

RESEARCH PAPER

Developing Performance Levels for Concrete Bridge Bents with a Focus on the Joint Region

Bahrani, M.K.^{1*}, Nooralizadeh, A.², Sharifi, M.¹ and Karami, N.²

¹ Assistant Professor, Department of Civil Engineering, University of Qom, Qom, Iran. ² Ph.D. Candidate, Department of Civil Engineering, University of Qom, Qom, Iran.

© University of Tehran 2021

Received	d: 08	No	v.	20	20;							Re	vis	ed:	15	Jı	ın 2	202	1;						A	cce	pte	d: 12	2 Ju	ıl. 20)21	1
ABST	RAC	T	: E	Bri	dges	are	e c	rit	ic	al	hi	igh	ıw	ay	stı	cu	ctu	ires	5, 8	an	d	dai	mag	ge	to	the	em	can	re	esult	t i	n
.1 1	c	• .	1 1	• •	1.	•			1		1			1	•		.1		1	0		•				1 1	• •				1	1

the loss of vital lifelines. Many bridges reaching the end of their expected lifespans should have their seismic performance evaluated immediately. The study utilized a 1/3 scale model of two-column bridge bents developed within the last 20 years that split from the deck under cyclic loads. The purpose is to investigate seismic performance and define performance levels utilizing experimental observation. The damage estimates from previous studies for each performance level were reviewed and, where necessary, revised. Damage and performance levels for joints were estimated differently than for other components such as cap beams and columns, according to the findings. The present study proposes new performance levels including joint damage. The overall seismic performance of the concrete bridge bents revealed that the anticipated mechanisms did not occur, but that flexural hinges formed in the joint region rather than in the columns, as required by current codes.

Keywords: Concrete Pier, Cyclic Loading, Damage, Performance Level, Seismic Performance.

1. Introduction

Critical infrastructures are essential for post-earthquake maintenance to facilitate response; therefore, they must be available for immediate use after an earthquake (Abudallah Habib et al., 2020; Samadi et al.,2021). Seismic criteria have been stated in the design regulations and seismic design philosophy (AASHTO, 2011; Ghassemieh et al., 2018), and several researchers have studied the seismic and strengthening performance of bridges built to these standards. They proposed various ways to improve the behavior of concrete piers on bridges in response to earthquakes, including the use of divergent bracing (Rahnavard et al., 2017; Rahnavard and Hassanipour, 2015), non-buckling bracing (Naghavi et al., 2019; Rahnavard et al., 2018), bracing concrete-steel composite walls (Rahnavard et al., 2016), seismic insulators (Radkia et al., 2018, 2019; Rahnavard and Thomas, 2019) and concrete-steel composite connections (Rahnavard et al., 2017).

Extensive research has also been conducted to develop quantitative and qualitative definitions, as well as to determine damage levels for concrete

^{*} Corresponding author E-mail: mkbahrani@ut.ac.ir

frames. Hose et al. (2000) conducted one of the most important studies on the levels of damage to bridge concrete bents. They reviewed previous laboratory studies to determine damage levels as well as performance levels, and they proposed design criteria for use in bridges.

Bahrani et al. (2010, 2017) conducted a series of laboratory investigations at 1/3 scale for multi-column concrete bridge bents subjected to lateral cyclic loads to identify damage and failure modes such as joint failure and longitudinal reinforcement slide at joints. Their findings revealed that energy dissipation capacity the and pinching in the cyclic response had a substantial impact on these damage and failure types. The authors analyzed the members' performance levels and proposed three improvement plans: lowering column shear demand by reducing the effective cross-section of the bars; transverse external post-tensioning; and transverse and longitudinal external post-tensioning in the cap-beam.

Hasaballa et al. (2011) investigated the seismic performance of concrete beamcolumn exterior joints reinforced with Fiber Reinforced Polymer (FRP) and Glass Fiber Reinforced Polymer (GFRP) rebars. They focused on four laboratory specimens with T-shaped connections and discovered that beam-column connections retrofitted with GFRP rebars and stirrups spared considerable damage under seismic loading.

Vecchio et al. (2014) conducted a series of laboratory studies on beam-column joints retrofitted externally with FRP. They investigated the behavior of non-transverse reinforcement (confinement) of joints that did not comply with current seismic codes as well as the effect of FRP as a strengthening method under constant axial loading and transverse cyclic loading in the as-built and strengthened specimens.

Tukiar et al. (2014) investigated the seismic performance of a beam-column precast corner joint with corbels subjected to up to 1.5 percent drift under lateral loading. They investigated the seismic performance of exterior reinforced concrete beam-column joints reinforced using various techniques. According to the findings, the proposed strengthening methods increased the seismic capacity of the joints and steel jackets, consequently increasing their load-bearing capacity and ductility.

Lowes and Moehle (1999) conducted an experimental study on beam-column Tjoints to investigate common defects in bridges built between 1950 and 1970, such insufficient column reinforcement as development length, a lack of transverse reinforcement in the joint regions (spacing equal to 20 times the diameter of the reinforcement), and cutting 50 percent of the lower reinforcement of the beams near the joint. They also investigated the behavior of joints that had been improved with RC covers. The findings demonstrated that this method was effective in increasing the ductility capacity and shear strength of the joints.

KhanMohammadi et al. (2016) investigated 1/4 scale two-column concrete bridge piers. In primary studies, they discovered significant joint damage and proposed a retrofitting method for the joint. The results showed that the retrofitted specimens had no damage in the joint region and that plastic hinges formed at the ends of both columns in accordance with the mechanism specified in seismic codes.

Bilah et al. (2013) investigated the vulnerability of multi-column bridge bents in near-fault and far-field ground motion. They studied the effects of different retrofitting methods on bridges (steel jackets, concrete jackets, Carbon FRP (CFRP) jackets, and Engineered Cement Composite (ECC) jackets). The ECC and CFRP jackets reduced vulnerability effectively.

Patel et al. (2013) studied the exterior beam-column joints of RC and SFRC structures subjected to cyclic loading in order to reduce confinement reinforcement at the connection zone. Six exterior beamcolumn joints were tested at 1/3 scale under cyclic loading. 1.5 percent steel fibers were used in the SFRC beam-column joint. Their findings revealed that the SFRC beamcolumn joint performed well and that joint behavior improved. Furthermore, the findings indicated that reducing the number of stirrups in a properly reinforced SFRC joint could be considered as an alternative solution to avoid retrofitting the connection zone.

Under cyclic loading, Kaliluthin and Kothandaraman (2017) tested exterior beam-column joint specimens at 1/3 scale using the core strengthening technique. The first set of specimens was detailed as ordinary moment-resisting frames, while the second set was detailed as special moment-resisting frames. The third set followed reinforcement detailing with a new type of reinforcement known as "core reinforcement". According to the experimental results, the strengthened joint performed better in terms of bearing capacity, energy absorption, stiffness coefficient, and ductility. It was discovered that the beam-column exterior joint models with core reinforcement provided adequate stiffness and ductility, and that the stiffness did not decrease significantly when compared to the other joint types.

Deng et al. (2015) studied damaged bridge piers that had been repaired postearthquake using steel tubes and FRP. The behavior was investigated using both experimental and Finite Element (FE) approaches. Steel tubes, Basalt Fiber Reinforced Polymer (BFRP), or CFRP were used to repair the three damaged circular RC piers. The repaired piers had hysteresis curves similar to the original specimens, and all three repair methods recovered the seismic performance of the damaged earthquake piers, according to FE analysis and experimental observation.

The findings of the preceding research indicate that the seismic cyclic loading performance of a large number of older bridges designed in accordance with codes at the time of construction should be investigated. The current study performed laboratory testing on one-span concrete piers with two concrete bents at 1/3 scale that were designed in accordance with code in the previous 20 years.

Using experimental observation, the study investigates current seismic performance and defined performance levels. Based on the observations, the types damage associated with of each performance level defined. are and qualitative and quantitative definitions are developed. Furthermore, the seismic behavior and performance of the specimen's components are investigated.

2. Test Program

2.1. Specifications of Specimens

Initially, two as-built one-span specimens (SP-80 and SP-90) were investigated. In the 1980s and 1990s, these specimens were built in accordance with conventional design and construction regulations in Iran. The addition of transverse reinforcement in the joint region is the most significant difference between these two periods.

The specimens were generated at a scale of one-third. The column's arrangement and number of longitudinal reinforcements were the same as in existing codes, and it had full-column cross-section symmetry. Figures 1a and 1b depict the geometry and basic details of existing bridges as well as experimental specimens SP-80 and SP-90.

Tables 1 and 2 show the mechanical properties of the materials used, including the concrete compressive strength in the cap beam and columns, as well as the reinforcement properties. The ratio of longitudinal and transverse reinforcement, joint area details, and cross-section dimensions in these specimens were based on the mean of six bridges with roughly similar conditions (Table 3). Figure 1 depicts the specimen layout and crosssection.

		7	Table 1. Co	ompressive s	trength of	concrete in	n MPa (fc	')	
		Ca	p beam			Column			
			42.1					41.7	
-									
Tab	le 2. Mech	anical p	roperties of	the longitud	linal and t	ansverse re	einforcem	ent use	d in the specimen
Reinfo	orcement (type	Yield st	ress (MPa)	Ulti	mate stres	s (MPa)	J	Ultimate strain (%)
lo	ngitudinal	•	5	11.4		653.2	, , ,		12.56
t	ransverse		3	65.4		540.8			12.34
		Tab	le 3. Bridg	es informatio	on for expe	erimental sp	becimen d	esign	
Average	Saveh	Kesma	Azadegan	Mohajeran	Aramene	Molasadra	Kashani	Unit	Specifications
18.4	22.5	16	20.5	19	19	15.5	16.5	m	Bridge span
				Colu	mn informa	tion			
1329	1400	1200	1100	2000	1200	1200	1200	mm	Section diameter
7086	10000	4500	7000	7600	6800	7000	6700	mm	Height
4814	5000	4000	4000	5200	6500	5000	4000	mm	Column spacing
	25T25	18T28	32T32	30T28	34T25	16T32	22T26		Longitudinal
1 27	0.8	0.08	2 71	0.78	1 / 8	1.14	1.03	0/2	Percentage
1.27	0.8	0.96 T14@	2.71	0.78	1.40	1.14	T16@7	70	Transverse reinforcement
	T16@10	50	T12@15	T12@75	T12@65	T12@125	0		of hinge region
	spiral	spiral	spiral	spiral	spiral	spiral	hoon	spiral	Type
0.42	1 44	0.26	0.69	0.08	0.14	0.08	0.24	3pnai %	Percentage
0.42	1.44	0.20 T14@	0.07	0.00	T12@20	0.00	T10@1	70	Tereentage
	T12@100	100	T12@200	T12@100	0	T12@200	50		Shear reinforcement
0.06	0.08	0.13	0.05	0.06	0.05	0.05	0.04	%	Percentage
				Capbo	eam informa	ation			C
1058		1400	1200	1200	550	1000	1000	mm	Section width
1717		1600	1600	2100	1500	1750	1750	mm	Cross section width
		8T28	12T25	12T32	8T25	12T25	11T28		Top reinforcement
0.35		0.22	0.31	0.38	0.48	0.34	0.39	%	Percentage
		8T22	12T20	8T28	10T25	12T25	7T28		Down reinforcement
		0.14	0.20	0.20	0.59	0.34	0.25	%	Percentage
		4T12	6T14@15	CT14@150	6T12@1	6T12@12	6T10@		T
		@250	0	6114@150	50	0	200		Transverse reinforceme
0.26		0.11	0.38	0.29	0.3	0.32	0.13	%	Percentage
				Joir	nt informati	on			
									Confining reinforcement
375				400	500	0	600	mm	Applied length
				12	12	0	16	mm	Diameter
				75	65	125	70	mm	Distance
0.46				0.3	0.58	0.00	0.96	%	Percentage
638				400	450	850	850	mm	Anchorage length of
									column reinforcement
475				400	400	500	600	mm	hook length of column reinforcement

(a) Details of the laboratory specimen Sp-80

(b) Details of the laboratory specimen Sp-90 Fig. 1. Details of the studied bridge and experimental specimens

2.2. Test Set-up

Figure 2 shows the components used to install and adjust the specimens as well as provide a rigid base. To achieve the desired hinged support conditions, two highstrength bolts were used at the column's end to connect the concrete bents to the rigid steel beam (Figure 3). Figures 4-7 show the locations of the gauges.

Gravity loading was applied using a cross-shaped steel beam (Figure 8). Figure 9 depicts the overall test setup. The steel beam, which had a joint at each end, was installed to control the jack force. The

- A: Bridge pier bent specimen
- B: Steel frame for shear force jack and load cell installation
- C: Reliable holder for Jack
- D: Steel beam for specimen and rigid base connection
- E: Cross-shape beam for gravity load applying
- G: Cyclic loading jack
- H: Steel shear key for transmission shear load
- I: Neoprene plane for gravity load applying
- J: Hinge ends steel element

Fig. 2. Set up details

Fig. 3. High strength bars

Fig. 4. Connecting the specimen to a steel beam (rigid floor)

Fig. 5. Displacement control of the end of the cap beam relative to the rigid floor

Fig. 6. Possible slip control of the specimen relative to the steel beam

Fig. 7. Out of plane deformation control (probable rotation control)

Fig. 8. Applying gravity load

Fig. 9. Specimen set up

Fig. 10. Steel shear key between cap beam and cross beam

2.3. Load Pattern

ATC24 (ATC24, 1992) was followed when applying the lateral load. Yield displacement was estimated using observations from the first test as well as early software modeling. The cycles continued until the yield coefficients shifted to the end of testing. Figure 11 represents the lateral load pattern.

3. Results and Observations

3.1. Hysteresis Curves

The response hysteresis curve of the two specimens is presented in Figures 12 and 13. The ultimate failure mechanism is presented in Figures 14 and 15. In all displacements, loss of strength was

ธ

observed to follow a similar trend. Throughout the loading process, the loss-ofstrength condition in SP-90 was slightly better (less than 5 percent at the same displacement). According to the hysteresis curves, the maximum force applied to the SP-80 and SP-90 was approximately 100 kN, and the maximum force applied in the elastic state occurred at a displacement of 15 mm. As a result, the small change in the connection zone had little effect on the bent strength and stiffness, as expected. The purpose of increasing the number of stirrups in the joint region was to improve the seismic behavior through modification of the failure mechanism by transmitting the hinges to the tops of the columns.

Fig. 12. Hysteresis curve of SP-80

Fig. 14. Ultimate damage mechanism for SP-80

Fig. 15. Ultimate damage mechanism for SP-90

3.2. Damage Development

The results of experimental studies were compared to those of the current study to develop new performance levels. Table 4 shows the qualitative and quantitative definitions of joint performance levels. This classification distinguishes five performance levels: cracking (I), yielding (II), onset of local mechanism (III), completion of local mechanism (IV), and loss of strength (V). Table 4 shows the qualitative damage types associated with each performance level.

Since in this article, an attempt has been

made to develop quantitative and qualitative definitions of performance levels and damages, with special attention to the connection area, during the test, both specimen must inspect the connection conditions with the head and column beam conditions. Given the improved structural details mentioned for the 1990s example, generalize to determine whether damage was transferred from the connection to other components in order to approach the appropriate seismic failure mechanism. It is necessary to suggest for the column and cap beam as shown in Table 4 for connection in Tables 5-6.

		Table 4. Proposed performance le	vels for joint
Level	Performance	Qualitative description	Quantitative description
		Diagonal capillary crack in joint; cold	Cold joint crack less than 1 mm in width;
Ι	Cracking	joint capillary crack (strain	extension of diagonal crack to 2/3 width of
		penetration)	cross-section
П	Vielding	Vertical crack in joint region along	Cold joint crack of over 1 mm in width;
11	Trefulling	column longitudinal reinforcement	diagonal crack of over 0.5 mm in width
	Onset of	Reinforcement pullout (slip); extension	Cold joint crack exceeds 3 mm in width;
III	local	of diagonal crack (corner to corner);	diagonal crack exceeds 1 mm in width;
	mechanism	concrete spalling of joint surfaces	vertical crack exceeds 1 mm in width
	Completion	Concrete spalling in joint region;	
IV	of local	objective view of column longitudinal	Cold joint crack exceeds 5 mm in width;
1,	mechanism	reinforcement or stirrups through cold joint	diagonal crack exceeds 2 mm in width
		Concrete spalling on upper surface of	
		ioint: inadequate anchorage of	Core crack in joint exceeds 2 mm
	Loss of	longitudinal reinforcement in joint	insufficient anchorage of longitudinal
V	strength	region (full slip or stirrup opening):	reinforcement: fracture of transverse joint
	saengui	visible permanent deformation in joint	reinforcement
		region	
	Table 5 D	afine major damages and assign them to pe	orformance levels for the column
Lev	vel	Performs	
I		Bending capill	arv crack
I	[Cracking less t	han 1 mm
		Opening of cracks	s (1 to 2 mm)
		Full depth cr	racking
II	Ι	Expansion of the d	iagonal crack
		Concrete spalling (more the	an 1/10 section depth)
		Increase crack width	more than 2 mm
т	7	The expansion was more t	han 1.2 section depth
11	V	Diagonal cracking more th	nan 2/3 section depth
		visible permanent	deformation
V	7	Reinforcement buck	kling or failure
		Cracking of concrete co	re more than 2 mm
	Table 6. De	fine major damages and assign them to per	formance levels for the cap beam
Leve	el	Performar	nce
T		Capillary crack - pos	itive bending
1		Capillary crack - nega	ative bending
II		Cracking less that	an 1 mm
		Opening of cracks ((1 to 2 mm)
ш		Expansion of the dia	agonal crack
		Sliding column rein	forcements
		Expansion of concrete spalling (mo	bre than 1/10 section depth)
		Diagonal cracking more tha	2/3 section depth
IV		Expansion of concrete spalling (mo	ore than $2/3$ section depth)
		Increase crack width m	nore than 2 mm
		Visible permanent c	tetormation
V		Reinforcement buckl	ing or failure
		Shear and slip	failure

The testing results were then compared to the performance criteria in Table 4. The major types of damage sustained by SP-80, which affected the majority of the bridge components, were identified. Level I capillary cracks were observed at all five levels, primarily in flexural members such as the cap beam, and were caused by bending. Such cracks were observed less often in the joint region.

Diagonal cracks generally occur in the joint region due to shear. Capillary cracks in a cold joint, on the other hand, indicate longitudinal column reinforcement slippage in the joint region. Slippage was a major issue in the bents studied in terms of seismic behavior. Cold joint cracking was added to performance level I because it was discovered early on to be caused by strain penetration.

A crack opening exceeding 1 mm, particularly for the cold joint crack, is a criterion at performance level II. According to Bahrani et al. (2010), the 1-mm cold joint crack opening is related to slippage and results in reinforcement yielding. However, study found that the current the reinforcement did not yield and no slippage was observed for a cold joint crack opening. Furthermore, at this performance level, the diagonal crack width criterion was set at 0.5 mm. Furthermore, cold joint cracking was classified as occurring in the joint rather than the column.

In performance level II, Bahrani et al. (2010) reported a cold joint crack width greater than 3 mm as a sign of slippage. Their findings, as well as those of other researchers, have resulted in the inclusion of slippage of longitudinal reinforcement of the column in the joint region at this level of performance. However, because this was not observed in the current experimental study, this item has been classified as performing at the third level.

Items classified as performance level IV include an increase in crack width of more than 2 mm, a cold joint crack opening greater than 5 mm, and concrete spalling that extends up to 50% of the width. These items will increase nonlinear behavior, which will result in a significant increase in strain.

The lateral load displacement hysteresis curve clearly shows performance level V, loss of strength. At this level of performance, many behaviors can be observed, but one of the most important is permanent deformation. At the end of the experiment, such deformation was clearly visible due to shear strain in the joint region. Furthermore, cracks in the concrete core that were wider than 2 mm were indicators of deterioration. As an indicator of performance level V, severe slippage of the column longitudinal reinforcements was added to this level. Table 7 depicts the various types of major damage and their joint performance levels.

3.2.1. Specimen SP-80

As shown in Table 7, all damages observed in the components and joint region have been described in terms of relative displacement. The first cracks were discovered in the joint region at a relative displacement of 0.73 percent (capillary cracks and diagonal cracks of less than 2.3 mm in width). A diagonal crack exceeding 0.5 mm occurred at the right joint at a relative displacement of 1.83 percent. Strain penetration caused a crack opening greater than 1 mm at the left cold joint. At a relative displacement of 2.73 percent in the joint region, the diagonal cracks extended to more than 1 mm (Figures 16-19).

3.2.2. Specimen SP-90

Table 8 shows the progression of damage in the joints of the SP-80 specimen in terms of relative displacement, which is illustrated in Figures 20-24. At a relative displacement of 0.43 percent, the first crack appeared (capillary and diagonal cracks of less than 2.3 mm in width). A cold joint capillary crack appeared in the interior surface of the connection at 0.92 percent left displacement, and a cold joint capillary crack appeared in the exterior surface of the eastern joint at 0.92 percent displacement.

Diagonal cracks of greater than 0.5 mm were observed at a relative displacement of 1.82% in the left join. At this displacement, the cold joint crack opened wider than 1

mm. At a relative displacement of 3.64%, the width of the cracks in the eastern and left joints exceeded 2 mm.

Order	Damage type	Lateral displacement (%)	Figure
1	Capillary cracks and diagonal cracks of less than 2.3 mm in width	0.73	<image/> <caption></caption>
2	Diagonal crack exceeding 0.5 mm at eastern joint; diagonal crack exceeding 1 mm in width at left cold joint crack opening caused by strain penetration	1.83	<image/> <caption><image/><image/><image/></caption>
3	Extension of diagonal cracks exceeding 1 mm in length in joint region	2.73	Fig. 19

Table 7. Damage development in joint region (red denotes freight loads and blue denotes return loads)

		Table 8. Dama	ge development at joints
Order	Damage type	Lateral displacement (%)	Figure
1	Capillary crack and diagonal crack of less than 2.3 mm in width.	0.43	Fig. 20.
2	Cold joint capillary crack in left joint	0.92	Fig. 21.
3	Cold joint capillary crack in eastern joint	0.93	
4	Diagonal cracks exceeding 0.5 mm observed in left joint	1.82	Fig. 23.
5	Crack width in eastern and left joints exceeded 2 mm.	3.64	Fig. 24.

4. Analysis of Results

The performance of the specimens tested was evaluated, compared, and analyzed. The performance of the components, as well as the relative displacements corresponding to their performance levels, have been quantitatively compared and evaluated.

4.1. Qualitative and Quantitative Indices

The quantitative and qualitative damage indices presented by other researchers were compared. A summary of these works was used to create quantitative and qualitative indexes of the joints.

4.1.1. Hose et al.

Tables 9 and 10 present the results based on the flexural behavior of bridge members (cap beams and columns), as well as the damage and performance levels classified by Hose et al. (2000). Table 9 shows the damage levels, which range from capillary cracks at level I to permanent deformation and significant damage at level V. Table 10 shows the performance levels, which range from cracking in level I to strength degradation in level V.

4.1.2. Bahrani et al.

Bahrani et al. (2010) completed Hose et al. (2000) classifications, indices of performance and damage levels and classified the levels of performance for the joint region and flexural members (Tables 11 and 12). They also created qualitative classifications for damage and observed behavior at each of the five performance levels.

4.1.3. Hassballa et al.

Table 13 summarizes Hasaballa et al. (2011) qualitative and quantitative definitions of joint damage (diagonal shear cracks to shear failure) in terms of the corresponding drift (1 percent to 5 percent).

4.1.4. Vecchio et al.

Based on observations of damage in the joint region, Vecchio et al. (2014) classified joints into four performance levels. The damage characteristics for levels I through IV are shown in Table 14.

Level	Damage classification	Damage status	Repair status	Socio-economic status	
Ι	None	Barely visible cracking	No repair	Fully operational	
II	Minor	Cracking	Possible repair	Operational	
III	Moderate	Open cracks; onset of spalling	Minimum repair	Life safety	
IV	Major	Very wide cracks; extensive concrete spalling	Repair	Near collapse	
V	Local failure or	Visible permanent deformation;	Replacement	Collapse	
•	collapse	buckling/rupture of reinforcement		compoe	

Table 9. Bridge damage assessment (Hose et al., 2000)

Table 10. Bridge performance assessment (Hose et al., 2000)

Level	Performance level	Qualitative performance level	Quantitative performance level
Ι	Cracking	Onset of capillary cracks	Barely visible cracking
II	Yielding	First longitudinal reinforcement yielding	Crack width less than 1 mm
III	Onset of local mechanism	Onset of inelastic deformation; onset of concrete spalling; development of diagonal cracks	Crack width of 1 to 2 mm; length of spalled region exceeds 1/10 of cross-section width
IV	Full development of local mechanism	Wide crack widths; spalling over full local mechanism region	Crack widths exceed 2 mm; Diagonal cracks exceed 2/3 of cross-section width; length of spalled region exceeds 1/2 cross-section width
v	Strength degradation	Main reinforcement buckling; Transverse reinforcement rupture; crushing of core concrete	Crack width exceeds 2 mm in concrete core Measurable dilation exceeds 5% of original member dimension

Lovel	Performance	Qualitative description	Quantitativa decomintion	
level		Quantative description	Quantitative description	
		Capillary cracks;		
Ι	Cracking	cold capillary cracks at joint;	Capillary cracks of less than 0.5 mm	
		onset of longitudinal reinforcement slip		
II	Yielding	Concrete cold-joint crack opening	Crack width of less than 1 mm	
	Onset of	Full-width cross-section crack; development	Crack width of 1 to 2 mm;	
III	local	of diagonal cracks; cap beam reinforcement	concrete spalling of less than 1/10 of	
	mechanism	slip; column reinforcement slip	cross-section	
	Full		Crack width exceeds 2 mm;	
117	development	Commente anallin en dia son al anala	spalling exceeds 1/2 of cross-section	
IV	of local	Concrete spannig; diagonal crack	width; diagonal cracks over 2/3 of	
	mechanism		cross-section	
V	Strength	Severe column reinforcement slip; visible	Create of concrete core exceeds 2 mm	
v	degradation	permanent deformation	Crack of concrete core exceeds 2 min	

	Table 11. Damage based	on performance level of	joint (Bahrani et al., 2010)
--	------------------------	-------------------------	------------------------------

Table 12. Damage based on column performance levels (Bahrani et al., 2010)

-			(,,,,,,
Level	Performance level	Qualitative performance level	Quantitative performance level
Ι	Cracking	Flexural capillary cracks	Crack width of less than 0.5 mm
II	Yielding	Extension of flexural cracks	Crack width of less than 1 mm
III	Onset of local mechanism	Onset of concrete spalling; development of diagonal cracks	Crack width of 1 to 2 mm
IV	Full development of local mechanism	Concrete spalling; diagonal cracks	Spalling exceeds 1/2 of cross-section width
V	Strength degradation	Visible permanent deformation; buckling or rupture of longitudinal reinforcement	Crack in concrete core exceeds 2 mm

Table 13. Damage sequence by drift of joint (Hasaballa et al., 2011)

Table 15. Dalla	Table 15. Damage sequence by drift of joint (frasabana et al., 2011)						
Drift (%)	Damage						
1	Diagonal shear cracks						
3	Diagonal cracks of 2.6 mm in width						
4	Concrete spalling at bottom of joint						
5	Specimen failure due to shear failure						
Table 14. Perfo	ormance criteria for joints from Vecchio et al. (2014)						
Table 14. Perfo Level	ormance criteria for joints from Vecchio et al. (2014) Performance						
Table 14. Perfo	ormance criteria for joints from Vecchio et al. (2014) Performance Beam bar yielding						
Table 14. Perfo Level I II	ormance criteria for joints from Vecchio et al. (2014) Performance Beam bar yielding Significant cracking of joint						
Table 14. Perfo Level I II III	ormance criteria for joints from Vecchio et al. (2014) Performance Beam bar yielding Significant cracking of joint Joint shear mechanism						

4.1.5. Tukiar et al.

Tukiar et al. (2014) proposed five levels of performance for members, and Table 15 shows the qualitative descriptions for each level. In the current study, buckling of the reinforcement and collapse are considered separate items; however, Hose et al. (2000) combined them into one item.

4.1.6. Truong et al.

Truong et al. (2017) calculated damage based on a 0.5 to 5% drift in the joint (Table 16). Truong et al. (2017) and Hasaballa et al. (2011) classified damage based on drift, whereas others reported damage levels based on performance. At performance level 4, Bahrani et al. (2010) reported diagonal crack extension to more than twothirds of the cross-section, whereas Truong et al. (2017) reported this damage at performance level 1. Full-width cracking did not occur in the current study, but it was observed by Bahrani et al. (2010). Using the findings of other researchers during experimental testing as well as those from the current study, a table was created in which the damage definitions were revised.

4.2. Performance of Specimens

4.2.1. Specimen SP-80

Figure 25 depicts the performance of the specimen SP-80 components in relation to drift. It can be seen that the damage trend and performance level for the joint were level III, level V for the cap beam, and level II for the column. This means that even if the joint is at level III, the column remains at level II. Despite the fact that the joint and cap beam have reached performance level V, the column has not been seriously damaged. This is in direct conflict with the seismic design criteria.

While studying the behavior of concrete bents in bridges, the performance of the joints has been the most important consideration. Figures 26 and 27 show the minimum drift for the SP-80 components corresponding to the five performance levels. It can be seen that the joint and cap performed poorly, and beam these components were damaged much sooner than the column itself, which received little damage.

4.2.2. Specimen SP-90

Figure 28 depicts the damage trend and performance levels of the bent components in specimen SP-80. As can be seen, the cap beam reached level V, the joint reached level II, and the column reached only level II. This means that while the cap beam advanced to level IV, the column only advanced to level II. The cap beam experienced more damage than any other component, but the column did not sustain serious damage. This does not meet the seismic design criteria.

. 1 1 1 14 (T. 1 · at a = 2014c m

Table 15. Tukiar functional levels of flexural damage (Tukiar et al., 2014)					
Performance level	Damage level				
Operational	No damage; fine cracks occur				
Immediate ecouperatu	Slight structural damage; initial spalling of concrete cover; entrance to				
minediate occupancy	building only to recover belongings				
Life sefety	Moderate structural damage; cracks in column and beam-column joint;				
Life safety	buckling over reinforcement				
Collapse provention	Large crack in structural elements; fracture of longitudinal bars; loss of				
Conapse prevention	stability of structure; structure near collapse and cannot be entered				
Collapse prevention	Collapse or imminent danger of collapse				

	Table 16. Drift and sequence of damage to joint (Truong et al., 2017)
Drift (%)	Damage observed
0.5	Flexural cracks in beam
1	Cracks propagating to neutral axis of beam
1.5	Thin flexural cracks at beam-column interface that spread along beam length
3	Onset of inclined cracks in joint panel zone; shear failure of joint panel zone as loading
	progresses
5	Several thin vertical and horizontal cracks in joint panel zone; flexural cracks at widened beam-
	column interface

Fig. 25. Performance of components

Figures 29 and 30 represent the minimum drift values for each of the five performance levels. The joint and cap beam performance in specimen SP-90 can be seen to be completely rejected. The cap beam was damaged much earlier than the column,

and the column was only slightly damaged before the joint was damaged. The column eventually reached performance level II, and no damage matching levels III to V were observed. The joint performance, on the other hand, reached level IV.

Fig. 26. Comparison of performance of components in SP-80

Fig. 27. Failure mode of SP-80

Fig. 28. Performance of components in SP-90

Fig. 29. Comparison of performance of components in SP-90

4.3. Energy Dissipation

The ability to dissipate energy is the most important parameter in structural seismic response. Figure 31 shows the increasing trend of cumulative dissipated energy by specimens. The specimen show relatively low drifts range at the end of test. Hysteresis curves represented little ability to absorbed and dissipate energy. Many reasons can be cited, including the defect of structural details in older codes, the lack of a desirable failure mechanism, and the early occurrence of damage levels in the beams and connection region. A significant and significant result is the need to strengthen for the tested bents. As a result, more of the structure's capacity can be used for energy dissipation, and more deformation can occur.

5. Conclusions

The present study performed an experimental evaluation and revised the performance level definitions for twocolumn concrete bridge bents with joints designed in the 1980s and 1990s. Based on the damage observed, qualitative and quantitative indexes for the performance have been presented. levels The performance of the bent's components was compared, and the following results were obtained:

- The minor change in the connection zone had little effect on bent strength and stiffness, as expected. The goal of increasing the number of stirrups in the joint region was to improve seismic behavior by changing the failure mechanism (moving the hinges to the top of the column). The observed damage revealed no positive change in the failure mechanism or movement of the flexural hinges to the column tops.
- Defining and developing quantitative and qualitative indices with appropriate performance levels for joints in concrete bridge bents is an important aspect of evaluating their seismic behavior and should be regarded as the first step in column strengthening.
- Damage assessment in the joint region revealed the problem of longitudinal column reinforcement embedded in the joint region. Cold capillary cracks were defects in performance level I and were classified as a sign of slippage and complete slippage by Bahrani et al. (2010) in performance levels III and V, respectively. This has not been addressed by Hose et al. (2000) and Tukiar et al. (2014) because they focused only on flexural members.
- The results showed that diagonal cracking was observed in the joint's first cycles and has been classified as performance level I. However, Hose et al. (2000) and Bahrani et al. (2010) based their observations on column damage, so they classified this observation as

performance level III. The formation of diagonal cracks in the joint is included in performance level I.

- The findings revealed that the cold joint crack opening is a new qualitative definition in performance level I, with a quantitative definition of less than 1 mm.
- The findings revealed that vertical cracking in a joint that is accompanied by slipping of the column's longitudinal reinforcement, a cold joint crack width greater than 1 mm, and a crack width greater than 0.5 mm were all determinants of yielding. This level of performance is relative to the level of performance in the column.
- was discovered that _ It concrete crumbling of the joint's upper surface, slippage of the longitudinal reinforcement in the joint region, and permanent visible deformation of the joint due to loss of strength in the joint region all indicate performance level V in the columns. Fracture and buckling of the rebars are signs of this performance level.
- The joint and cap beam in SP-80 achieved performance levels III and V, respectively. However, the column's ultimate performance level was II. In SP-90, the beam and joint achieved performance levels V and II, respectively, despite the fact that the column's ultimate level was II.
- The results showed that the joint and cap beam were damaged before the columns in both experimental specimens. The columns did not meet their final performance levels, which contravened seismic design criteria.
- Test results revealed that the first cracks in the joint were diagonal cracks that occurred at lower drift values.
- Previous reports were based primarily on drift while, they were based on drift as well as performance level for each type of damage reported in the current study.
- Bahrani et al. (2010) reported cap beam and column reinforcement slippage. Only longitudinal column reinforcement

slippage due to strain penetration was observed in the current study.

6. Recommendations

Comparative behavioural evaluation of strengthened bridge pier bent with different spans can be studied. It is important that how bents behave in the similar lateral loading. According to the newer available bridge codes, to achieve the desired seismic behavior of concrete bent, different specimens can be tested and weaknesses should be evaluated.

7. References

- AASHTO. (2011). AASHTO guide specifications for LRFD seismic bridge design, AASHTO. Transportation Officials, Subcommittee on Bridges
- Abudallah Habib, I., Wan Mohtar, W.H.M., Muftah Shahot, K., El-shafie, A. and Abd Manan, T.S. (2020). "Bridge failure prevention: An overview of self-protected pier as flow altering countermeasures for scour protection", *Civil Engineering Infrastructures Journal*, 54(1), 1-22.
- Applied Technology Council (ATC24). (1992). "Guidelines for cyclic seismic testing of components of steel structures", Applied Technology Council, California.
- Bahrani, M.K., Vasseghi, A., Esmaeily, A. and Soltani, M. (2010). "Experimental study on seismic behavior of conventional concrete bridge bents", *Journal of Seismology and Earthquake Engineering*, 12(3), 107-118.
- Bahrani, M.K., Vasseghi, A., Nooralizadeh, A. and Zargaran, M. (2017). "Experimental and analytical study on the proposed retrofit method for concrete bent in ordinary highway bridges in Iran", *Journal of Bridge Engineering*, 22(6), 05017004.
- Billah, A.M., Alam, M.S. and Bhuiyan, M.R. (2012). "Fragility analysis of retrofitted multicolumn bridge bent subjected to near-fault and far-field ground motion", *Journal of Bridge Engineering*, 8(10), 992-1004.
- Deng, J., Liu, T., Xie, W., Wei Lu. (2015). "Study on repaired earthquake-damaged bridge piers under seismic load", *Advances in Materials Science and Engineering*, 2015, Article ID 295392, 10 pages.
- Ghassemieh, M., Ghodratian, S.M., Khanmohmmadi, M. and Baei, M. (2018). "A superelastic retrofitting method for mitigating the effects of seismic excitations on irregular

bridges", *Civil Engineering Infrastructures Journal*, 51(1), 147-168.

- Hasaballa, M., El-ragaby, A., El-salakawy, E. (2011). "Seismic performance of exterior beam, Column joints reinforced with glass fibre reinforced polymer bars and stirrups", *Canadian Journal of Civil Engineering*, 38(10), 1092-1102.
- Hose, Y., Silva, P. and Seible, F. (2000). "Development of a performance evaluation database for concrete bridge components and systems under simulated seismic loads", *Earthquake Spectra*, 16(2), 413-442.
- Kaliluthin, A.K. and Kothandaraman, S. (2017). "Performance evaluation of exterior beamcolumn joint with core reinforcement technique subjected to reverse cyclic loading", *Arabian Journal for Science and Engineering*, 42(9), 2440-2443.
- Khanmohammadi, M., Abbasloo, A.A. and Valadi, E. (2016). "Enhancing shear strength of cap beam-column joints in existing multicolumn bent bridges using an innovative method", *Journal of Bridge Engineering*, 21(12), 04016086.
- Lowes, L.N. and Moehle, J.P. (1999). "Evaluation of retrofit of beam-column T-joints in older reinforced concrete bridge structures", ACI Structural Journal, 96(4), 519-532
- Naghavi, M., Rahnavard, R., Thomas, R.J. and Malekinejad, M. (2019). "Numerical evaluation of the hysteretic behavior of concentrically braced frames and buckling restrained brace frame systems", *Journal of Building Engineering*, 22, 415-428.
- Patel, P.A., Desai, A.K. and Desai, J.A. (2013). "Evaluation of RC and SFRC exterior beamcolumn joint under cyclic loading for reduction in lateral reinforcement of the joint region", *Magazine of Concrete Research*, 65(7), 405-414.
- Radkia, S., Gandomkar, F.A. and Rahnavard, R. (2018). "Seismic response of asymmetric sliding steel structure with considering soil-structure interaction effects", *Journal of Structural and Construction Engineering*, 6(3), 105-120.
- Radkia, S., Rahnavard, R. and Gandomkar, F.A. (2019). "Evaluation of the effect of different seismic isolators on the behavior of asymmetric steel sliding structures", *Journal of Structural* and Construction Engineering, 6(4), 213-230.
- Rahnavard, R. and Hassanipour, A. (2015). *Steel structures analysis using ABAQUS*, Academic Center for Education, Culture and Research, Publishing Organization of Kerman Branch, Kerman.
- Rahnavard, R., Hassanipour, A. and Mounesi, A. (2016). "Numerical study on important parameters of composite steel-concrete shear walls", *Journal of Constructional Steel Research*, 121, 441-456.
- Rahnavard, R., Hassanipour, A., Suleiman, M. and

Mokhtari, A. (2017). "Evaluation on eccentrically braced frame with single and double shear panels", *Journal of Building Engineering*, 10, 13-25.

- Rahnavard, R., Naghavi, M., Aboudi, M. and Suleiman, M. (2018). "Investigating modeling approaches of buckling-restrained braces under cyclic loads", *Case Studies in Construction Materials*, 8, 476-488.
- Rahnavard, R., Taghikhajeh, M., Hassanipour, A. and Siahpolo, N. (2019). "Parametric study of seismic performance of steel bridges pier rehabilitated with composite connection", *Journal of Structural and Construction Engineering*, 6(1), 98-113.
- Rahnavard, R. and Thomas, R.J. (2019). "Numerical evaluation of steel-rubber isolator with single and multiple rubber cores", *Engineering Structures*, 198, 109532.
- Samadi, D., Taghaddos, H., Nili, M.H. and Noghabaei, M. (2021). "Development of a bridge maintenance system using bridge information modeling", *Civil Engineering Infrastructures Journal*, 54(2), 351-364.
- Truong, G.T., Hieu Dinh, N., Kim, J.C. and Choi, K.K. (2017). "Seismic performance of exterior RC beam-column joints retrofitted using various retrofit solutions", *International Journal of Concrete Structures and Materials*, 11(3), 415-433.
- Tukiar, M.A., Kay Dora, A.G. and Hamid, N.H. (2014). "Seismic performance and assessment of precast beam-column corner joint subject to reversible lateral cyclic loading", *Applied Mechanics and Materials*, 661(2014),128-133.
- Vecchio, C.D., Di Ludovico, M., Balsamo, A., Prota, A., Manfredi, G. and Dolce, M. (2014).
 "Experimental investigation of exterior RC beam-column joints retrofitted with FRP systems", *Journal of Composites for Construction*, 18(4), 04014002.

This article is an open-access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license.