fungi and mycotoxins in fish feeds and their impact on fish health. International Journal of Microbiology, 2019, 6743065. [DOI:10.1155/2019/6743065][PMID][PMCID] Nasir, Z., & Grashorn, M. A. (2010). Effects of echinacea purpurea and nigella sativa supplementation on broiler performance, carcass and meat quality. Journal of Animal and Feed Sciences, 19, 94-104. [DOI:10.22358/jafs/66273/2010] Nikaein, D., Sharifzadeh, A., & Khosravi, A. R. (2018). Fungicidal versus fungistatic activity of five Iranian essences against fluconazole resistant candida species. Journal of Herbmed Pharmacology, 7(4), 287-293. [DOI:10.15171/jhp.2018.43] Passantino, L., Cianciotta, A., Patruno, R., Ribaud, M. R., Jirillo, E., & Passantino, G. F. (2005). Do fish thrombocytes play an immunological role? Their cytoenzymatic profiles and function during an accidental piscine candidiasis in aquarium. Immunopharmacology and Immunotoxicology, 27(2), 345-356. [DOI:10.1081/IPH-200067959][PMID] Sancho, E., Villarroel, M. J., Fernández, C., Andreu, E., & Ferrando, M. D. (2010). Short-term exposure to sublethal tebuconazole induces physiological impairment in male zebrafish (danio rerio). Ecotoxicology and Environmental Safety, 73(3), 370-376. [DOI:10.1016/j.ecoenv.2009.09.020][PMID] Sanden, M., Jørgensen, S., Hemre, G. I., Ørnsrud, R., & Sissener, N. H. (2012). Zebrafish (danio rerio) as a model for investigating dietary toxic effects of deoxynivalenol contamination in aquaculture feeds. Food and Chemical Toxicology, 50(12), 4441-4448. [DOI:10.1016/j.fct.2012.08.042][PMID] Tacon, A. G. (1992). Nutritional fish pathology: Morphological signs of nutrient deficiency and toxicity in farmed fish. Rome: Food & Agriculture Organization (FAO). [Link] Tasa, H., Imani, A., Moghanlou, K. S., Nazdar, N., & Moradi-Ozarlou, M. (2020b). Aflatoxicosis in fingerling common carp (cyprinus carpio) and protective effect of rosemary and thyme powder: Growth performance and digestive status. Aquaculture, 527, 735437.[DOI:10.1016/j.aquaculture.2020.735437] Valtchev, I., Koynarski, T., Sotirov, L., Nikolov, Y., & Petkov, P. (2015). Effect of aflatoxin B1 on moulard duck’s natural immunity. Pakistan Veterinary Journal, 35(1), 67-70. [Link] Voth-Gaeddert, L. E., Torres, O., Maldonado, J., Krajmalnik-Brown, R., Rittmann, B. E., & Oerther, D. B. (2019). Aflatoxin exposure, child stunting, and dysbiosis in the intestinal microbiome among children in Guatemala. Environmental Engineering Science, 36(8), 958-968. [DOI:10.1089/ees.2019.0104] Wang, J., Tang, L., Glenn, T. C., & Wang, J. S. (2016). Aflatoxin B1 induced compositional changes in gut microbial communities of male F344 rats. Toxicological Sciences, 150(1), 54-63. [DOI:10.1093/toxsci/kfv259][PMID][PMCID] Wang, Y., Wang, B., Liu, M., Jiang, K., Wang, M., & Wang, L. (2018). Aflatoxin B1 (AFB1) induced dysregulation of intestinal microbiota and damage of antioxidant system in pacific white shrimp (litopenaeus vannamei). Aquaculture, 495, 940-947. [DOI:10.1016/j.aquaculture.2018.06.065] Wang, Y., Wang, Q., Ji, C., Guo, X., Yang, G., & Wang, D., et al. (2021). Mixture toxic impacts and the related mechanism of aflatoxin B1 and deoxynivalenol on embryonic zebrafish (danio rerio). [Unpublished article] [DOI:10.21203/rs.3.rs-541606/v1] Wang, Y., Zhao, C., Zhang, D., Zhao, M., Zheng, D., & Peng, M., et al. (2018). Simultaneous degradation of aflatoxin B1 and zearalenone by a microbial consortium. Toxicon, 146, 69-76. [DOI:10.1016/j.toxicon.2018.04.007][PMID] Xia, J., Lu, L., Jin, C., Wang, S., Zhou, J., & Ni, Y., et al. (2018). Effects of short term lead exposure on gut microbiota and hepatic metabolism in adult zebrafish. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 209, 1-8. [DOI:10.1016/j.cbpc.2018.03.007][PMID] Yamada, K., Hung, P., Park, T. K., Park, P. J., & Lim, B. O. (2011). A comparison of the immunostimulatory effects of the medicinal herbs echinacea, ashwagandha and brahmi. Journal of Ethnopharmacology, 137(1), 231-235. [DOI:10.1016/j.jep.2011.05.017][PMID] Yang, H. T., Zou, S. S., Zhai, L. J., Wang, Y., Zhang, F. M., & An, L. G., et al. (2017). Pathogen invasion changes the intestinal microbiota composition and induces innate immune responses in the zebrafish intestine. Fish & Shellfish Immunology, 71, 35-42. [DOI:10.1016/j.fsi.2017.09.075][PMID] Zare, H., Noori, A., Yousefzadi, M., & Banaee, M. (2014). [Effects of sub-lethal concentrations of euphorbia turcomanica extract on some liver biochemical parameters of zebra aphanius (aphanius dispar) (Persian)]. Iranian Scientific Fisheries Journal, 23(4), 31-47. [DOI:10.22092/ISFJ.2015.103167] Zuberi, Z., Eeza, M. N., Matysik, J., Berry, J. P., & Alia, A. (2019). NMR-based metabolic profiles of intact zebrafish embryos exposed to aflatoxin B1 recapitulates hepatotoxicity and supports possible neurotoxicity. Toxins, 11(5), 258. [DOI:10.3390/toxins11050258][PMID][PMCID] Zychowski, K. E., Pohlenz, C., Mays, T., Romoser, A., Hume, M., & Buentello, A., et al. (2013). The effect of NovaSil dietary supplementation on the growth and health performance of nile tilapia (oreochromis niloticus) fed aflatoxin-B1 contaminated feed. Aquaculture, 376, 117-123. [DOI:10.1016/j.aquaculture.2012.11.020]
| ||
مراجع | ||
Ahmadi, F., Samadi, A., Sepehr, E., Rahimi, A., & Shabala, S. (2021). Optimizing hydroponic culture media and NO 3-/NH 4+ ratio for improving essential oil compositions of purple coneflower (echinacea purpurea l.). Scientific Reports, 11(1), 8009. [DOI:10.1038/s41598-021-87391-9][PMID][PMCID] Alavinia, S. J., Mirzargar, S. S., Rahmati-Holasoo, H., & Mousavi, H. E. (2018). The in vitro and in vivo effect of tannic acid on ichthyophthirius multifiliis in zebrafish (danio rerio) to treat ichthyophthiriasis. Journal of Fish Diseases, 41(12), 1793-1802. [DOI:10.1111/jfd.12886][PMID] Borges, R. S., Keita, H., Ortiz, B. L. S., Dos Santos Sampaio, T. I., Ferreira, I. M., & Lima, E. S., et al. (2018). Anti-inflammatory activity of nanoemulsions of essential oil from rosmarinus officinalisL.: In vitro and in zebrafish studies. Inflammopharmacology, 26(4), 1057-1080. [DOI:10.1007/s10787-017-0438-9][PMID] Cantas, L., Sørby, J. R. T., Aleström, P., & Sørum, H. (2012). Culturable gut microbiota diversity in zebrafish. Zebrafish, 9(1), 26-37. [DOI:10.1089/zeb.2011.0712][PMID][PMCID] Chen, L., Hu, Y., He, J., Chen, J., Giesy, J. P., & Xie, P. (2017). Responses of the proteome and metabolome in livers of zebrafish exposed chronically to environmentally relevant concentrations of microcystin-LR. Environmental Science & Technology, 51(1), 596-607. [DOI:10.1021/acs.est.6b03990][PMID] Dalvi, R. R., & McGowan, C. (1984). Experimental induction of chronic aflatoxicosis in chickens by purified aflatoxin B1 and its reversal by activated charcoal, phenobarbital, and reduced glutathione. Poultry Science, 63(3), 485-491. [DOI:10.3382/ps.0630485][PMID] De Rosa, N., Giampaolino, P., Lavitola, G., Morra, I., Formisano, C., & Nappi, C., et al. (2019). Effect of immunomodulatory supplements basesifolia and echinacea purpurea on the posttreatment relapse incidence of genital condylomatosis: A prospective randomized study. BioMed Research International, 2019. [DOI:10.1155/2019/3548396][PMID][PMCID] De Smet, H., & Blust, R. (2001). Stress responses and changes in protein metabolism in carp cyprinus carpio during cadmium exposure. Ecotoxicology and Environmental Safety, 48(3), 255-262. [DOI:10.1006/eesa.2000.2011][PMID] Deebani, A., Iyer, N., Raman, R., & Jagadeeswaran, P. (2019). Effect of MS222 on hemostasis in zebrafish. Journal of the American Association for Laboratory Animal Science, 58(3), 390-396. [DOI:10.30802/AALAS-JAALAS-18-000069][PMID][PMCID] Dhanapal, J., Balaraman Ravindrran, M., & K Baskar, S. (2015). Toxic effects of aflatoxin B1 on embryonic development of zebrafish (danio rerio): Potential activity of piceatannol encapsulated chitosan/poly (lactic acid) nanoparticles. Anti-Cancer Agents in Medicinal Chemistry, 15(2), 248-257. [DOI:10.2174/1871520614666141016165057][PMID] Dong, M., Zhu, L., Zhu, S., Wang, J., Wang, J., & Xie, H., et al. (2013). Toxic effects of 1-decyl-3-methylimidazolium bromide ionic liquid on the antioxidant enzyme system and DNA in zebrafish (danio rerio) livers. Chemosphere, 91(8), 1107-1112. [DOI:10.1016/j.chemosphere.2013.01.013][PMID] Erfanmanesh, A., Beikzadeh, B., Mohseni, F. A., Nikaein, D., & Mohajerfar, T. (2019). Ulcerative dermatitis in barramundi due to coinfection with streptococcus iniae and shewanella algae. Diseases of Aquatic Organisms, 134(2), 89-97. [DOI:10.3354/dao03363][PMID] Freitas, J. D., Pereira Neto, L. M., Silva, T. I. B. D., Oliveira, T. F. L. D., Rocha, J. H. L. D., & Souza, M. D., et al. (2020). Counting and identification of molds and yeasts in dry salted shrimp commercialized in Rio Branco, Acre, Brazil. Food Science and Technology, 41, 284-289. [DOI:10.1590/fst.16720] Gandomi, H., Abbaszadeh, S., JebelliJavan, A., & Sharifzadeh, A. (2014). Chemical constituents, antimicrobial and antioxidative effects of t rachyspermum ammi essential oil. Journal of Food Processing and Preservation, 38(4), 1690-1695. [DOI:10.1111/jfpp.12131] Gatesoupe, F. J. (2007). Live yeasts in the gut: Natural occurrence, dietary introduction, and their effects on fish health and development. Aquaculture, 267(1-4), 20-30. [DOI:10.1016/j.aquaculture.2007.01.005] Ghafarifarsani, H., Imani, A., Niewold, T. A., Pietsch-Schmied, C., & Moghanlou, K. S. (2021). Synergistic toxicity of dietary aflatoxin B1 (AFB1) and zearalenone (ZEN) in rainbow trout (oncorhynchus mykiss) is attenuated by anabolic effects. Aquaculture, 541, 736793. [DOI:10.1016/j.aquaculture.2021.736793] Gonçalves, R. A., Schatzmayr, D., Albalat, A., & Mackenzie, S. (2020). Mycotoxins in aquaculture: Feed and food. Reviews in Aquaculture, 12(1), 145-175. [DOI:10.1111/raq.12310] Hill, L. L., Foote, J. C., Erickson, B. D., Cerniglia, C. E., & Denny, G. S. (2006). Echinacea purpurea supplementation stimulates select groups of human gastrointestinal tract microbiota. Journal of Clinical Pharmacy and Therapeutics, 31(6), 599-604. [DOI:10.1111/j.1365-2710.2006.00781.x][PMID] Ibrahim, A. A., Saleh, R. M., Hassan, A. E., & Amer, M. S. (2020). Ameliorative effect of echinacea purpurea and curcumin on dexamethasone-induced immunosuppressive rabbits. Kafrelsheikh Veterinary Medical Journal, 18(1), 10-16. [DOI:10.21608/kvmj.2020.109085] Imani, A., Bani, M. S., Noori, F., Farzaneh, M., & Moghanlou, K. S. (2017). The effect of bentonite and yeast cell wall along with cinnamon oil on aflatoxicosis in rainbow trout (oncorhynchus mykiss): Digestive enzymes, growth indices, nutritional performance and proximate body composition. Aquaculture, 476, 160-167. [DOI:10.1016/j.aquaculture.2017.04.023] Jagadeeswaran, P., Sheehan, J. P., Craig, F. E., & Troyer, D. (1999). Identification and characterization of zebrafish thrombocytes. British Journal of Haematology, 107(4), 731-738. [DOI:10.1046/j.1365-2141.1999.01763.x][PMID] López Nadal, A., Ikeda-Ohtsubo, W., Sipkema, D., Peggs, D., McGurk, C., & Forlenza, M., et al. ( 2020). Feed, microbiota, and gut immunity: Using the zebrafish model to understand fish health. Frontiers in Immunology, 11, 114. [DOI:10.3389/fimmu.2020.00114][PMID][PMCID] Marijani, E., Kigadye, E., & Okoth, S. (2019). Occurrence of fungi and mycotoxins in fish feeds and their impact on fish health. International Journal of Microbiology, 2019, 6743065. [DOI:10.1155/2019/6743065][PMID][PMCID] Nasir, Z., & Grashorn, M. A. (2010). Effects of echinacea purpurea and nigella sativa supplementation on broiler performance, carcass and meat quality. Journal of Animal and Feed Sciences, 19, 94-104. [DOI:10.22358/jafs/66273/2010] Nikaein, D., Sharifzadeh, A., & Khosravi, A. R. (2018). Fungicidal versus fungistatic activity of five Iranian essences against fluconazole resistant candida species. Journal of Herbmed Pharmacology, 7(4), 287-293. [DOI:10.15171/jhp.2018.43] Passantino, L., Cianciotta, A., Patruno, R., Ribaud, M. R., Jirillo, E., & Passantino, G. F. (2005). Do fish thrombocytes play an immunological role? Their cytoenzymatic profiles and function during an accidental piscine candidiasis in aquarium. Immunopharmacology and Immunotoxicology, 27(2), 345-356. [DOI:10.1081/IPH-200067959][PMID] Sancho, E., Villarroel, M. J., Fernández, C., Andreu, E., & Ferrando, M. D. (2010). Short-term exposure to sublethal tebuconazole induces physiological impairment in male zebrafish (danio rerio). Ecotoxicology and Environmental Safety, 73(3), 370-376. [DOI:10.1016/j.ecoenv.2009.09.020][PMID] Sanden, M., Jørgensen, S., Hemre, G. I., Ørnsrud, R., & Sissener, N. H. (2012). Zebrafish (danio rerio) as a model for investigating dietary toxic effects of deoxynivalenol contamination in aquaculture feeds. Food and Chemical Toxicology, 50(12), 4441-4448. [DOI:10.1016/j.fct.2012.08.042][PMID] Tacon, A. G. (1992). Nutritional fish pathology: Morphological signs of nutrient deficiency and toxicity in farmed fish. Rome: Food & Agriculture Organization (FAO). [Link] Tasa, H., Imani, A., Moghanlou, K. S., Nazdar, N., & Moradi-Ozarlou, M. (2020b). Aflatoxicosis in fingerling common carp (cyprinus carpio) and protective effect of rosemary and thyme powder: Growth performance and digestive status. Aquaculture, 527, 735437.[DOI:10.1016/j.aquaculture.2020.735437] Valtchev, I., Koynarski, T., Sotirov, L., Nikolov, Y., & Petkov, P. (2015). Effect of aflatoxin B1 on moulard duck’s natural immunity. Pakistan Veterinary Journal, 35(1), 67-70. [Link] Voth-Gaeddert, L. E., Torres, O., Maldonado, J., Krajmalnik-Brown, R., Rittmann, B. E., & Oerther, D. B. (2019). Aflatoxin exposure, child stunting, and dysbiosis in the intestinal microbiome among children in Guatemala. Environmental Engineering Science, 36(8), 958-968. [DOI:10.1089/ees.2019.0104] Wang, J., Tang, L., Glenn, T. C., & Wang, J. S. (2016). Aflatoxin B1 induced compositional changes in gut microbial communities of male F344 rats. Toxicological Sciences, 150(1), 54-63. [DOI:10.1093/toxsci/kfv259][PMID][PMCID] Wang, Y., Wang, B., Liu, M., Jiang, K., Wang, M., & Wang, L. (2018). Aflatoxin B1 (AFB1) induced dysregulation of intestinal microbiota and damage of antioxidant system in pacific white shrimp (litopenaeus vannamei). Aquaculture, 495, 940-947. [DOI:10.1016/j.aquaculture.2018.06.065] Wang, Y., Wang, Q., Ji, C., Guo, X., Yang, G., & Wang, D., et al. (2021). Mixture toxic impacts and the related mechanism of aflatoxin B1 and deoxynivalenol on embryonic zebrafish (danio rerio). [Unpublished article] [DOI:10.21203/rs.3.rs-541606/v1] Wang, Y., Zhao, C., Zhang, D., Zhao, M., Zheng, D., & Peng, M., et al. (2018). Simultaneous degradation of aflatoxin B1 and zearalenone by a microbial consortium. Toxicon, 146, 69-76. [DOI:10.1016/j.toxicon.2018.04.007][PMID] Xia, J., Lu, L., Jin, C., Wang, S., Zhou, J., & Ni, Y., et al. (2018). Effects of short term lead exposure on gut microbiota and hepatic metabolism in adult zebrafish. Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology, 209, 1-8. [DOI:10.1016/j.cbpc.2018.03.007][PMID] Yamada, K., Hung, P., Park, T. K., Park, P. J., & Lim, B. O. (2011). A comparison of the immunostimulatory effects of the medicinal herbs echinacea, ashwagandha and brahmi. Journal of Ethnopharmacology, 137(1), 231-235. [DOI:10.1016/j.jep.2011.05.017][PMID] Yang, H. T., Zou, S. S., Zhai, L. J., Wang, Y., Zhang, F. M., & An, L. G., et al. (2017). Pathogen invasion changes the intestinal microbiota composition and induces innate immune responses in the zebrafish intestine. Fish & Shellfish Immunology, 71, 35-42. [DOI:10.1016/j.fsi.2017.09.075][PMID] Zare, H., Noori, A., Yousefzadi, M., & Banaee, M. (2014). [Effects of sub-lethal concentrations of euphorbia turcomanica extract on some liver biochemical parameters of zebra aphanius (aphanius dispar) (Persian)]. Iranian Scientific Fisheries Journal, 23(4), 31-47. [DOI:10.22092/ISFJ.2015.103167] Zuberi, Z., Eeza, M. N., Matysik, J., Berry, J. P., & Alia, A. (2019). NMR-based metabolic profiles of intact zebrafish embryos exposed to aflatoxin B1 recapitulates hepatotoxicity and supports possible neurotoxicity. Toxins, 11(5), 258. [DOI:10.3390/toxins11050258][PMID][PMCID] Zychowski, K. E., Pohlenz, C., Mays, T., Romoser, A., Hume, M., & Buentello, A., et al. (2013). The effect of NovaSil dietary supplementation on the growth and health performance of nile tilapia (oreochromis niloticus) fed aflatoxin-B1 contaminated feed. Aquaculture, 376, 117-123. [DOI:10.1016/j.aquaculture.2012.11.020] | ||
آمار تعداد مشاهده مقاله: 1,004 تعداد دریافت فایل اصل مقاله: 638 |