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A B S T R A C T 

 

A probabilistic neural network (PNN) is a feed-forward neural network using a smoothing parameter. We used the PNN algorithm based on 
single and multi-smoothing parameters for multi-dimensional data classification. Using multi-smoothing parameters, we implemented an 
improved probabilistic neural network (PNN) to estimate the porosity distribution of a gas reservoir in the North Sea. Comparing the results 
of implementing smoothing parameters obtained from model-based optimization and particle swarm optimization (PSO) indicated the 
efficiency of PNN in characterizing the gas. Also, results showed that while the PSO algorithm was able to specify smoothing parameters with 
more precision, about 9%, it was very time-consuming. Finally, multi PNN based on PSO was applied to estimate the porosity distribution of 
the F3 reservoir. The results validated the main fracture or gas chimney of the F3 reservoir with higher porosity. Also, gas-bearing layers were 
highlighted by energy and similarity attributes. 
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1. Introduction 

The main concern of petroleum industries is to find the porosity 
distribution of a reservoir to determine the flow patterns. Also, accurate 
estimates of porosity are crucial to detect the hydrocarbon 
accumulations in a basin in order to decrease drilling risk. The 
measurement of the cored rocks recovered from the reservoir is the best 
procedure for porosity estimation in the laboratory. It is a time-
consuming process therefore all wells in a typical oil or gas field are 
logged using various tools to measure petrophysical parameters such as 
porosity and density [1, 2]. Also, seismic data are often applied to specify 
the structure of reservoir bodies, but it is very difficult to estimate the 
porosity directly from seismic data. Past studies showed that inversion 
of seismic data into acoustic impedance (AI) is widely used in 
hydrocarbon exploration to estimate petrophysical properties. The 
acoustic impedance is commonly used for porosity estimation, mostly 
based on an empirical relationship between acoustic impedance and 
porosity [3]. For this reason, Schultz et al. [4] proposed the idea of using 
multiple seismic attributes to estimate log properties. After that, various 
data integration techniques such as neural networks were used to derive 
petrophysical properties directly from seismic attributes. Recently, a 
probabilistic neural network (PNN) has been considered for data 
classification in many research studies in different fields. PNN is used 
extensively in geoscience studies. Adeli et al [5] used the PNN method 
to predict southern California's earthquake magnitude as a classification 
problem. PNN was used to map the geological and geophysical data to 
find the Platinum group elements (PGM) potential in the Carajás 
Mineral Province of Brazil [6]. Patel et al. [7] used PNN to classify the 
extracted image features from limestone rock images to monitor the 
quality of limestones. In other fields, PNN was used in medical diagnosis 
and prediction [8-12], and also image pattern recognition and 
classification were done by PNN [13, 14, 15, 16, 17]. 

 
 
 
Petrophysical properties such as permeability, density, porosity, shale 

volume, and acoustic impedance are the most useful properties for 
reservoir characterization of oil and gas fields. Lim et al. [18] used the 
PNN to estimate the reservoir permeability in offshore Korea. Singh et 
al. [19] used PNN to estimate porosity from 3D seismic attributes in the 
Cambay basin in the west of India.  Herrera et al. [20] extracted shale 
volume from Gamma-ray log data and classify them via the PNN 
method to recognize productive sands and their boundaries. The 
mentioned research shows the ability of the PNN algorithm in the 
branches of geosciences. Therefore, the present work attempts to 
investigate the application of the PNN algorithm in reservoir 
characterization and determines the porosity distribution of the 
hydrocarbon reservoir based on PNN. The PNN uses a generalized 
nonlinear regression approach for rock type classification purposes. The 
smoothing parameter σ, controls the width of each Gaussian function in 
the PNN method. Single and multi-PNN methods differ in their 
definition of smoothing parameters. The single PNN method conserves 
the smoothing parameter value for all their inputs, whereas it has 
different values for each input attribute in the multi PNN method [21]. 
The smoothing parameter is the term of probability density function 
(PDF) and its optimal value can provide the pattern layer of PNN for 
high accuracy classification [22] . Although many researchers use the 
single value smoothing parameter [23, 24], some of them have shown 
that separate σ’s for each dimension, improves the PNN result accuracy 
[25, 26]. This work aims to compare the results of single PNN and multi 
PNN in estimating the porosity of the gas reservoir of the F3 block in 
the North Sea. The optimum value of smoothing parameters in a single 
PNN is obtained by cross-validation technique, while model-based 
optimization and particle swarm optimization (PSO) are chosen for 
finding the optimum values of smoothing parameters in multi PNN. 
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2. Probabilistic neural network (PNN) 

Artificial neural network (ANN) is an architecture consisting of a 
large number of neurons organized in different layers and the neurons 
of one layer are connected to neurons of another layer by means of 
weights. ANN can be programmed to train, store, recognize and 
associatively retrieve patterns or database entries in order to solve 
optimization problems. Training is the process of updating a neural 
network by modifying its weights. During the training, the parameter of 
the network is optimized, and as a result of this, it undergoes a process 
of curve fitting. The output of the network is compared with the 
corresponding target value and the error is determined. The obtained 
error is then propagated in the backward direction to update the 
connecting weights of the neuron, the so-called backpropagation 
algorithm, to get a more accurate prediction. The major difference 
between a traditional ANN and PNN is related to the mechanism of 
learning and updating their weights. PNN was first introduced by 
Specht [27]. This network is a special type of radial basis function that 
is very faster than the back propagation algorithm [28]. The structure 
of PNN, as shown in Figure 1, consists of four layers: input layer, pattern 
layer, summation layer, and decision layer. 

3 

 

 

 Figure 1. The general structure of the probabilistic neural network. 

 

PNN is initially designed by using training samples for different 
classes. Then the probability value of the Gaussian function is calculated 
based on the distance of input data (the data with an unknown class) 
with each of the training samples in a special class, for example, g, using 

 

Qij = 
1

(2π) n/2σn  exp ( - 
(xj - xij

 (g))2

2σ2 )                                                                              (1) 
 

where n is the dimension of the entries, and here, the number of 
attributes [28]. σ is the standard deviation of the Gaussian function that 
is equivalent to the smoothing parameter in PNN, xij (g) is the value of   
j-th attribute of the i-th training sample that belongs to the class g and 
xj is the j-th attribute of the new input data [29]. Determining the class 
number of new input data is based on the results of Parzen window. 
Parzen window is: 
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The above equation is the mean of a probability distribution in input 
data (xj) that combines all the training samples in each class (xij

(g)) for n 
attributes [22]. Here lg is the number of training samples that belongs 
to class g. Parzen window’s approach, introduced by Parzen [30] and 
developed by Cacoullos [31], estimates the class conditional 
probabilities as a sum of Gaussian kernel centered at the training points 
with appropriately chosen variances as equation 2. In equation 2, σ is 
the standard deviation of Gaussian kernels that play the role of 
smoothing parameter in Parzen window. It should be chosen based on 
the reasonable assumptions in order to increase Parzen’s approach 
performance. Specht [27] suggested the cross-validation to estimate the 

smoothing parameter that the present research applied the cross-
validation technique for the single PNN and discussed in the next 
sections. 

The fourth layer of PNN determines the class of unknown input data 
with regard to the highest p(x|cg). Equation 2 shows that the only 
effective parameter is the smoothing parameter. For multi-smoothing 
parameterization, equation (2) evolves to: 

 

p(x | cg) = 
1

(2π)n/2
Π n

 j = 1 σj
 

1

lg
 ∑ exp ( - ∑

(xj - x ij
(g))2

2σj
2

 n
 j = 1 )

 lg
 i = 1                                                  (3) 

 

  where σj is the smoothing parameter associated with the j-th 
attribute [32]. Finding the optimal value of the smoothing parameter is 
the most important challenge in a PNN algorithm. The particle swarm 
optimization (PSO) algorithm [33], Q-learning algorithm [32], and 
cross-validation [27] are some of the methods used to determine the 
optimum value of the smoothing parameter. Figure 2 shows the 
approach used in this paper based on cross-validation to find the 
optimum value of smoothing parameter for the single and multi PNN. 
Meanwhile, we applied a model-based optimization and a PSO 
optimization to estimate the optimum values of smoothing parameters 
for each input data in multi PNN. 

 

 
 

Figure 2. Diagram of determining smoothing parameter in single PNN and multi 
PNN. 

 

3. Geological setting and data 

The data used in this study was provided in F3 gas reservoir (Figure 
3) by dGB Earth Science company. During the Cenozoic era, much of 
this region was a thermally subsiding epicontinental basin, most of 
which was confined by landmasses [34]. During the Neogene, 
sedimentation rates exceeded the subsidence rate and consequently 
shallowing of the basin occurred. A large fluvio-deltaic system 
dominated the basin, draining the Fennoscandian High and the Baltic 
Shield. The Cenozoic succession could be subdivided into two main 
packages, separated by the Mid-Miocene Unconformity. The lower 
package consists mainly of relatively fine-grained gradational Paleogene 
sediments [35], whereas the package above consists of coarser-grained 
Neogene sediments with much more complex geometries. Most of the 
above package is a progradational deltaic sequence that could be 
subdivided into three units, corresponding to three phases of delta 
evolution. The dominant direction of progradation is toward the west-
southwest and is expressed as sigmoid lineaments (clinoforms) in the 
dip section [36]. Unit 2, containing a conspicuous clinoform package, 
was chosen as the target zone for gas accumulation, and forms the delta 
fore set with a coarsening upward sequence. Its age is estimated as Early 
Pliocene. The coarse sediments are attributed to a regression caused by 
the Neogene uplift of Scandinavia in the Pliocene [37]. Previous 
geological studies had shown that this reservoir consists of several 
sandstone sequences and shale layers. A sandstone layer is located 
between two shale formations. On the other hand, previous studies and 
obtained information from drilled wells show that the gas accumulation 
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was located in the sandstone layer [34]. A 3D seismic survey in F3 block 
has been provided publicly available by dGB Earth Science, and is 
prepared in a monograph by Aminzadeh and Groot [38]. Seismic 
attributes were calculated using OpendTect software and porosity 
values were extracted from the neutron log. Figure 3 displays four well 
in the study area. 

 

 

Figure 3. (a) Location of F3 block and available wells overlaid on a Google Earth 
image; (b) 3d view of F3 reservoir and location of drilled wells between two 
horizons. 

Seismic attributes are used as inputs of single and multi PNN to 
determine the class of porosity as an output. Statistical studies of 8 
attributes, computed by Opendtect software, were performed in this 
research. The list of the employed attributes and their correlation 
coefficients with porosity values are presented in Table 1. 

According to Table 1, Similarity, Semblance, Energy, and Ins-
Amplitude were chosen by correlation over 0.25. Effective attributes 
should have less correlation together than employed as nearly 
independent variables for estimating the porosity. Thus, Semblance was 
eliminated due to a high correlation (0.96) by Similarity. Then, three 
seismic attributes of energy, similarity, and instantaneous amplitude 
were selected due to the higher correlation with the porosity parameter 
than other attributes. The extracted data contains 800 samples and 161 
samples were randomly selected as test data set. The seismic attributes 
are employed to classify the input data in 10 classes of porosity from 0.22 
to 0.3 with step 0.008 in F3 block. The following is a brief explanation of 
the seismic attributes that select as inputs: 

Similarity attribute which is the simplest coherence attribute is given 
by OpendTect dGB Plugins User Documentation [39]: 
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Where sim is the similarity value calculated for the analyzed window 
including n number of data from x and y vectors. Term n usually is 
specified by seismic traces of the analyzed window. The numerator 
calculates the Euclidean distance for traces x and y in a time window 
and the sum of the vector’s length is computed in the denominator. 
Similarity attribute is an index to identify the resemblance of seismic 
traces with each other. It means that the traces which are located in the 
same positions like faults or boundaries related to lithological changes 
are expected to show the same properties. Energy attribute is one of the 
main seismic attributes which is calculated by: 

 

E (t, x, y, t1, t2)= ∑ u (t + τ, x, y)2 t2
 τ = t1

                                                      (5) 
 

Where E(.)is the energy attribute; u(.)is the amplitude of the signal 
trace; τ is the time step in the analysis window. Energy attribute is 
known as an exploration tool to detect the bright spot anomaly in a gas-
bearing reservoir. 

The attribute of instantaneous amplitude is measured by the 
following formula: 

 

a( t ) =√x(t)2+ y ( t )2                                                                                    (6) 
 

Where x(t) and y(t) represent the amplitude variations of seismic 
trace on the X axis and Y axis, respectively. The most important 
application of the instantaneous amplitude attribute is to study acoustic 
impedance changes and to detect the bright spot anomaly in a 
hydrocarbon reservoir. 

4. Single PNN based on cross-validation 

Seismic attributes of energy, similarity, and instantaneous amplitude 
are used as inputs of a single PNN algorithm to recognize the class of 
porosity as an output. A number of 639 data samples is applied to learn 
the single PNN and the value of the smoothing parameter is changed to 
classify correctly 161 test samples. Figure 4 shows the number of test 
samples which is correctly classified by the single PNN versus variation 
of the smoothing parameter. According to Figure 4, the best results are 
obtained by the single PNN when the smoothing parameter is equal to 
0.06. 

 

 

Figure 4. Illustration of different smoothing parameters of single PNN vs correct. 
pixels.  

Table 1. Correlation coefficients of the used seismic attributes versus porosity log. 

Seismic attributes Porosity Similarity Semblance Energy Ins-Amplitude Ins-Phase Ins-Frequency Ins-Hilbert Ins-Q factor 

Porosity 1 0.2932108 0.2764108 0.39418 0.256863137 0.0727141 0.17025539 0.11440451 0.091594927 

Similarity 0.293211 1 0.96199626 0.46932 0.277026994 0.0877056 0.154268547 0.03581204 0.020967147 

Semblance 0.174952 0.9534367 1 0.31196 0.154319727 0.1145717 0.151966091 0.08402292 0.042114429 

Energy 0.394182 0.4693179 0.40991508 1 0.5849972 0.0731257 0.024669058 0.02662874 0.025812912 

Ins-Amplitude 0.276863 0.277027 0.24602906 0.585 1 0.0805702 0.209198481 0.10086868 0.059421242 

Ins-Phase 0.072714 0.0877056 0.09001831 0.07313 0.080570244 1 0.07660859 0.63898601 0.037969432 

Ins-Frequency 0.170255 0.1542685 0.14022762 0.02467 0.209198481 0.0766086 1 0.04323455 0.059585528 

Ins-Hilbert 0.114405 0.035812 0.04657246 0.02663 0.100868679 0.638986 0.043234552 1 0.068299334 

Ins-Qfactor 0.091595 0.0209671 0.04796265 0.02581 0.059421242 0.0379694 0.059585528 0.06829933 1 
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5. Multi PNN 

To determine the optimum values of smoothing parameters for each 
input separately, two techniques of model-based optimization and PSO 
algorithm were used. Here, we give a brief explanation of the two 
methods. 

5.1. Multi PNN based on model-based optimization 

Model-based optimization is initiated by the multivariate nonlinear regression 
model between the different smoothing parameters and the total number of 
correctly classified data as a dependent variable. This model was designed by 
changing the smoothing parameters independently, in the range [0.01, 0.2] with 
step 0.01. In each mode, PNN algorithm was implemented and 161 test data were 
evaluated to count the number of correctly classified pixels. The mathematical 
model was obtained by response surface analysis in MINITAB® software and is 
shown in equation (7). 

 

CP=96.142 - 57.38X1 + 29.56 X2 + 476.91 X3 - 205.6 X1
2 - 259.2 X2

2 - 1404.2 X3
2 

 - 15.6 X1X2 - 374.2 X1 X3 - 186.0 X2 X3                                                                             (7) 
 

Where CP is the total number of correctly classified data, X1 is the smoothing 
parameter of energy, X2 is the smoothing parameter of similarity and X3 is the 
smoothing parameter of instantaneous amplitude. The second-order model was 
selected because the second-order model is proper to extend the area of changes 
of the response variable by including the main effects, curvature, and interaction 
effects of independent variables as shown in equation (7). 

5.2. Multi PNN based on PSO optimization 

The PSO optimization algorithm first proposed by Kennedy and 
Eberhart [40], is another method used to optimize the values of multi-
smoothing parameters. This algorithm initially produces n random 
particles in the search space and tries to optimize the target function by 
changing the position of these particles. Each particle has a velocity 
vector and a position vector that is generated in an iterative process 
using 

 

v  id
k+1 = v id 

k + c1 r1
k(pbest id 

k -x  id
 k ) + c2 r2

k( g b est d 
k -x id

 k )                           (8) 
 

x id
k + 1 = x id 

k + v id
 k + 1                                                                                        (9) 

 

where, r1 and r2 are random numbers between [0, 1] and c1 and c2 are 
constant coefficients. Xi = (xi1, xi2, ..., xiD) represents i-th particle of the 
D-dimensional search space set and if the change in the position of the 
i-th particle leads to the improvement of the target function. The new Xi 
is shown with pbesti = (pi1, pi2, ..., piD); the best pbest is denoted by gbest. 
Finally, after k iteration, pbesti is the best personal experience for i-th 
 

particle and gbest is the best experience of the entire set [40]. The PSO 
algorithm in the present study is used to find optimum values of multi-
smoothing parameters. Also, the number of particles in the search space 
(n) was 100 and the number of iterations in the algorithm (k) was 1000. 
The estimated optimum value of a single smoothing parameter and the 
optimum values of multi-smoothing parameters by model-based 
optimization and PSO algorithm and their corresponding correct points 
are compared in Table 2. 

According to Table 2, the PSO algorithm classified 141 pixels correctly 
in comparison with model-based optimization. Although the PSO 
algorithm has higher accuracy than model-based optimization it took 24 
hours to respond while it is a lot in comparison to just a few seconds of 
model-based optimization as an analytical method 

6. Validation 

After finding the optimum values of smoothing parameters in single 
and multi PNN (based on PSO and model-based optimization), a 
confusion matrix is employed to provide a more accurate estimate of the 
performance of developed algorithms. The confusion matrix is a matrix 
in which column i represents the data that belongs to the i-th class and 
the row j represents the data that is classified by the PNN algorithm on 
the j-th class. It is obvious that the pixels located on the main diameter 
indicate the data that is correctly placed in true classes by the algorithm. 
If the sum of the data in the main diameter is divided by the total sum 
of matrix data, the overall accuracy is obtained which indicates the 
algorithm's accuracy in classification. Table 3 shows the confusion 
matrix of a single PNN that was optimized by cross-validation technique 
and Table 4 shows the confusion matrix of multi PNN based on model-
based optimization. 

The comparison between Table 3 and Table 4 proves that multi-PNN 
could be used more accurately for porosity data classification in the gas 
reservoir. The reason is that the nature of seismic attributes is different 
with regard to their frequency distributions. The frequency distribution 
of energy, similarity, and instantaneous amplitude attributes is 
presented in Figure 5. Heterogeneity of these attributes causes less 
accuracy in single PNN in comparison to multi PNN. Single PNN is 
appropriate when attributes are homogeneous while the similarity 
attribute is a geometric attribute that indicates the spatial and temporal 
connection of a signal with its surrounding signals, and the 
instantaneous amplitude attribute offers a snapshot of a signal. 
Therefore, it is obvious that the nature of the input attributes is different 
and their distributions are different from each other significantly.  

 

Table 2. Calculated smoothing parameters for single PNN and multi PNNs. 
Correct pixels Ins-Amplitude Similarity Energy PNN Algorithm 

112 0.06 0.06 0.06 Single PNN 

127 0.168 0.012 0.010 Multi PNN with model-based optimization 

141 0.2071 0.0379 0.0451 Multi PNN with PSO optimization 

 
 

Table 3. Confusion matrix of single PNN developed by cross validation. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Single PNN class1 class2 class3 class4 class5 class6 class7 class8 class9 class10 total Commission Error 
class1 6 2 0 0 0 1 0 1 0 0 10 0.4 
class2 4 4 3 0 0 0 0 1 0 0 12 0.667 
class3 0 4 2 1 0 1 0 1 0 0 9 0.556 
class4 0 0 1 8 3 0 1 0 0 0 13 0.385 
class5 0 1 0 0 16 3 0 2 0 0 22 0.273 
class6 1 0 0 1 4 24 1 0 0 0 31 0.226 
class7 0 0 0 0 0 2 16 4 0 0 22 0.273 
class8 0 0 0 0 1 1 1 28 1 0 32 0.125 
class9 0 0 0 0 0 0 0 2 6 0 8 0.25 
class10 0 0 0 0 0 0 0 0 0 2 2 0 
total 11 11 6 10 24 32 19 39 7 2 161  

Omission Error 0.45 0.64 0.67 0.2 0.3 0.25 0.2 0.3 0.1 0 Overall accuracy: 0.695652 
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Table 4. Confusion matrix of multi PNN developed by model-based optimization. 
Multi PNN:  
model based class1 class2 class3 class4 class5 class6 class7 class8 class9 class10 total Commission 

Error 

class1 7 1 0 0 0 1 1 0 0 0 10 0.3 

class2 3 6 1 0 0 0 0 1 0 0 11 0.454 

class3 0 3 4 1 0 0 0 0 0 0 8 0.5 

class4 0 0 1 9 1 0 0 0 0 0 11 0.182 

class5 0 1 0 0 18 1 0 1 0 0 21 0.143 

class6 1 0 0 0 5 26 0 0 0 0 32 0.187 

class7 0 0 0 0 0 1 16 3 0 0 20 0.2 

class8 0 0 0 0 0 0 2 32 0 0 34 0.059 

class9 0 0 0 0 0 0 0 2 7 0 9 0.222 

class10 0 0 0 0 0 3 0 0 0 2 5 0.6 

total 11 11 6 10 24 32 19 39 7 2 161  

Omission 
Error 0.4 0.45 0.33 0.1 0.3 0.19 0.2 0.2 0 0 Overall accuracy: 0.78882 

 
 

 
 
 

 
 
 

 

 
 

Figure 5. Frequency distribution of energy, similarity, and instantaneous amplitude 
attributes. 

As shown in Table 4, multi-PNN is able to classify the test data in the 
correct classes with an accuracy of about 79%, which is acceptable 
performance. In order to evaluate more precisely the operation of the 
algorithm, commission error and omission error are defined were 
located in the last column and the last row of the confusion matrix, 
respectively. An omission error occurs when an area belongs to a class 
while it is estimated to be in a different class. A commission error occurs 
when an area is estimated to be in a class but does not belong to that 
class [41]. According to Table 4, the omission error for class 1 means 
that 40% of samples related to class 1 are classified in other classes 
incorrectly and the commission error for class 1 means that 30% of 
samples which belong to other classes were predicted in class 1 
incorrectly. Table 5 presents the confusion matrix of multi-PNN based 
on the PSO algorithm. Based on Table 5, the overall accuracy is found 
to increase to 87%. Also, commission and omission errors have been 
significantly reduced. A comparison between Tables 4 and 5 indicates 
that the PSO algorithm is more accurate than the model-based 
optimization method for estimating the multi-smoothing parameters. 

Validation showed that multi PNN based on PSO algorithm could 
present better results. Thus, it was used to classify the porosity 
distribution of F3 block in in-lines 244 and 336 as shown in Figure 6. 
Here, porosity has increased in the main fracture of the reservoir, shown 
with the ellipse. This fracture is known as a gas chimney in the F3 block 
and provides a way for gas to migrate from the Zechstein salt dome to 
above sand layers. On the other hand, it provides suitable space to 
accumulate gas. The rectangular polygon shows a gas-bearing sand layer 
that has been sandwiched between shale layers. 

Main fractures and gas chimneys could be highlighted via the 
coherence attribute. The similarity is a simple kind of coherence that 
calculates the relationship between a central seismic trace and adjacent 
traces. Figure 7 shows the similarity attribute of F3 block in in-line 244. 
As illustrated with an ellipse, the main fracture of F3 block could be 
observed that it was classified with higher porosity values by multi PNN. 
Also, seismic attributes such as energy could prove the presence of gas 
in a reservoir. Energy attribute is a measure of changes in signal 
amplitude. It has been observed when seismic traces pass a gas-bearing 
zone, their amplitude change considerably. Therefore, the energy 
attribute identifies a gas presence anomaly, the so-called bright spot, 
(Figure 8). According to Figure 8, there is a bright spot anomaly in cross-
line 900 located at top of the main fracture. It proves that the main 
fracture of F3 block contains gas accumulation. 

7. Conclusion 

The procedure of this study was focused on the statistical nature of 
seismic attributes because the performance of the PNN depends on its 
adjustable parameter which is called the smoothing parameter and the 
variation of seismic attributes as inputs determines the real smoothing 
parameter. 
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Table 5. Confusion matrix of multi PNN develop. 
Multi PNN:  
model based class1 class2 class3 class4 class5 class6 class7 class8 class9 class10 total Commission 

Error 

class1 10 1 0 0 0 0 0 0 0 0 11 0.091 

class2 1 7 1 0 0 0 0 1 0 0 10 0.3 

class3 0 3 5 0 0 0 0 1 0 0 9 0.444 

class4 0 0 0 10 2 0 0 0 0 0 12 0.167 

class5 0 0 0 0 21 3 0 1 0 0 25 0.16 

class6 0 0 0 0 1 29 1 0 0 0 31 0.064 

class7 0 0 0 0 0 0 18 3 0 0 21 0.143 

class8 0 0 0 0 0 0 0 32 0 0 32 0 

class9 0 0 0 0 0 0 0 1 7 0 8 0.125 

class10 0 0 0 0 0 0 0 0 0 2 2 0 

total 11 11 6 10 24 32 19 39 7 2 161  

Omission 
Error 0.09 0.36 0.17 0 0.1 0.09 0.1 0.2 0 0 Overall accuracy: 0.875776 

 
Figure 6. Porosity distribution in inline244 (A) and inline336 (B) by multi PNN 
based on PSO algorithm. 

 
Figure 7. Similarity attribute in in-line 244. 

 

Therefore, the same smoothing parameter for all seismic attributes is 
not a good idea hence the present work attempted to apply the multi-
smoothing parameter PNN instead of one. PNN is able to determine the 
hidden relationships among the information extracted from the input 
data; this information can be trained with a set of responses and can be 
used to predict responses for unobserved samples. Different seismic 
attributes show different probability distributions and it means that the 

unique smoothing parameter could not address the hidden 
relationships. Also, the procedure of determining the smoothing 
parameter is another challenge of this research. Cross-validation, model-
based optimization, and PSO optimization were considered to provide 
the appropriate PNN. Multi smoothing parameter PNN is more 
effective than single smoothing parameter PNN in the classification of 
data. A comparative study of model-based optimization and PSO 
algorithm was carried out to find the optimal values of smoothing 
parameters and the results showed that although the PSO algorithm is 
able to specify smoothing parameters with more precision, about 9%, it 
is very time-consuming. On the other hand, the accuracy provided by 
the model-based PNN (79%) is also acceptable and its operating speed 
is much faster than the PSO method, therefore the use of model-based 
optimization could be effective. Finally, multi PNN based on PSO was 
applied to estimate the porosity distribution of F3 reservoir. The results 
validated the main fracture or gas chimney of F3 reservoir with higher 
porosity. Also, gas-bearing layers were highlighted by energy and 
similarity attributes. 

 

 

Figure 8. Energy attribute in in-line 244. 
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