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ABSTRACT: This research aim is to develop a procedure for backcalculation of flexible 

pavements moduli based on the hybridization of the Artificial Neural Network (ANN) 

and the Jaya optimization algorithm. The ANN was applied to predict the pavement 

deflection basin, and the Jaya was employed for moduli backcalculation. The comparison 

of hybrid ANN-Jaya procedure with some backcalculation software indicates the high 

ability of the developed method to perform backcalculation of flexible pavements moduli. 

The comparison of the computational speed and accuracy of hybrid ANN-Jaya with 

ANN-PSO and ANN-GA indicates the superior performance of ANN-Jaya compared to 

other methods. 
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1. Introduction 

 

In the pavement engineering, the Falling 

Weight Deflectometer (FWD) device, is 

commonly applied to estimate the pavement 

stiffness modulus and the structural 

properties of the layers in a non-destructive 

manner (Saltan and Terzi, 2008; 

Gopalakrishnan and Papadopoulos, 2011; 

Li et al., 2018). The structural analysis of 

pavements has a key role in estimating the 

pavements life and determination of the 

optimal maintenance activities. As a part of 

FWD results interpretation process, the 

accurate measuring the pavement moduli 
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provides a reliable basis for the road 

management department to formulate 

pavement maintenance plans and rationally 

arrange funds., Utilizing the several sensors 

called geophones in the FWD test 

procedure, the deflection basin 

(deformations) of the pavement surface in 

response to the applied dynamic load pulse 

was measured at different radial distances 

from the center of rubber plate (the loading 

center). The dynamic load pulse simulates 

the moving wheel load and is produced by 

dropping a heavyweight on the pavement 

through a circular rubber plate. Moreover, 

the measured deflections can be employed 
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to evaluate the pavement life and estimate 

the pavement layers stiffness through 

backcalculation analysis. 

The backcalculation of pavement layers 

moduli consists of comparing the 

deflections measured by the FWD and the 

calculated ones through an iterative process 

(using a pavement response model). 

Usually, in most backcalculation software, 

the multilayered elastic theory was 

employed for forward analysis of pavement 

structure. In this process, the modulus of 

each layer is initialized, and the pavement 

surface deflections will be calculated by 

forward analysis. In the subsequent 

iterations, the moduli of different layers are 

adjusted, and then the computed deviations 

are compared with the measured ones, until 

the difference is within the acceptable 

range. Over the years, different methods of 

intelligence computing and deep learning 

was emerged and developed to solve 

complicated problems (Vasant et al., 2019). 

Several static, dynamic and artificial 

intelligence methods have been 

implemented to the flexible pavement 

moduli backcalculation including dataset 

search, least squares, and soft computing 

such as genetic algorithm, neural network 

and, fuzzy logic system (Saric and Pozder, 

2017; Guzzarlapudi et al., 2017; 

Aubdulnibe, 2019; Zhang et al., 2021). In 

recent years, advanced computational 

intelligence methods have been proposed 

with higher computational speed and 

accuracy.  

Saltan et al. (2002) used a 

backcalculation process to predict the 

thickness of layers affecting the pavement 

service life. They used the Artificial Neural 

Network (ANN) to eliminate the time-

consuming calculations based on linear 

elastic theory and Finite Element. They 

obtained a value of R2 = 0.94 and R2 = 0.88 

based on the training and testing data, 

respectively (Saltan et al., 2002). 

Gopalakrishna and Thompson (2004) 

used the ANN to predict the moduli of the 

three-layer pavement based on FWD 

measurements. They modeled the asphalt 

layer as linear and base and subgrade as 

nonlinear layers. The Coefficient of 

Determination (R2) for predicting the 

asphalt and subgrade moduli was obtained 

0.98 and 0.97, respectively 

(Gopalakrishnan and Thompson, 2004). 

Ceylan et al. (2005) used the ANN for the 

pavement structural analysis and 

determined the deflection basin of full-

depth asphalt pavements. They were able to 

estimate the asphalt layer modulus based on 

the FWD measurements and increase the 

speed of backcalculation process (Ceylan et 

al., 2005). Rakesh et al. (2006) used the 

ANN method to calculate the surface 

deflections of four pavement systems, 

including pavement with 2, 3, 4 and 5 

layers, and compared the results with actual 

data. The value of R2 for these systems was 

0.997, 0.996, 0.997, and 0.997, 

respectively. Saltan and Terzi (2008) 

modeled the deflection basin of the flexible 

pavement using ANN with a cross-

validation technique by applying a 

backcalculation process (Saltan and Terzi, 

2008). 

Gopalakrishnan (2010) proposed a new 

intelligent system for back-calculating the 

stress-dependent modulus of the layers 

using pavement deflection data. For this 

purpose, the integration of three methods, 

including Finite Element, ANN, and 

Particle Swarm Optimization (PSO) as a 

hybrid backcalculation tool, was used to 

develop a robust system for predicting the 

nonlinear modulus of granular base and 

subgrade layers. The values of R2 obtained 

from the calculated modulus, and the actual 

data for the asphalt and subgrade layer were 

0.996 and 0.984, respectively. In this 

research, the developed model has validated 

with BACKFAA and WESDEF software in 

the six different airport pavement sections 

(Gopalakrishnan, 2010). 

Saltan et al. (2013) used the ANN 

approach to evaluate the structural 

properties of a typical flexible pavement, 

including the layers thickness, the Poisson’s 

ratio, and the resilient modulus (Saltan et 

al., 2013). Ocal (2014) presented an 
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artificial intelligence algorithm to 

backcalculate the asphalt pavements moduli 

based on FWD results. For this purpose, a 

novel hybrid Gravitational Search 

Algorithm (GSA)-ANN method was 

proposed (Öcal, 2014). The Ant Colony 

Optimization algorithm was applied by 

Scimemi et al. (2016) to back-calculate the 

airport pavement moduli based on the 

surface deflection data. They evaluated 

back-calculated moduli in comparison with 

the field data utilizing the BACKGA 

software, and found that the maximum error 

is equal to 0.66%. Li and Wang (2019) used 

ANN and Genetic Algorithm (GA) to back-

calculate the flexible pavement layers 

moduli.  

You et al. (2020) utilized two ANN 

based back-calculation models to evaluate 

the interlayer conditions and predicting the 

layers moduli of four types of pavements. 

Moreover, the ANSYS software was 

applied to build the corresponding database. 

The results of two proposed ANN models 

compared to the results of two multiple 

regression models have shown that, there 

are no significant differences between them.  

Fu et al. (2020) estimated the dynamic 

surface deflections of asphalt pavement 

subjected to the FWD and evaluate the 

static backcalculation of layer moduli using 

the MODULUS and EVERCALC software. 

They found that the static backcalculation 

process caused considerable errors due to 

regardless of the dynamic effects of FWD 

loading. 

Wang et al. (2020) evaluated the 

traditional backcalculation method based on 

the finite element and the multilayer elastic 

theory compared to a new one without 

backcalculation based on the ANN to 

predict pavement surface deflections using 

Heavy Weight Deflectometer (HWD). They 

showed that the traditional approach 

overestimated tensile strain in a thin asphalt 

layer and concluded that the accuracy of the 

ANN was better than others.  

The represented background for 

application of Computational Intelligence 

(CI) methods to back-calculate the 

pavement layer properties, reveals that a 

comprehensive comparison of results 

obtained by these methods with actual field 

data as well as existing backcalculation 

software has not been performed. The 

limitations of the dataset for the 

development of ANN and the lack of 

developed software to implement the 

developed CI method are two other 

shortcomings. Also, the Jaya algorithm has 

not been used to perform backcalculation of 

flexible pavements moduli. Unlike other 

population-based optimization algorithm, 

lack of specific control parameters is the 

most important advantage of Jaya 

algorithm. Furthermore, better performance 

and faster convergence capability are two 

other reasons that this algorithm is 

employed in this research work. 

In this paper, a hybrid optimization 

model (ANN-Jaya) is proposed for 

performing backcalculation of flexible 

pavements moduli, and an applied software 

is developed to implement it. Furthermore, 

the performance of the developed model is 

evaluated based on the field data as well as 

different backcalculation software, 

including ISSEM4, MODCOMP, 

MODULUS, WESDEF, and BACKFAA. 

Besides, the ability of the Jaya algorithm in 

terms of robustness, convergence rate and 

run time is compared with other 

optimization methods including the GA and 

the PSO algorithm. 

 

2. Falling Weight Deflectometer (FWD) 
 

The Falling Weight Deflectometer (FWD) 

is a testing device that was firstly 

introduced in France to estimate the 

structural capacity and physical properties 

of pavements (Ullidtz, 1987).  In this 

device, an impact load is applied on a 

loading plate, and then the surface 

deflection can be measured at different 

radial distances using several geophones. In 

the LTPP program, the geophones distance 

from the loading center was assumed to be 

0, 203, 305, 457, 610, 915, and 1525 mm 

(Von et al., 2002). The impact load can be 
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altered by changing the falling weight 

height. The load pulse is applied through a 

series of springs in a short time to the 

pavement surface (about 28 milliseconds). 

The falling load of the FWD device is not 

enough to evaluate the airport pavements 

that have a higher thickness and load 

capacity. In such a situation, the Heavy 

Falling Weight Deflectometer (HFWD) can 

simulate a Boeing 747-wheel load with a 

maximum dynamic pressure of 250 KN and 

loading time between 20 and 25 

milliseconds. The schematic image of the 

FWD device is demonstrated in Figure 1. 

Some of the variables which affect the 

shape and dimension of the deflection basin 

include the Poisson’s ratio, the thickness, 

the layers modulus, the load applied by the 

FWD, and the subgrade depth (Bendana et 

al., 1994). Having these values and 

deflections in different radial distances, the 

modulus of different layers can be obtained 

through backcalculation process. 

 

3. Artificial Neural Network (ANN) 
 

An artificial neural network (ANN) adapted 

from the behavior of the neurons of the 

brain nervous mechanism. The ANN 

consists of the artificial neurons which be 

connected (Gurney, 2005). Each connection 

has a specific weight that increases or 

decreases the strength of the transmitted 

signal at a link. The ANN can determine 

nonlinear relationships between input and 

output variables. Since solving complex 

problems with traditional methods is very 

difficult, ANN is widely being used in 

various Civil Engineering fields. The feed-

forward neural network is one of the most 

applicable types of ANN for modeling of 

engineering problems. It consists of several 

the processing units (the neuron, cell, or 

node) placed in the layers that connected the 

inputs to the output set. A multilayer feed-

forward neural network includes input, 

hidden, and output layers which are 

composed of connected neurons. 

For developing a multilayer feed-

forward neural network, a learning rule 

should be used. One of the most popular 

tools for learning is the error back-

propagation algorithm. The general 

architecture of this algorithm is shown in 

Figure 2. In this figure L: is the number of 

neurons in the hidden layer and xp1 to xpN: 

are the input and yp1 to ypM: are the output 

variables. The elements as well as the 

computational process for a typical artificial 

neuron is shown in Figure 3.   
 

 
Fig. 1. Schematic image of the FWD and measuring the deflection basin for a flexible pavement 
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Fig. 2. Architecture of feed-forward neural network structure 
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Fig. 3. Structure of a typical artificial neuron 

 

where yi: is the output signal. Other 

variables are described in the figure. To 

propagate the activation, the input signals 

are assessed using their connection weights 

and enters into the activation function as 

input. The input signal of the neuron is 

obtained using Eq. (1): 

 

𝑛𝑒𝑡𝑖 = ∑(𝑤𝑖𝑗𝑋𝑗) − 𝜃𝑖

𝑁

𝑗=1

 (1) 

The output signal can also be computed 

utilizing the Eq. (2): 

 
𝑦𝑖 = 𝑓(𝑛𝑒𝑡𝑖) (2) 

 

in which f: is the transfer function 

(activation function) and can be classified 

as a linear, sigmoid, and tangent sigmoid 

function. The tangent sigmoid transfer 

function can be acted as real neurons. The 

value of the output signal (yi) for tangent 
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sigmoid activation function varies between 

0 and 1. The tangent sigmoid function can 

be calculated by Eq. (3): 

 

𝑓(𝑥) =
2

(1 + 𝑒−2𝑥)
− 1 (3) 

 

Using the input and output data set, the 

recursive algorithm modifies the weights 

and biases for successive iterations. The 

recursive learning rule is based on 

minimizing the difference between the 

calculated and desired output values (error). 

The learning process is randomly started by 

assigning connection weights, and then the 

values of weights and biases are updated 

according to the error value in the 

successive iterations. The error back-

propagation Ek: is determined utilizing the 

Eq. (4) at the end of each stage: 

 

𝐸𝑘 =
1

2
∑[𝑡𝑖

𝑘 − 𝑦𝑖
𝑘]

𝑖

 (4) 

 

where 𝑡𝑖
𝑘: is the real output for the ith neuron 

and the kth data in the training set. After 

completing the activation phase, the 

connection weights are adjusted and the 

backpropagation phase will begin. In this 

case, the output of the activation path is 

converted to the return path toward inputs, 

and the new connection weight of the 

neurons i and j are updated using Eq. (5): 

 

𝑤𝑖𝑗(𝑖𝑡 + 1) = 𝑤𝑖𝑗(𝑖𝑡) + 𝜂 ∑ 𝛿𝑖
𝑘

𝑘

𝑋𝑗
𝑘

+ 𝛼[𝑤𝑖𝑗(𝑖𝑡)

− 𝑤𝑖𝑗(𝑖𝑡 − 1)] 

(5) 

 

where α: is the momentum factor that 

affects the weight in consecutive iterations 

to prevent the algorithm from falling down 

in the local optima and oscillation. The bias 

values are also updated as follows: 

 

𝜃𝑖(𝑖𝑡 + 1) = 𝜃𝑖(𝑖𝑡) + 𝜂 ∑ 𝛿𝑖
𝑘

𝑘

+ 𝛼[𝜃𝑖(𝑖𝑡)
− 𝜃𝑖(𝑖𝑡 − 1)] 

(6) 

 

This process is repeated for each of the 

training data, while the difference between 

the calculated and the desired outputs is 

minimized (Pekcan et al., 2008). Thereafter, 

two criteria including coefficient of 

determination (R2 and Root Mean Square 

Error (RMSE) were employed to evaluate 

the neural network performance using the 

following equations. 

 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑(𝑑𝑖 − 𝑦𝑖)2

𝑁

𝑖=1

 (7) 

𝑅2

=
(𝑁 ∑ (𝑑𝑖𝑦𝑖) − ∑ 𝑑𝑖 ∑ 𝑦𝑖

𝑁
𝑖=1

𝑁
𝑖=1

𝑁
𝑖=1 )

(𝑁 ∑ 𝑑𝑖
2 − (∑ 𝑑𝑖

𝑁
𝑖=1 )

2𝑁
𝑖=1 ) (𝑁 ∑ 𝑦𝑖

2 − (∑ 𝑦𝑖
𝑁
𝑖=1 )

2𝑁
𝑖=1 )

 

 (8) 

 

where di: is the actual value, and yi: is the 

predicted value for the ith data from the 

neural network and N: is the number of data 

points. 

 

4. Jaya Algorithm 
 

Metaheuristic algorithms have been utilized 

to many complicated Civil Engineering 

problems (Kaveh and Dadras, 2017; 

Hajiazizi et al., 2021; Samadi et al., 2021; 

Sonmez et al., 2017; Ghanizadeh and 

Heidarabadizadeh, 2018; Ghanizadeh et al., 

2020). 

Most of the metaheuristic algorithms 

such as the Particle Swarm Optimization 

(PSO) (Eberhart and Kennedy, 1995), the 

Genetic Algorithm (GA) (Holland, 1975), 

the Teaching Learning-Based Optimization 

(TLBO) (Rao et al., 2011), and the Firefly 

Algorithm (FFA) (Yang, 2009) have several 

internal tuning parameters, and the tuning 

stage is necessary to determine these 

parameters. The internal tuning parameters 

are usually set for a specific problem, and 

there is no guarantee that these values will 

lead to a globally optimal solution in case of 

other issues. 

Rao (2016) proposed a simple Jaya (a 

Sanskrit word meaning victory) algorithm 

that does not have any internal tuning 

parameter. The initial solutions of the Jaya, 
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P candidates, are randomly generated. 

Then, the variables of the solution are 

stochastically updated. 

Suppose ‘j’ is the design variable, ‘k’ is 

the candidate solutions, and ‘i’ is the 

iteration number. The value of the jth 

variable for the kth candidate in the ith 

iteration is called Xj,k,i and calculated from 

Eq. (9). 

 
X'j,k,i

=  Xj,k,i +  r1,j,i  (𝑋j,best,i- |Xj
,k,i

|)  -  

r2,j,i (𝑋j,worst,i-  |𝑋j,k,i|) 

(9) 

 

where Xj,best,i and Xj,worst,i: are the values of 

“j” for the best and worst solution, 

respectively. Also r1,j,i and r2,j,i: are the two 

random numbers in the range of 0 to 1. The 

term “r1,j,i ((Xj,best,i-│Xj,k,i│)”: shows the 

tendency to the optimal solution and the 

term “-r2,j,i (Xj,worst,i-│Xj,k,i│)”: defines the 

avoidance to the worst solution. The 

updated value of Xj,k,i (X
'
j,k,i) is accepted only 

when the corresponding value of objective 

function is improved. All the acceptable 

values are maintained as the inputs of the 

next iteration. 

The Jaya algorithm updates the costs of 

the solutions so that the cost of their 

objective function converges to the optimal 

solution. After updating the solutions, with 

comparing the updated and corresponding 

old values, only one of them is selected for 

the next iteration, which will be the better 

value of objective function. 

It should be noted that, the optimal 

solution is found in every iteration, and the 

worst one will be removed, simultaneously. 

Thereby, this algorithm provides both 

useful intensification and diversification of 

the search process in an appropriate way.  

In this way, the algorithm always tries to 

get closer to the optimal solutions and to 

avoid diverging from the optimal solutions. 

The general procedure for the Jaya 

algorithm is presented in Figure 4 (Rao, 

2016). 

As can be seen, the Jaya algorithm need 

to the usual control variables (population 

size and number of generations), while, the 

other optimization algorithms such as PSO, 

GA, FA, FFA, etc. require the tuning of 

respective algorithm-specific parameters. 

The proper implementation of this 

procedure has positive effects on the 

performance of the algorithms, otherwise, 

either the calculations will increase or it will 

get stuck at the local optimal solution.  

 

 
Fig. 4. The Jaya algorithm Flowchart (Rao, 2016) 
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5. Developing Feed-Forward Neural 

Network 

 

5.1. Artificial Dataset 
In this study, 10000 different flexible 

pavement sections, consisting of asphalt 

concrete, granular base, and subgrade soil, 

were analyzed to create a comprehensive 

dataset for training and testing artificial 

neural networks. The deflection of the 

pavement section surface was calculated in 

seven different radial distances (0, 203, 305, 

457, 610, 915, and 1525 mm). The load was 

applied as a circular contact area with 

uniform vertical stress of 552 kPa and a 

contact radius of 152 mm. Table 1 shows 

the statistical characteristics of the analyzed 

pavement sections. The Poisson’s ratio of 

the subgrade soil, granular base, and asphalt 

concrete were assumed to be 0.40, 0.35, and 

0.35, respectively, which is commonly used 

in the literature (Maher and Bennert, 2008). 

Previous studies have also shown slight 

changes in the pavement response due to 

changes in the Poisson ratio (Huang, 2004). 

The NonPAS program has been applied, 

which provide the possibility of linear and 

nonlinear analysis of pavements subjected 

to 10 circular contact loads using 

multilayered elastic theory. The NonPAS 

verification process showed that the 

NonPAS results compared to other 

applications such as KENLAYER and 

JULEA are very consistent (Ghanizadeh 

and Ziaie, 2015). The Statistical 

characteristics of the deflections obtained 

for different radial distances are shown in 

Table 2.  

 

5.2. Optimal Architecture 
The training and testing procedure was 

conducted using a developed program in 

MATLAB which is developed by 

MathWorks. In each run of the program, the 

MATLAB toolbox assigns random values 

to the initial neural network weights and 

biases. Despite the consistency of the 

neurons and architecture of each layer, the 

random assignment of weights and biases 

strongly affects the ANN performance. To 

address this issue, another MATLAB-based 

program was developed to obtain the 

optimal number of neurons in the hidden 

layer of ANN. The number of neurons was 

considered to be between 5 and 100. With 

regards to the random values of weights, 

and the architecture with the least error was 

considered as the optimum architecture. In 

this study, the training, validating, and 

testing procedure were applied based on the 

65% (6500 data points), 10% (1000 data 

points) and 25% (2500 data points) of the 

data, respectively. Moreover, the transfer 

function of the hidden and output layers was 

assumed as the tangent sigmoid and the 

linear, respectively. 

The results showed that increasing the 

number of neurons up to 90 improves the 

performance of artificial neural networks. 

Therefore, the neural network with a hidden 

layer and with an architecture of 7-90-5 has 

sufficient accuracy for predicting the 

pavement surface deflections at different 

radial distances. The architecture of the 

selected neural network is shown in Figure 

5.  

 

5.3. Evaluation of ANN Performance 
The ANN performance for prediction of 

surface deflections at different radial 

distances for the training and testing sets is 

shown in Figures 6 and 7, respectively. As 

can be seen, the coefficient of determination 

in all cases is more than 0.9999, which 

indicates the high accuracy of the developed 

model in predicting the surface deflections 

of flexible pavements. 

 

Table 1. Statistical characteristics of the inputs used for dataset development 

(MPa)3 E (MPa)2 E (MPa)1 E (mm)2 H (mm)1 H Statistical parameter 

400 2000 10000 500 309 Maximum 

20 100 500 100 50 Minimum 

100 728 4319 181 300 Median 

148 847 4703 282.55 178.38 Mean 

112 560 2682 119 79.42 Standard deviation 
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Table 2. Statistical characteristics of the outputs used for dataset development 

7D 6D 5D 4D 3D 2D 1D Statistical parameter 

0.3793 0.6476 0.8883 1.0439 1.494 2.0286 3.0721 Maximum 

0.0169 0.0275 0.0334 0.0371 0.0414 0.0454 0.0567 Minimum 

0.0743 0.1182 0.1481 0.1667 0.1893 0.2137 0.2657 Median 

0.0993 0.1502 0.1931 0.2224 0.2601 0.2982 0.3673 Mean 

0.0859 0.1254 0.1588 0.1827 0.2153 0.2466 0.3081 Standard deviation 

Deflection in mm. 

 
Fig. 5. Optimal ANN architecture 
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(e) (f) 
  

 
(g) 

Fig. 6. ANN performance to predict the pavement surface deflections at different radial distances based on the 

training set 
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(e) (f) 

  

 
(g) 

Fig. 7. ANN performance to predict the pavement surface deflections at different radial distances based on the 

testing set 

 

6. Hybrid ANN-Jaya 

 

6.1. Backcalculation Procedure Using 

Hybrid ANN-Jaya  
In this paper, a procedure based on the 

hybridization of ANN (forward 

calculations) and Jaya (determining the 

modulus of layers) has been proposed for 

the moduli backcalculation of flexible 

pavements. The schematic diagram of this 

procedure is represented in Figure 8. The 

calculation of deflections is conducted 

using the ANN, and the Jaya applied to 

determine the optimum values of the neural 

network inputs so that the deflections 

calculated through the ANN are as close as 

possible to the FWD measured deflections. 

In other words, the difference between both 

measured and calculated deflection values 

should be minimized. Therefore, the 

objective function can be expressed 

according to Eq. (10). 

 

𝑓 = ∑|𝐷𝑖
𝑚 − 𝐷𝑖

𝑐|

𝑛

𝑖=1

 (10) 

 

where 𝐷𝑖
𝑚 and 𝐷𝑖

𝑐: are the deflections 

measured by the FWD and calculated by 

ANN for ith geophone, respectively, and n is 

the number of geophones (n = 7). 

 

6.2. Implementation of Hybrid ANN-

Jaya 

To implement the hybrid ANN-Jaya, the 

JayaBack (a MATLAB-based program) 

which provides the possibility of fast and 

reliable backcalculation of the pavement 

layers moduli was developed. This program 

gets the inputs including the asphalt 

thickness and granular base layers (cm), the 

granular base and subgrade soil moduli 

(MPa), upper and lower range of the 

asphalt, deflection values at seven radial 

distances (mm), contact pressure of FWD 

device (MPa), the maximum number of 

iterations and the number of moduli 

generated per iteration and then determine 

the asphalt, granular base and subgrade soil 

moduli (MPa) using the algorithm 

represented in Figure 8. The graphical user 

interface (GUI) of JayaBack is shown in 

Figure 9. 
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Fig. 8. Implementation of a hybrid ANN-Jaya approach for pavement layer backcalculation 

 

 
Fig. 9. The JayaBack program GUI 

 

6.3. Validation of the ANN-Jaya Method 

 

6.3.1. JayaBack Validation Using Field 

Data 

To access the performance of the hybrid 

ANN-Jaya method, the deflection values 

measured by FWD measured for six 

different pavement sections were used 

(Table 3). These values have been adapted 

from the SHRP-P-651 report (SHRP, 1991). 

 
Table 3. Surface deflection values measured by the FWD (SHRP, 1991) 

Section 
Layer thickness (mm) Radial distances (mm) 

AC Base 0 203 305 457 610 915 1525 

1 106.5 127 0.2936 0.2290 0.1845 0.1361 0.1012 0.0615 0.0342 

2 106.5 127 0.2839 0.2193 0.1779 0.0133 0.1005 0.0609 0.0316 

3 106.5 127 0.2664 0.2079 0.1697 0.1284 0.0975 0.0597 0.0315 

4 106.5 127 0.2573 0.2003 0.1645 0.1256 0.0960 0.0592 0.0318 

5 76.2 152 0.4588 0.3236 0.2482 0.1757 0.1326 0.0858 0.0498 

6 152.4 304.8 0.4198 0.3417 0.3026 0.2580 0.2218 0.1701 0.1078 
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To validate and evaluate the accuracy of 

the proposed procedure, the FWD measured 

deflections, the contact pressure and the 

thickness of Asphalt Concrete (AC) and 

granular base were given to the 

MODCOMP, ISSEM4, MODULUS, 

BACKFA, WESDEF, and JayaBack 

programs and the moduli for asphalt, 

granular base, and subgrade soil was  

backcalculated. 

ISSEM4 program which has been 

developed by Dynatest Company, is based 

on the layered elastic theory (ELSYM 5) 

and employs an iterative procedure to match 

the measured deflections with the 

theoretical deflections calculated at the 

pavement surface (Bush and Baladi, 1989). 

MODCOMP was developed for the U.S. 

Army Cold Regions Research and 

Engineering Laboratory by Irwin and 

Szebenyi (1983). It uses the layered elastic 

theory for the forward computation of 

surface deflections and an iterative process 

for backcalculation of moduli. The program 

first calculates the modulus of the deeper 

layers, and then calculates the modulus of 

the upper layers. It can estimate the moduli 

for a pavement system having 2 to 15 layers 

and assumes that the lowest layer is as 

infinite half-space. It can also handle 6 

different loads, each with 10 deflections. 

MODCOMP considers material behavior as 

linear elastic or nonlinear elastic for to 

estimate layers modulus (Irwin, 1983; 

William, 1999). 

MODULUS program which has been 

developed at the Texas Transportation 

Institute, uses WESLEA’s forward analysis 

program to create the deflection database, 

and employed the Pattern Search Algorithm 

for inverse calculation (Alexander et al., 

1989; Richardson and Lusher, 2015; Van et 

al., 1989). The WESDEF uses the 

WESLEA program as forward analysis tool 

and to backcaulate the layers moduli that 

results in the best fit between a computed 

and a measured deflection basin (Hassan, 

2003). The BAKFAA, was developed by 

Federal Aviation Administration (FAA) and 

uses the LEAF, a layered elastic theory 

program, for forward analysis (Brill and 

Hughes, 2007; Gopalakrishnan, 2012). 

The value of the moduli calculated by the 

JayaBack program and other programs are 

represented in Figure 10. Table 4 shows the 

percentage of the difference between the 

predicted modulus of the JayaBack and 

other programs. 

As can be seen in Table 4, maximum 

difference between the predicted modulus 

of the JayaBack and the other programs for 

the asphalt layer, base, and subgrade was 

found to be 22.5, 33.7, and 19.9 percent, 

respectively. To evaluate the accuracy of 

the JayaBack, the backcalculated moduli by 

the ISSEM4, MODCOMP, MODULUS, 

WESDEF, BACKFA, and JayaBack 

program were given to the KENLAYER 

program, and the surface deflections in case 

of each pavement section was computed. 

Then, the deflection basin resulted from the 

KENLAYER program based on the 

backcalculated moduli of each program was 

compared to the deflection basin measured 

by the FWD device.  

The values of R2 and RMSE obtained 

from the comparison of the deflection basin 

measured by the FWD device and 

calculated by the KENLAYER program 

based on the backcalculted moduli using 

different software are given in Table 5. 

according to this table, the JayaBack 

deflection results, in comparison with the 

other programs, have more compatibility 

with the FWD results. Therefore, it can be 

concluded that the backcalculted modules 

obtained from the JayaBack are reliable. 

Figure 11 shows the deflection basins 

calculated based on the moduli 

backcalculated using the JayaBack and ones 

measured by the FWD device for six 

different sections. 

 

6.3.2. Hybrid ANN-Jaya Method in 

Comparison with other Optimization 

Methods 

To investigate the ability of the Jaya with 

the GA and PSO, the hybrid ANN-GA and 

ANN-PSO were developed, and their 

results were compared with ANN-Jaya. The 
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speed and accuracy of these three methods 

were investigated for the different 

pavement sections mentioned in the 

previous article. 
 

 
(a) 

 

 
(b) 

 

 
(c) 

Fig. 10. Backcalculated moduli by JayaBack and other programs 

 

Table 4. Difference between the moduli backcalculated by the JayaBack and other programs 
BACKFAA WESDEF MODULUS MODCOMP ISSEM4  

2.7 5.2 16.2 7.7 7.7 E1 

Section 1 0.7 9.3 31.1 6.1 12.7 E2 

3.4 6.1 7.3 3.4 12.4 E3 

3.4 8.2 2.4 5.2 2.9 E1 
Section 2 

16.6 3.4 3.5 28.6 17.1 E2 

1.7 13.5 5.1 0.4 2.8 E3  

22.1 22.5 1.3 4.6 5.3 E1 
Section 3 

21.7 33.7 5.3 11.6 13.5 E2 

4.0 15.6 4.4 1.4 5.5 E3  

18.9 21.4 11.5 15.8 1.8 E1 

Section 4 13.8 29.8 16.4 20.8 24.5 E2 

3.3 12.0 3.3 19.9 12.0 E3 

4.3 10.1 3.1 4.6 3.1 E1 

Section 5 5.1 15.7 7.6 2.5 6.0 E2 

8.9 17.3 3.9 3.4 0.4 E3 

4.4 10.4 3.3 3.5 3.3 E1 

Section 6 5.0 13.5 2.2 5.5 4.5 E2 

13.4 6.5 6.2 7.5 2.3 E3 
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Table 5. Evaluation of deflection basin, measured by the FWD, and calculated by the KENLAYER 
JayaBack BACKFAA WESDEF MODULUS MODCOMP ISSEM4  

0.99986 0.99985 0.99977 0.99942 0.99983 0.99928 R2 
Section 1 

0.00103 0.00488 0.00689 0.00526 0.00499 0.01093 RMSE 

0.99946 0.99916 0.99929 0.99608 0.99572 0.99681 R2 
Section 2 

0.00208 0.00536 0.02281 0.04308 0.00776 0.00709 RMSE 

0.99958 0.99956 0.99623 0.99536 0.99932 0.99862 R2 
Section 3 

0.00176 0.00440 0.01442 0.04159 0.00202 0.00532 RMSE 

0.99967 0.99961 0.99985 0.99357 0.99976 0.99954 R2 
Section 4 

0.00173 0.00407 0.01027 0.04342 0.02045 0.00945 RMSE 

1.00000 0.99998 0.99935 1.00000 0.99992 1.00000 R2 
Section 5 

0.00175 0.00628 0.01224 0.00670 0.00552 0.00695 RMSE 

0.99997 0.99999 0.99964 0.99999 0.99996 0.99999 R2 
Section 6 

0.00089 0.00694 0.01311 0.00843 0.00746 0.00862 RMSE 

 

  

(a) (b) 
  

  
(c) (d) 

  

  
(e) (f) 

Fig. 11. Deflection basins calculated based on the JayaBack backcalculated moduli and ones measured by the 

FWD device; a) Section 1; b) Section 2; c) Section 3; d) Section 4; e) Section 5; and f) Section 6
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Before the backcalculation, the tuning 

parameters of the optimization algorithms 

should be determined. The Jaya algorithm 

needs no tuning parameter. The PSO 

algorithm has two tuning parameters of c1 

and c2, which vary between 1 and 2. The 

Genetic Algorithm consists of two 

parameters, including the intersection 

probability and the probability of mutation, 

and the range of variations of these two 

parameters was considered to be [0.7-1] and 

[0.1-0.4], respectively (Yang, 2010). The 

optimal values were determined while the 

objective function was evaluated based on 

50 particles and 1000 iterations. The 

optimal value of the c1 and c2 in the PSO 

algorithm was equal to 2. Moreover, the 

best value for crossover and mutation 

probability parameters were found to be 0.9 

and 0.4, respectively.  

The optimal values of the objective 

function can be seen for ANN-Jaya, ANN-

PSO, and ANN-GA methods for six 

different pavement sections in Table 6. It is 

clear from this table that the optimal value 

of the objective function for the ANN-Jaya 

and ANN-PSO is approximately equal, 

although the ANN-Jaya has achieved a 

more accurate value. It can be also seen that 

the ANN-GA method has been trapped into 

the local optima, and in most cases, it is not 

able to find global optima. Figure 12 shows 

the convergence diagram of each method 

for six pavement sections. According to the 

figure, the convergence rate of the Jaya 

algorithm to the global optima is faster than 

the PSO and notably greater than the GA 

algorithm. 
 

  
(a) (b) 

  
(c) (d) 

  
(e) (f) 

Fig. 12. The convergence diagram of ANN-GA, ANN-PSO and ANN-Jaya for different pavement sections; a) 

Section 1; b) Section 2; c) Section 3; d) Section 4; e) Section 5; and f) Section 6 
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Table 6. Optimal values of the objective function derived from backcalculation using different methods 
ANN-Jaya ANN-PSO ANN-GA Section 

0.005586 0.005788 0.044151 1 

0.009701 0.009703 0.024705 2 

0.008909 0.008931 0.045097 3 

0.008546 0.008672 0.024637 4 

0.002068 0.002098 0.006453 5 

0.001486 0.001571 0.002886 6 

 

6.4. Experimental Results  

The proposed method was implemented 

in the MTLAB program. All computations 

were solved on an Intel Core i5-3210 M 

CPU 2.5 GHz with 4 GB of RAM. The 

developed program gets the input 

parameters including the asphalt and 

granular base layers thicknesses (cm), the 

granular base and subgrade soil moduli 

(MPa), asphalt content, the contact pressure 

of FWD device (MPa), the deflection values 

at seven radial distances (mm), the number 

of moduli generated per iteration and the 

maximum number of iterations. The 

software determines the asphalt, granular 

base and subgrade soil moduli (MPa) as the 

output.  

In order to compare the robustness, 

stability, reliability and convergence of 

different optimization algorithms including 

the Jaya, PSO, and GA, each field data was 

run as much as 10 times by means of each 

optimization algorithms. To evaluate the 

robustness, stability, reliability and 

convergence of the developed model, each 

field data was run as much as 10 times. At 

each implementation, five hundred 

iterations are run and, fifty modulus is 

considered at each iteration, and the 

objective function is RMSE value of 

predicted values of deflections with desired 

deflections. The thickness of asphalt 

concrete and granular base layers for each 

pavement section along with the measured 

deflections are given in Table 3. The lower 

and upper band of the resilient modulus 

were also considered for asphalt concrete 

layer, granular base layer, and subgrade soil 

layer as 500 to 10,000 MPa, 100 to 2000 

MPa and 20 to 400 MPa, respectively. 

Tables 7-9 indicate the statistical 

parameters of the optimal objective 

function value, the last optimization 

iteration, and the run time for the Jaya, PSO, 

and GA algorithms, respectively. In this 

study, the maximum number of iterations as 

well as the minimum RMSE have been used 

as the stopping criteria. As can be seen, the 

Jaya algorithm indicates the high robustness 

and superior convergence in comparison 

with the GA and PSO algorithms. 

 
Table 7. The statistical parameters to evaluate of the Jaya algorithm 

Section 

6 

Section 

5 

Section 

4 

Section 

3 

Section 

2 

Section 

1 
  

0.000980 0.000652 0.001714 0.001731 0.001886 0.001237 Min 

Optimal objective 

function value (mm) 

0.001990 0.001872 0.001990 0.001978 0.001980 0.001989 Max 

0.001637 0.001519 0.001852 0.001879 0.001940 0.001653 Average 

0.000230 0.000337 0.000089 0.000079 0.000029 0.000248 
Sta. 

Dev 

0.85 0.67 0.70 0.72 0.87 0.61 Min 

Total time (sec) 

1.03 0.96 0.84 1.10 1.21 0.97 Max 

0.91 0.80 0.78 0.85 1.01 0.79 Average 

0.06 0.09 0.05 0.09 0.10 0.10 
Sta. 

Dev 

23 2 7 9 28 3 Min 

The latest iterations of 

optimality  

38 31 23 38 56 33 Max 

28.1 19 18.4 19.8 37.1 17.4 Average 

4.91 6.65 2.87 7.21 8.37 8.80 
Sta. 

Dev 
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Table 8. The statistical parameters to evaluate of the PSO algorithm 
Section 6 Section 5 Section 4 Section 3 Section 2 Section 1   

0.001152 0.001125 0.001796 0.001782 0.001900 0.001461 Min Optimal 

objective 

function 

value (mm) 

0.001991 0.001925 0.001996 0.001987 0.001994 0.001996 Max 

0.001648 0.001570 0.001916 0.001904 0.001953 0.001702 Average 

0.000338 0.000279 0.000054 0.000062 0.000029 0.000165 Sta. Dev 

5.17 0.17 1.02 1.54 5.36 0.66 Min 

Total time 

(sec) 

10.18 11.11 7.19 9.04 9.56 7.05 Max 

7.79 4.59 3.11 5.39 6.91 3.22 Average 

1.61 3.34 1.60 2.09 1.29 1.72 Sta. Dev 

28 8 14 13 34 5 Min 
The latest 

iterations of 

optimality 

54 67 45 48 52 41 Max 

41.5 28.4 19.8 29 41.5 19.7 Average 

8.33 20.02 9.85 10.86 5.48 10.20 Sta. Dev 
 

Table 9. The statistical parameters to evaluate of the GA algorithm 
Section 6 Section 5 Section 4 Section 3 Section 2 Section 1   

0.001634 0.001765 0.002320 0.002248 0.002363 0.003789 Min Optimal 

objective 

function 

value (mm) 

0.001874 0.021849 0.008998 0.013726 0.010474 0.015410 Max 

0.001715 0.010778 0.004917 0.005759 0.005942 0.008279 Average 

0.000087 0.007063 0.001803 0.003260 0.002791 0.003149 Sta. Dev 

0.46 284.44 369.57 368.21 367.24 370.77 Min 

Total time 

(sec) 

4.98 417.61 420.18 399.72 374.35 416.56 Max 

2.13 396.06 410.13 375.94 369.40 383.99 Average 

1.24 39.98 15.46 10.97 2.67 15.13 Sta. Dev 

2 500 500 500 500 500 Min 
The latest 

iterations of 

optimality 

17 500 500 500 500 500 Max 

8.2 500 500 500 500 500 Average 

4.24 0 0 0 0 0 Sta. Dev 
 

7. Conclusions 

 

The goal of this study was development of 

a moduli backcalculation method for the 

flexible pavements using the hybridization 

of the ANN and Jaya. The ANN was 

employed as the forward model to predict 

the pavement deflection basin, and the Jaya 

was applied to find the modulus of the 

layers based on the minimizing the 

difference between measured and 

calculated deflections. The results of this 

research can be concluded as follows: 

- The developed ANN can predict the 

pavement deflections with high accuracy 

such that the coefficient of determination 

(R2) in all cases is more than 0.9999. 

- Comparison of results obtained by the 

hybrid ANN-Jaya method with other 

programs such as ISSEM4, MODCOMP, 

WESDEF, MODULUS and BACKFAA 

showed that the hybrid ANN-Jaya 

method can predict the pavement layers 

moduli with high accuracy. 

- The deflection basins computed by the 

KENLAYER program based on the 

backcalculated moduli resulted from 

different programs as well as ANN-Jaya 

procedure were compared to the 

deflection basin measured by the FWD 

device and results confirm that the ANN-

Jaya procedure can be used as a reliable 

method for backcalculation of flexible 

pavements. 

- Comparison of ANN-Jaya results with 

ANN-GA and ANN-PSO showed that the 

ANN-Jaya has a higher capability to find 

the optimum solutions in terms of 

convergence speed and finding global 

optima. It was also observed that, the 

ANN-GA was not able to find the global 

optima in most cases.  

- The developed method was implemented 

in a computer program called JayaBack 

to facilitate the use of this method for 

moduli backcalculation of flexible 

pavements and further researches. 

- The method (ANN-Jaya) and software 

(JayaBack) developed in this research 

can be used more accurately than the 

previous methods to predict the resilient 

modulus based on the FWD test results. 
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