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Abstract 

The paper considers the modeling of a layer of mixing of two flows with 

different velocities in a flat channel. The calculations are based on the 

numerical solution of the system of non-stationary equations of the two-fluid 

turbulence model. The results of longitudinal velocity and turbulent stress 

profiles in different sections of the channel are obtained. For the numerical 

implementation of the equations of turbulent hydrodynamics, the control 

volume method was used, and the relationship between velocities and 

pressure was found using the SIMPLE procedure. In this case, the 

convective terms in the equations were approximated by the difference 

against the flow in an explicit form with a second-order accuracy, and the 

diffusion terms by the central difference in an implicit form. To confirm the 

correctness of the obtained numerical results, a comparison was made with 

experimental data from the NASA database. 

Keywords: Navier–Stokes equations, two-fluid model, control volume method, turbulent stresses, SIMPLE 

method. 
1.  Introduction 

Mixing layers are formed between parallel streams at different velocities. They are often found both in nature 

and in various technical devices. In nature, one can observe the mixing of two oceanic streams, while in technology, 

mixing occurs in jet streams. This phenomenon is also relevant in medicine. For example, studies [1-3] investigate 

the distribution of drugs when injected into the abdominal cavity for the treatment of cancer. 

Mixing layers also form between air and nanomaterials in many microelectromechanical systems. In recent 

years, piezoelectric nanostructures such as ZnO nanowires, GaN nanorods, BaTiO thin films, and PZT nanofibers 

have received much attention due to their excellent mechanical and electronic properties. In Ref. [4], potential 

applications of systems of piezoelectric nanostructures (PNF) and double piezoelectric nanostructures (DPNF) as 

nanoelectromechanical mass sensors are considered. In Ref. [5], a nonlocal continuum model of a plate was 

developed for transverse vibration of a system of double piezoelectric nanoplates (DPNPS) with an initial stress 

under the action of an external electric voltage. The Pasternak foundation model is used to account for the shear 

effect between two piezoelectric nanoplates in combination with the normal behavior of the binding elastic medium. 

In Ref. [6], a nonlinear continuum model of large-amplitude oscillations of nanoelectromechanical resonators was 

developed using piezoelectric nanostructures (PNF) under the action of an external electric voltage. 

Recently, graphene sheets have shown significant potential for environmental engineering applications such as 

wastewater treatment. In Ref. [7], the reaction to warpage of an orthotropic single-layer graphene sheet (SLGS) is 

studied in an analytical form in a closed form using the non-local Ehringen theory. It is well known that rotating 
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nanobeams can have different dynamic and stable responses to different types of loads. In the study [8], attention is 

focused on studying the influence of the magnetic field, surface energy, and compressive axial load on the dynamic 

and stable behavior of nanobeams. Using the nonlocal theory of elasticity, the influence of a small scale on the axial 

vibrations of a conical nanorod is studied. The theory of nonlocal elasticity is used to analyze the mechanical 

behavior of nanosized materials [4-37]. 

The article [30] presents a study of the buckling characteristics of nanosized rectangular plates under biaxial 

compression, taking into account thickness non-uniformity. Constitutive differential equations are derived on the 

basis of nonlocal continuum mechanics. Numerical solutions for buckling loads are obtained using the Galerkin 

method. In Refs. [10, 15], a non-local continuum model of nonlinear free oscillations of size-dependent 

magnetoelectroelastic nanoplates under the action of external electric and magnetic potentials was developed. The 

article [20] presents a new explicit formula for the length-dependent persistent length of microtubules, taking into 

account surface effects. In addition, surface effects on the bending characteristics of microtubule systems in the 

viscoelastic surrounding cytoplasm are investigated using a modified Timoshenko bundle model. 

Piezoelectric nanomaterials such as zinc oxide (ZnO) are low toxic and have many biomedical applications 

including optical imaging, drug delivery, biosensors, and biomechanical energy harvesting using hybrid 

nanogenerators. In Ref. [14], vibration, warping, and intelligent control of microtubules (MT) embedded in an elastic 

medium in a thermal medium using a piezoelectric nanoshell (PNS) are studied. The buckling response of an 

orthotropic single layer graphene sheet (SLGS) is investigated using the theory of non-local elasticity. Linearly 

changing normal stresses act on two opposite edges of the plate. Small scale effects are taken into account. To 

derive the basic equations, the nonlocal Ehringen theory and the equilibrium equations of a rectangular plate are 

used [31]. 

In Ref. [16], a new size-dependent plate model was developed based on a higher-order non-local strain gradient 

theory. The influence of higher-order deformations in combination with non-local effects of higher and lower orders 

is taken into account. The presence of three different types of scale parameters in the formulation leads to a theory 

that is able to take into account both a decrease and an increase in the rigidity of structures at the nanolevel. The 

basic differential equations for the loss of stability of nanoplates resting on a two-parameter elastic foundation are 

derived using the principle of virtual work. In Refs. [17, 22], a model of a plate with a nonlocal higher-order strain 

gradient was developed for vibration of piezoelectric nanofilms (PNF) as nanoelectromechanical mass sensors. PNF, 

carrying many nanoparticles in any places, is subjected to thermoelectromechanical loads. 

In Ref. [23], the behavior of free vibrations of a rectangular graphene sheet under a shearing plane load is 

studied. The theory of non-local elasticity has been implemented to study the vibration analysis of orthotropic single 

layer graphene sheets (SLGS) subjected to in-plane shear loading. Using the principle of virtual work, the basic 

equations for rectangular nanoplates are derived. In Ref. [24], the nonlocal theory of elasticity was implemented to 

study the shear buckling of orthotropic single-layer graphene sheets (SLGS) in a thermal medium. 

In Ref. [28], the behavior of free vibrations of a round and annular graphene sheet is studied. Using the non-local 

theory of elasticity, the basic equations for single-layer graphene sheets (SLGS) are derived, and the non-local 

parameter is included in the arguments of the Bessel functions. 

In Ref. [29], the behavior of free vibration of a round graphene sheet under a preload in the plane is studied. 

Using the theory of non-local elasticity and the theory of Kirchhoff plates, the basic equation is derived for single-

layer graphene sheets (SLGS). 

Based on the nonlocal theory of elasticity of the strain gradient, the nonlinear free and forced oscillatory 

behavior of a porous functionally graded Euler-Bernoulli nanobeam [12] subjected to mechanical and electrical loads 

was studied. It is assumed that the porous functionally graded (FG) nanobeam rests on a nonlinear foundation. In 

addition, it is assumed that the material properties of the nanobeam change in the thickness direction. 

In Ref. [25], the effect of temperature change on the oscillation frequency of a single-layer graphene sheet 

immersed in an elastic medium is studied. Using the non-local theory of elasticity, the basic equations for single-

layer graphene sheets are derived. Using the Levy and Navier solutions, analytical frequency equations for single-

layer graphene sheets are obtained. 

The study [11] investigates the nonlinear vibrational analysis of new generation nanostructures. The composite 

nanoplate is made from a functional grade (FG) core and two lipid layers on top and bottom of the FG core as face 

sheets. A nonlinear analysis of vibration in the presence of an external harmonic excitation force is investigated. The 

effect of porosity on the analysis of free and force vibrations of a composite nanoplate has been studied. 

In Refs. [18, 35], the vibrational behavior of a rotating viscoelastic nanobeam embedded in a visco-Pasternak 

foundation was studied. The main equation is obtained using the theory of surface elasticity and non-local theory of 

elasticity. The influence of humidity on the oscillation frequencies of a viscoelastic nanobeam in a thermal medium 

has been studied. 

Back in the 19th century, the classics proved that tangential discontinuities are unstable, which lead to 
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turbulence. Therefore, this problem, despite its simplicity, is a rather difficult test problem for many turbulence 

models. It is known that at present there are many different semi-empirical models of turbulence. Despite their large 

number, there is still no universal turbulence model. Therefore, depending on the problem, one or another turbulence 

model is selected for numerical research. The NASA turbulence database [38, 39] provides a comparative analysis of 

various semi-empirical models. From this analysis, it can be concluded that the Spalart-Allmaras SA [40] and 

Menter SST [41] models have the highest rating. These models are highly rated because they are practical and 

capable of describing a wide range of turbulence problems with sufficiently high accuracy [42, 43]. 

Recently, the work of one of the authors of this article has been published, where a new turbulence model is 

proposed [44, 45]. The peculiarity of this model is that it is based on a new approach to the problem of turbulence. In 

this work, it is shown that a turbulent flow can be represented as a heterogeneous mixture of two fluids with 

different velocities. Therefore, the new model is named as the two-fluid turbulence model. The idea of representing 

a turbulent flow as a mixture of two fluids belongs to Spalding [46]. However, in Spalding's two-fluid model, 

additional equations were used to search for turbulent parameters, which were obtained on the basis of various 

hypotheses. As a result, the number of equations to be solved doubled compared to conventional RANS models. 

This circumstance led to the fact that soon this model lost its attractiveness and was not widely used. As regards the 

mentioned new two-fluid model, it is a closed system of equations and the theory of kinetics and the Prandtl 

hypothesis are used to determine the main parameters of turbulence. Therefore, additional empirical equations are 

not involved. In Refs. [44, 45], a new model was used to study the flow around a plate, a free turbulent jet, and a 

rotating flow. It is shown that the new two-fluid turbulence model has high accuracy, is simple for solving 

engineering problems, and is able to adequately describe anisotropic turbulence. The paper also compares the results 

of other well-known Spalart models – Allmaras SA [40], Menter SST [41], and Reynolds stresses SSG LRR-RSM 

[47]. Thus, the paper compares four models that belong to different classes. Menter's SST model is based on 

Kolmogorov's theory of the cascade transition of mechanical energy into turbulent energy. The Spalart-Allmaras SA 

model belongs to one-parameter models, where the transport equation for the modified turbulent viscosity is written. 

As for the Reynolds stress model SSG LRR-RSM, it does not use the Boussinesq hypothesis and writes its own 

equation for each turbulent stress tensor. 

2.  Setting the task 

A new two-fluid model for turbulent mixing of two flows in a flat channel is being validated. In addition, a study 

of the influence of numerical schemes on the solution of the problem is carried out. Thus, along with studying the 

structure of the flow after mixing two flows, the goal is also to test the effectiveness of finite difference schemes for 

calculating complex flows. For this purpose, explicit and semi-implicit numerical schemes against the flow were 

used [48]. The obtained numerical results are compared with the experimental data from the NASA database [38]. 

The experiment uses a 3 mm thick separation plate in a 300 mm wide tunnel (Fig. 1). The end of the plate is 

located at the point x = 0, and two fluid flows with different speeds merge below this point. The plate is modeled 

with a taper starting at x = -50 mm and ending with a trailing edge thickness of 0.3 mm at x = 0. The channel length 

is x = 1800 mm. The speed of the upper flow is 1 41.54U =  m/s and the lower flow is 
2 22.4U =  m/s. The 

Reynolds number calculated from L=1 mm and the upper flow velocity was equal to 2900. In the experiment, the 

upper high-speed flow has a boundary layer thickness at x=-10 mm (near the trailing edge of the plate) of about 9.6 

mm and a pulse thickness of about 1 mm. The lower flow with a lower velocity has a boundary layer thickness of 

about 6.3 mm and a pulse thickness of about 0.73 mm [49]. 

 
Figure 1: Flow pattern 
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3. Two-fluid turbulence model 

The system of differential equations of the two-fluid turbulence model has the form [44]:  
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In the system of equations (1) iiV ,  is, respectively, the averaged and relative velocities of the turbulent flow, 

p  is the averaged hydrostatic pressure,   is the molecular kinematic viscosity, ji  is the effective molar viscosity, 

siF  is the transverse Saffmen force due to the shear velocity field, f iF  is the friction force,   density, 0.2sC =  

empirical coefficient. The forces of interaction between two fluids arise as a result of the relative motion of fluids 

and are determined by the expressions: 

rot , ,s s i fF C V F K =  = −                                       (2) 

where fK  is the coefficient of friction, which is determined by the expression: 
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Here d  is the nearest distance to a solid wall, max  is the largest root of the characteristic equation: 
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and rotV = . 

In (3), the first term is the coefficient of friction due to the vortex motion of the flow, and the second takes into 

account the influence of the wall. 

As can be seen from system (1), the first two equations are analogous to the system of Navier-Stokes equations 

averaged over Reynols. However, in the Reynolds equations, turbulent stresses are unknown. Consequently, the 

Reynolds equations are not closed, and for closing it is necessary to involve various hypotheses. As for the two-fluid 

approach, it gives a closed system of equations. Because for each unknown speed, an equation of motion is derived. 

The main difference between the two approaches is that they are based on different concepts. Reynolds' approach is 

based on the following hypotheses: 1) the turbulent flow velocity consists of the average and fluctuating velocities; 

2) turbulent flow is described by the Navier-Stokes equation. It can be seen from these conditions that they are 

insufficient from the point of view of mathematics to describe turbulence. Because, based on the first hypothesis, 

two unknown speeds are introduced, and only one equation is used. Reynolds' first hypothesis can now be 

considered experimentally confirmed. As for the second, it has not yet been proven. 

For the two-fluid approach, the main conditions are the first hypothesis of Reynolds and the fact that molar 

transfers of momentum and substances occur in a turbulent flow. In Ref. [44], based on the first Reynolds 
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hypothesis, the possibility of representing a turbulent flow as a heterogeneous mixture of two fluids was shown. 

These fluids do not fluctuate and fluctuations in velocity are due to the chaotic distribution of the volumes of these 

fluids. Those. the fluctuating parameter is the volume fraction of fluids in a given elementary volume and the time-

averaged values of which are equal to 0.5. Therefore, writing the equations of motion for the first and second fluids, 

taking into account the interaction forces, after averaging over time, we obtain a system of turbulence equations in 

the two-fluid approach. 

The system of equations of the two-fluid turbulence model (1) in Cartesian coordinates for the two-dimensional 

case can be written as:  
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In the above equations, VU ,  are, respectively, the longitudinal and transverse components of the averaged flow 

velocity vector, ,u  are similar relative velocities, xyyyxx  ,,  are effective molar viscosities, d is the nearest 

distance to a solid wall. 

To determine the coefficient of friction, we make the characteristic equation (6): 
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From equation (8) we find the largest real root: 

max

max

2

if 0

0 if 0

(1 )s s

D D

D

U V U V U V
D C C

y x x y y x





= 

= 

      
= − + − − 
      

   (9) 

4. Calculated grids 

It is known that large velocity gradients occur in the mixing layers and near solid walls. In the problem under 

consideration, the processes occurring in the mixing layer of two streams are of great importance [50]. Therefore, in 

this study, a condensed computational grid was used, which is shown in Fig. 2. For the numerical implementation of 

the task, the computational domain is divided into three sections (Fig. 2). 

As can be seen from Fig. 2, the grid was condensed in the central part of sections A, B, C and also in the section 

x = 0. To do this, the transformation of coordinate systems is used ( , ) ( , )x y  → .  
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Figure. 2. Condensed grid 

 

In the central section A, B, C, the following Y-coordinate transformation was used 
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τ- a stretching parameter that varies from zero to large values. 

In sections A and B, at x=0, the X coordinate transformation is used. 
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This transformation at 0 =  allows you to grind the calculated grid in the section 0x = . The   

parameter is about 1 and regulates the degree of grinding. The work uses the value 1.054. =  

In section C, the X-coordinate transformation is used in the section 0x = . 
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The value is also used here 1.054. =  The number of grids of calculation nodes on site A is 100×80, on site 

B is 50×80 and on site C is 200×164. 

The system of equations (6) after the transformation of coordinates in dimensionless parameters has the form: 
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Here  
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The system of equations (6, 14) can be represented in matrix form: 
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The system of equations (14) was reduced to a dimensionless form by correlating all velocities to the average 

velocity at the inlet of the upper stream, and spatial dimensions to the height of the channel. The Reynolds number 

was Re 415400H = . At the entrance to the computational domain, an experimental velocity profile was set, as well 

as initial dimensionless perturbations of relative velocities 0.02, 0.u = =  Adhesion conditions were set on the 

walls. At the output x=1200 mm, extrapolation conditions of the second order of accuracy were set [10]. 

5. Numerical schemes 

5.1. Explicit Upwind Scheme-(EUS) 

In computational physics, anti-flow schemes denote a class of numerical discretization method for solving 

hyperbolic partial differential equations. Anti-flow schemes use an adaptive or solution-sensitive finite difference 

pattern to numerically simulate the direction of information propagation in the flow field. In the schemes against the 

flow, an attempt is made to discredit partial differential equations of hyperbolic type using a difference shifted in the 

direction determined by the sign of the characteristic velocities against the flow. This method is especially 

convenient for solving nonlinear partial differential equations, such as the Euler and Navier-Stokes equations. An 

explicit scheme against the flow can be represented as: 
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This scheme has first-order accuracy in time and space. Therefore, the approximation error is equal to 

( ) ( ) ( )( ), ,O t x y   . The stability condition is max max 1
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Integration was carried out in time steps Δt<0.0005. 
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5.2. Semi-Implicit Upwind Scheme-(SIUS) 

The paper uses a semi-implicit scheme against the flow, which is a two-step scheme and is similar to the 

Peaceman-Rachford scheme. In this scheme, all convective terms in the hydrodynamic equations were approximated 

against the flow as in the explicit scheme, and diffusion terms in a semi-implicit form as in the Peaceman-Rachford 

scheme [51]: 
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The scheme used has an approximation error of ( ) ( ) ( )( ), ,O t x y    To determine the unknown 
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6. Solution method 

The finite volume method is used for the numerical solution of the system of initial nonstationary equations (14). 

For the numerical realization of the equations, a staggered calculation scheme is used, where the velocity and 

pressure components are determined at various nodes. The SIMPLE method was used to correct averaged velocities 

through pressures [52]. 

7. Results of numerical experiments and their discussion 

Figure 3 shows graphs in different channel sections for dimensionless longitudinal velocity based on the results 

of a two-fluid turbulence model using various numerical schemes. Experimental data are also provided for 

comparison. The figures show the profiles of the axial U-component of the velocity in different sections of the 

channel. Here U1=22.40 m/s, ∆U=19.14 m/s and δw=13.771 mm at x=200 mm, δw=35.894 mm at x=650 mm, 

δw=50.547 mm at x=950mm. 
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c) d) 

Figure. 3. Profiles of dimensionless axial velocity at different channel sections 

Figure 4 shows the profiles of turbulent stress in various cross sections. 

 

 

а) b) 
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c) 

Figure. 4. Profiles of turbulent stress at different cross-sections of channels 

 

Table 1 shows the results of the axial speed for various sections of the channels 

x = 50 mm x = 200 mm x = 650 mm 

y/δw Exp  EUS SIUS y/δw Exp  EUS SIUS y/δw exp EUS SIUS 

-1.24 -0.00418 -0.0041 -0.00349 -1.08 -0.00327 0 0 -1.23898 0.000152 0.000152 0.000149 

-1.12 -0.00477 -0.0039 -0.00332 -0.94 -0.00679 0 0 -1.20137 0.000188 0.000188 0.000184 

-1.01 -0.00446 -0.0044 -0.00374 -0.87 -0.01102 0 0 -1.15122 0.000596 0.000596 0.000584 

-0.9 -0.0064 -0.0053 -0.00451 -0.79 -0.01396 0 0 -1.13869 0.000507 0.000507 0.000497 

-0.79 -0.00896 -0.01 -0.0085 -0.65 -0.01919 -0.01 -0.009 -1.12615 0.000564 0.000564 0.000553 

-0.67 -0.01364 -0.02 -0.017 -0.58 -0.01918 -0.022 -0.0198 -1.11361 0.000486 0.000486 0.000476 

-0.56 -0.0209 -0.03 -0.0255 -0.5 0.004269 -0.017 -0.0153 -1.10108 0.004269 0.000334 0.000328 

-0.45 -0.0294 -0.05 -0.0425 -0.43 0.030308 0.0063 0.006615 -1.05093 0.000334 -3.1E-05 -3.1E-05 

-0.33 -0.04285 -0.06 -0.051 -0.36 0.072952 0.042 0.0441 -1.00078 -0.00031 -0.00031 -0.0003 

-0.22 -0.01157 -0.05 -0.0425 -0.29 0.12802 0.083 0.08715 -0.90048 2.09E-05 2.09E-05 2.05E-05 

-0.112 0.081547 0.02 0.017 -0.21 0.168856 0.15 0.1575 -0.80019 0.004451 0.004451 0.004362 

      0 0.124718 0.2 0.17 -0.14 0.240569 0.2151 0.225855 -0.69989 0.015261 0.015261 0.014956 

0.112 0.322999 0.3423 0.349146 -0.07 0.322602 0.2643 0.277515 -0.5996 0.044201 0.044201 0.043317 

0.22 0.484295 0.44 0.4488 0 0.365684 0.3258 0.34209 -0.51184 0.083783 0.083783 0.082107 

0.33 0.564305 0.53 0.5406 0.07 0.441907 0.38 0.399 -0.43662 0.130428 0.130428 0.12782 

0.45 0.655073 0.62 0.6324 0.14 0.510731 0.45 0.4725 -0.31125 0.217879 0.217879 0.213521 

0.56 0.712142 0.7 0.714 0.21 0.569431 0.5 0.525 -0.22349 0.295538 0.295538 0.289627 

0.67 0.773725 0.76 0.7752 0.29 0.660308 0.58 0.609 -0.11066 0.400805 0.400805 0.392788 

0.79 0.818333 0.811 0.82722 0.36 0.683532 0.65 0.6825 -0.09812 0.412492 0.412492 0.404242 

0.9 0.861933 0.8567 0.873834 0.43 0.748025 0.7 0.735 -0.08559 0.42442 0.42442 0.415932 

1.02 0.89001 0.8852 0.902904 0.5 0.785037 0.75 0.7875 -0.03544 0.470831 0.470831 0.461414 

1.12 0.910355 0.9053 0.923406 0.58 0.824922 0.8 0.84 -0.0229 0.482388 0.482388 0.47274 

1.24 0.9321 0.9261 0.944622 0.65 0.895387 0.8362 0.852924 -0.01036 0.494065 0.494065 0.484183 

    0.79 0.932189 0.9212 0.939624 0.002173 0.506625 0.506625 0.496492 

    0.87 0.945188 0.9359 0.954618 0.039784 0.541693 0.541693 0.552527 

    0.94 0.938767 0.9474 0.966348 0.052321 0.55348 0.55348 0.564549 
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    1.08 0.96245 0.97 0.9894 0.089931 0.586771 0.586771 0.598506 

    1.23 0.983584 0.98 0.9996 0.102468 0.599206 0.599206 0.61119 

    1.3 0.988041 0.98 0.9996 0.115005 0.610454 0.610454 0.622664 

    1.37 0.989572 0.99 1.0098 0.127542 0.622377 0.622377 0.634825 

    1.45 0.991113 0.99 1.0098 0.140079 0.634007 0.634007 0.646687 

        0.152616 0.645334 0.645334 0.658241 

        0.165153 0.656766 0.656766 0.669901 

        0.202764 0.690329 0.690329 0.704136 

        0.303059 0.769159 0.769159 0.784542 

        0.415891 0.847942 0.847942 0.8649 

        0.50365 0.895914 0.895914 0.913832 

        0.616482 0.9386 0.9386 0.957372 

        0.70424 0.961045 0.961045 0.980266 

        0.829609 0.977576 0.977576 0.997127 

        0.917368 0.985068 0.985068 1.004769 

        1.017663 0.990026 0.990026 1.009827 

        1.042737 0.99151 0.99151 1.01134 

        1.067811 0.992163 0.992826 1.012683 

 

As can be seen from Fig. 4, at close distances, the numerical results differ quite significantly from the 

experimental ones. Therefore, the results of the well-known Spalart-Allmaras SA [40], Menter SST [41] and 

Reynolds stress models SSG LRR-RSM [47] were also obtained to check the reliability. On fig. Figures 5-6 show 

the results of the axial velocity profiles and turbulent stress profiles in different sections of the channel. 

 

 

а) b) 
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c) 

Figure. 5. Axial velocity profiles for various channel sections x = 200 mm, b) at x = 650 mm, c) at x = 950 mm 

 

  

а) b) 

 

c) 

Figure. 6. Profiles of turbulent stress for different sections of channels x = 200 mm, b) at x = 650 mm, c) at x = 950 mm 
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It can be seen from the figures that the results of all models, despite the different approaches, are in good 

agreement with each other. Good agreement with the experimental data is observed for the longitudinal velocity 

profiles for various channel sections. As for turbulent stresses, good agreement with experimental data occurs far 

from the plate and, for unknown reasons, somewhat worse near it. From the presented figures, one can also judge 

that the results are practically independent of difference schemes for numerical implementation. However, the semi-

implicit scheme makes it possible to carry out numerical calculations with much larger time steps than when using 

the explicit scheme. 

8. Conclusion 

• The paper presents the numerical results of mixing two incompressible viscous fluids in a flat channel 

using the well-known Spalart-Allmaras SA, Menter SST and Reynolds stresses SSG LRR-RSM models, 

as well as a two-fluid turbulent model. Velocity and turbulent stress profiles are demonstrated for 

various channel sections. Numerical implementation of the models showed that all of them practically 

give the same results. However, the computational costs for numerical implementation for each model 

turned out to be different. The models of Menter SST and Reynolds stresses SSG LRR-RSM turned out 

to be very demanding on the computational grid, as well as on the integration time. These models 

require a high resolution of computational grids and, for stability, it is necessary to integrate with 

sufficiently small-time steps. The two-fluid model turned out to be the least demanding on computing 

resources. This model retained its stability even with a 20-fold increase in the time step than was 

required to implement the Spalart-Allmaras SA model. It should be noted that the results of the two-

fluid model turned out to be practically independent of the choice of difference schemes. The obtained 

results showed that the two-fluid model has a fairly good accuracy, is easy to implement numerically, 

and has a high stability. Therefore, it can be recommended for calculations of more complex turbulent 

flows. 
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