NAKHOD

Pair mean cordial labeling of graphs

R. Ponraj ${ }^{* 1}$ and S. Prabhu ${ }^{\dagger 2}$
${ }^{1}$ Department of Mathematics, Sri Paramakalyani College, Alwarkurichi-627 412, Tamil Nadu, India.
${ }^{2}$ Research Scholor, Reg.No:21121232091003, Department of Mathematics, Sri Paramakalyani College, Alwarkurichi-627 412, Tamil Nadu, India.(Affliated to Manonmaniam Sundaranar University, Abhishekapati, Tirunelveli-627 012, India.)

Abstract

In this paper, we introduce a new graph labeling called pair mean cordial labeling of graphs. Also we investigate the pair mean cordiality of some graphs like path, cycle, complete graph, star, wheel, ladder, comb.

ARTICLE INFO

Article history:

Received 21 March 2022,
Received in revised form 12, May 2022
Accepted 25 May 2022
Available online 01 June 2022

Keyword: path, cycle, complete graph, wheel, ladder, comb, star, bistar, fan graph.

AMS subject Classification: 05C78.

1 Introduction

In this paper, we consider a finite, simple and undirected connected graphs. We follow the terminologies and different notations by the book of Harary [1]. For a detailed survey on graph labeling, we refer the book of Gallian(2021)[2]. The notion of mean labeling of graphs was introduced by S. Somasundaram and R. Ponraj [4]. The concept of pair difference cordial labeling was discussed in [5]. Motivated by these two concepts, In this paper we introduced new graph labeling called pair mean cordial labeling and also we investigate the pair mean cordial labeling behavior of several graph like path, cycle, wheel, ladder, comb, star and bistar graph.

[^0]
2 Preliminaries

Definition 1. The ladder graph $L_{n}(n \geq 2)$ is defined by $L_{n}=P_{n} \times K_{2}$ where P_{n} is a path with n vertices and \times denotes the Cartesian product and K_{2} is a complete graph with two vertices.

Definition 2. The comb $P_{n} \odot K_{1}$ is obtained by joining a pendant edge to each vertices of the path P_{n}. It has $2 n$ vertices and $2 n-1$ edges

Definition 3. The wheel graph W_{n} is defined to be the join of $K_{1}+C_{n}$ i.e., the wheel graph consists of edges which join a vertex of K_{1} to every vertex of C_{n}.

Definition 4. A helm graph H_{n} is a graph obtained from a wheel by attaching a pendant vertex at each n-cycle vertex. Then it has $2 n+1$ vertices and $3 n$ edges.

Definition 5. The fan $f_{n}(n \geq 2)$ is obtained by joining all vertices of P_{n} to a further vertex called the center. It has $n+1$ vertices and $2 n-1$ edges.

3 Pair Mean Cordial Labeling

Definition 6. Let a graph $G=(V, E)$ be a (p, q) graph. Define

$$
\rho=\left\{\begin{array}{cc}
\frac{p}{2} & p \text { is even } \\
\frac{p-1}{2} & p \text { is odd }
\end{array}\right.
$$

and $M=\{ \pm 1, \pm 2, \cdots \pm \rho\}$ called the set of labels. Consider a mapping $\lambda: V \rightarrow M$ by assigning different labels in M to the different elements of V when p is even and different labels in M to $p-1$ elements of V and repeating a label for the remaining one vertex when p is odd. The labeling as defined above is said to be a pair mean cordial labeling if for each edge uv of G, there exists a labeling $\frac{\lambda(u)+\lambda(v)}{2}$ if $\lambda(u)+\lambda(v)$ is even $\frac{\lambda(u)+\lambda(v)+1}{2}$ if $\lambda(u)+\lambda(v)$ is odd such that $\left|\overline{\mathbb{S}}_{\lambda_{1}}-\overline{\mathbb{S}}_{\lambda_{1}^{c}}\right| \leq 1$ where $\overline{\mathbb{S}}_{\lambda_{1}}$ and $\overline{\mathbb{S}}_{\lambda_{1}^{c}}$ respectively denote the number of edges labeled with 1 and the number of edges not labeled with 1. A graph G for which there exists a pair mean cordial labeling is called a pair mean cordial graph.

Theorem 7. If G is a (p, q) pair mean cordial graph, then

$$
q \leq \begin{cases}2 p-5 & \text { if } p \text { is even } \\ 2 p-3 & \text { if } p \text { is odd }\end{cases}
$$

Proof. Case 1: p is even
The maximum number of edges with label 1 among the vertex labels $\pm 1, \pm 2, \pm 3, \ldots, \pm \frac{p}{2}$ is $p-3$. Therefore $\overline{\mathbb{S}}_{\lambda_{1}} \leq p-3$. This implies that

$$
\begin{equation*}
\overline{\mathbb{S}}_{\lambda_{1}^{c}} \geq q-p+3 \tag{1}
\end{equation*}
$$

Type 1. $\overline{\mathbb{S}}_{\lambda_{1}^{c}}=\overline{\mathbb{S}}_{\lambda_{1}}+1$

$$
\begin{aligned}
B y(1), q-p+3 & \leq \overline{\mathbb{S}}_{\lambda_{1}^{c}} \\
& \leq \overline{\mathbb{S}}_{\lambda_{1}}+1 \\
& \leq p-2
\end{aligned}
$$

This implies that

$$
\begin{equation*}
q \leq 2 p-5 \tag{2}
\end{equation*}
$$

Type 2. $\overline{\mathbb{S}}_{\lambda_{1}^{c}}=\overline{\mathbb{S}}_{\lambda_{1}}-1$

$$
\begin{aligned}
B y(1), q-p+3 & \leq \overline{\mathbb{S}}_{\lambda_{1}^{c}} \\
& \leq \overline{\mathbb{S}}_{\lambda_{1}}-1 \\
& \leq p-4
\end{aligned}
$$

This implies that

$$
\begin{equation*}
q \leq 2 p-7 \tag{3}
\end{equation*}
$$

Type 3. $\overline{\mathbb{S}}_{\lambda_{1}^{c}}=\overline{\mathbb{S}}_{\lambda_{1}}$

$$
\begin{aligned}
B y(1), q-p+3 & \leq \overline{\mathbb{S}}_{\lambda_{1}^{c}} \\
& \leq \overline{\mathbb{S}}_{\lambda_{1}} \\
& \leq p-3
\end{aligned}
$$

This implies that

$$
\begin{equation*}
q \leq 2 p-6 \tag{4}
\end{equation*}
$$

Then by $(2),(3),(4), q \leq 2 p-5$.
Case 2: p is odd
In this case, by definition of pair mean cordial labeling one vertex label is repeat. This vertex label contributes maximum two edges with label 1. Therefore, $\overline{\mathbb{S}}_{\lambda_{1}} \leq p-3+2=$ $p-1$. As in case (1), we get $q \leq 2 p-3$.

Theorem 8. Any path P_{n} is pair mean cordial for all n.
Proof. Let P_{n} be the path $u_{1} u_{2} \ldots u_{n}$. Then the path P_{n} has n vertices and $n-1$ edges. This proof is divided into two cases:
Case 1: $n=3$
Assign the labels $1,1,-1$ to the vertices u_{1}, u_{2}, u_{3} respectively. Then $\overline{\mathbb{S}}_{\lambda_{1}}=1$ and $\overline{\mathbb{S}}_{\lambda_{1}^{c}}=2$.
Case 2: $n \geq 1$
There are two subcases arises:
Subcase 1: n is even
Assign the labels $1,2,3, \ldots, \frac{n}{2}$ to the vertices $u_{1}, u_{3}, \ldots, u_{n-1}$ respectively. Next we assign the labels $-1,-2,-3, \ldots, \frac{-n}{2}$ respectively to the vertices $u_{2}, u_{4}, \ldots, u_{n}$. Hence $\overline{\mathbb{S}}_{\lambda_{1}}=\frac{n-2}{2}$ and $\overline{\mathbb{S}}_{\lambda_{1}^{c}}=\frac{n}{2}$.

Subcase 2: n is odd
Assign the labels $1,2,3, \ldots, \frac{n-1}{2}$ to the vertices $u_{1}, u_{3}, \ldots, u_{n-2}$ respectively. Next we assign the labels $-1,-2,-3, \ldots, \frac{-n+3}{2}$ respectively to the vertices $u_{2}, u_{4}, \ldots, u_{n-3}$. Finally we assign the labels $\frac{-n+3}{2}, \frac{-n+1}{2}$ to the vertices u_{n-1} and u_{n} respectively. Hence $\overline{\mathbb{S}}_{\lambda_{1}}=\frac{n-1}{2}$ and $\overline{\mathbb{S}}_{\lambda_{1}^{c}}=\frac{n-1}{2}$.
Remark 9. P_{3} is pair mean cordial but not pair difference cordial [5].
Theorem 10. The cycle C_{n} is pair mean cordial for all values of n except $n=4$.
Proof. Let the cycle C_{n} be $u_{1} u_{2} \ldots u_{n} u_{1}$. Then the cycle C_{n} has n vertices and n edges. This proof is divided into two cases:
Case 1: For $n=3$
Assign the labels $1,1,-1$ to the vertices u_{1}, u_{2}, u_{3} respectively. Then $\overline{\mathbb{S}}_{\lambda_{1}}=1$ and $\overline{\mathbb{S}}_{\lambda_{1}^{c}}=2$.
Case 2: $n \geq 4$
There are four subcases arises:
Subcase 1: $n \equiv 0(\bmod 4)$
First assign the label 1 to the vertex u_{1}. Assign the labels $2,3,4, \ldots, \frac{n+8}{4}$ to the vertices $u_{2}, u_{4}, u_{6}, \ldots, u_{\frac{n+4}{2}}$ respectively. Then we assign the labels $-1,-2,-3, \ldots, \frac{-n}{4}$ respectively to the vertices $u_{3}, u_{5}, u_{7}, \ldots, u_{\frac{n+2}{2}}$. Next assign the labels $\frac{-n-8}{4}, \frac{-n-4}{4}$ to the vertices $u_{\frac{n+6}{2}}, u_{\frac{n+8}{2}}$ respectively. Now we give labels $\frac{-n-12}{4}, \frac{-n-16}{4}, \ldots \frac{-n}{2}$ respectively in the vertices $u_{\frac{n+10}{2}}, u_{\frac{n+12}{2}}, \ldots, u_{\frac{3 n+8}{4}}$. Finally we give labels $\frac{n+12}{4}, \frac{n+16}{4}, \ldots \frac{n}{2}$ in the vertices $u_{\frac{3 n+12}{}}, u_{\frac{3 n+16}{}}, \ldots, u_{n}$ respectively. Hence $\overline{\mathbb{S}}_{\lambda_{1}}=\frac{n}{2}$ and $\overline{\mathbb{S}}_{\lambda_{1}^{c}}=\frac{n}{2}$.
Subcase 2: $n \equiv 1(\bmod 4)$
First assign the label 1 to the vertex u_{1}. Assign the labels $2,3,4, \ldots, \frac{n+7}{4}$ to the vertices $u_{2}, u_{4}, u_{6}, \ldots, u_{\frac{n+3}{2}}$ respectively. Then we assign the labels $-1,-2,-3, \ldots, \frac{-n+1}{4}$ respectively to the vertices $u_{3}, u_{5}, u_{7}, \ldots, u_{\frac{n+1}{2}}$. Next assign the labels $\frac{-n-7}{4}, \frac{-n-3}{4}$ to the vertices $u_{\frac{n+5}{2}}, u_{\frac{n+7}{2}}$ respectively. Now we give labels $\frac{-n-11}{4}, \frac{-n-15}{4}, \ldots \frac{-n+1}{2}$ respectively in the vertices $u_{\frac{n+9}{2}}, u_{\frac{n+11}{2}}, \ldots, u_{\frac{3 n+5}{4}}$. We give labels $\frac{n+11}{4}, \frac{n+15}{4}, \ldots \frac{n-1}{2}$ in the vertices $u_{\frac{3 n+9}{4}}, u_{\frac{3 n+13}{4}}, \ldots, u_{n-1}$ respectively. Finally Assign the label $\frac{n-1}{4}$ to the vertex u_{n}. Hence $\overline{\mathbb{S}}_{\lambda_{1}}=\frac{n-1^{4}}{2}$ and $\overline{\mathbb{S}}_{\lambda_{1}^{c}}=\frac{n+1}{2}$.
Subcase 3: $n \equiv 2(\bmod 4)$
First assign the label 1 to the vertex u_{1}. Assign the labels $2,3,4, \ldots, \frac{n+6}{4}$ to the vertices $u_{2}, u_{4}, u_{6}, \ldots, u_{\frac{n+2}{2}}$ respectively. Then we assign the labels $-1,-2,-3, \ldots, \frac{-n-2}{4}$ respectively to the vertices $u_{3}, u_{5}, u_{7}, \ldots, u_{\frac{n+4}{2}}$. Now we give labels $\frac{-n-6}{4}, \frac{-n-10}{4}, \ldots \frac{-n}{2}$ in the vertices respectively $u_{\frac{n+6}{2}}, u_{\frac{n+8}{2}}, \ldots, u_{\frac{3 n+6}{4}}$. Finally we give labels $\frac{n+10}{4}, \frac{n+14}{4}, \ldots \frac{n}{2}$ in the vertices $u_{\frac{3 n+10}{4}}, u_{\frac{3 n+14}{4}}, \ldots, u_{n}$ respectively. Hence $\overline{\mathbb{S}}_{\lambda_{1}}=\frac{n}{2}$ and $\overline{\mathbb{S}}_{\lambda_{1}^{c}}=\frac{n}{2}$.
Subcase 4: $n \equiv 3(\bmod 4)$
First assign the label 1 to the vertex u_{1}. Assign the labels $2,3,4, \ldots, \frac{n+5}{4}$ to the vertices $u_{2}, u_{4}, u_{6}, \ldots, u_{\frac{n+1}{2}}$ respectively. Then we assign the labels $-1,-2,-3, \ldots, \frac{-n-1}{4}$ respectively to the vertices $u_{3}, u_{5}, u_{7}, \ldots, u_{\frac{n+3}{2}}$. Now we give labels $\frac{-n-5}{4}, \frac{-n-9}{4}, \ldots \frac{-n+1}{2}$ in the vertices $u_{\frac{n+5}{2}}, u_{\frac{n+7}{2}}, \ldots, u_{\frac{3 n+3}{4}}$ respectively. We give labels $\frac{n+9}{4}, \frac{n+13}{4}, \ldots \frac{n-1}{2}$ respectively
in the vertices $u_{\frac{3 n+7}{4}}, u_{\frac{3 n+11}{4}}$,
\ldots, u_{n-1}. Finally assign the label $\frac{n+1}{4}$ to the vertex u_{n}. Hence $\overline{\mathbb{S}}_{\lambda_{1}}=\frac{n-1}{2}$ and $\overline{\mathbb{S}}_{\lambda_{1}^{c}}=$ $\frac{n+1}{2}$.

Remark 11. C_{4} is pair difference cordial but not pair mean cordial [5].
Theorem 12. The complete graph K_{n} is pair mean cordial if and only if $n \leq 3$.
Proof. This proof is divided into two cases:
Case 1: $n \leq 3$
By theorem 3.5, K_{1}, K_{2} and K_{3} are pair mean cordial.
Case 2: $n>3$
Suppose λ is a pair mean cordial labeling. If the edge $u v$ get label 1 , the possibilities are $\lambda(u)+\lambda(v)=1$ or $\lambda(u)+\lambda(v)=2$. There are two subcases arises:
Subcase 1: n is odd
In this case, the maximum number of edges with label 1 is $n-2$. That is $\overline{\mathbb{S}}_{\lambda_{1}} \leq n-2$.
Then $\overline{\mathbb{S}}_{\lambda_{1}^{c}} \geq \frac{n(n-1)}{2}-(n-2)=\frac{n^{2}-3 n+4}{2}$. Hence $\overline{\mathbb{S}}_{\lambda_{1}^{c}}-\overline{\mathbb{S}}_{\lambda_{1}} \geq \frac{n^{2}-3 n+4}{2}-(n-2)=\frac{n^{2}-5 n+8}{2}>1$, a contradiction.
Subcase 2: n is even
In this case, the maximum number of edges with label 1 is $n-3$. That is $\overline{\mathbb{S}}_{\lambda_{1}} \leq n-3$.
Then $\overline{\mathbb{S}}_{\lambda_{1}^{c}} \geq \frac{n(n-1)}{2}-(n-3)=\frac{n^{2}-3 n+6}{2}$. Hence $\overline{\mathbb{S}}_{\lambda_{1}^{c}}-\overline{\mathbb{S}}_{\lambda_{1}} \geq \frac{n^{2}-3 n+6}{2}-(n-3)=\frac{n^{2}-5 n+12}{2}>1$, a contradiction.

Theorem 13. The star graph $K_{1, n}$ is pair mean cordial if and only if $1 \leq n \leq 6$.
Proof. Let $V\left(K_{1, n}\right)=\left\{u, u_{i}: 1 \leq i \leq n\right\}$ and $E\left(K_{1, n}\right)=\left\{u u_{i}: 1 \leq i \leq n\right\}$. Then $K_{1, n}$ has $n+1$ vertices and n edges. This proof is divided into two cases:
Case 1: $1 \leq n \leq 6$
The following table shows that $K_{1, n}, 1 \leq n \leq 6$ is pair mean cordial.

Nature of n	u	u_{1}	u_{2}	u_{3}	u_{4}	u_{5}	u_{6}
1	1	-1					
2	1	-1	1				
3	-1	1	2	-2			
4	-1	1	2	-2	2		
5	-1	1	2	-2	3	-3	
6	-1	1	2	-2	3	-3	2

Case 2: $n>6$
Suppose λ is a pair mean cordial labeling. If the edge $u v$ get the label 1 , the possibilities are $\lambda(u)+\lambda(v)=1$ or $\lambda(u)+\lambda(v)=2$. There are two subcases arises:
Subcase 1: n is odd
In this case, the maximum number of edges with label 1 is 2 . That is $\overline{\mathbb{S}}_{\lambda_{1}} \leq 2$. Then $\overline{\mathbb{S}}_{\lambda_{1}^{c}} \geq n-2$. Hence $\overline{\mathbb{S}}_{\lambda_{1}^{c}}-\overline{\mathbb{S}}_{\lambda_{1}} \geq n-2-2=n-4>1$, a contradiction.

Subcase 2: n is even
In this case, the maximum number of edges with label 1 is 3 . That is $\overline{\mathbb{S}}_{\lambda_{1}} \leq 3$. Then $\overline{\mathbb{S}}_{\lambda_{1}^{c}} \geq n-3$. Hence $\overline{\mathbb{S}}_{\lambda_{1}^{c}}-\overline{\mathbb{S}}_{\lambda_{1}} \geq n-3-3=n-6>1$, a contradiction.

Theorem 14. The bistar graph $B_{1, n}$ is pair mean cordial if and only if $1 \leq n \leq 6$.
Proof. Let $V\left(B_{1, n}\right)=\left\{u, v, u_{1}, v_{i}: 1 \leq i \leq n\right\}$ and $E\left(B_{1, n}\right)=\left\{u v, u u_{1}, v v_{i}: 1 \leq i \leq n\right\}$.
Then $B_{1, n}$ has $n+3$ vertices and $n+2$ edges. This proof is divided into two cases:
Case 1: $1 \leq n \leq 6$
The following table shows that $B_{1, n}, 1 \leq n \leq 6$ is pair mean cordial.
Define $\lambda(u)=-1, \lambda\left(u_{1}\right)=2$

Nature of n	v	v_{1}	v_{2}	v_{3}	v_{4}	v_{5}	v_{6}
1	1	-2					
2	1	-2	1				
3	3	-2	-3	1			
4	3	-2	-3	1	1		
5	3	-2	-3	-4	4	1	
6	3	-2	-3	-4	4	1	-2

Case 2: $n>6$
Suppose λ is a pair mean cordial labeling. If the edge $u v$ get the label 1 , the possibilities are $\lambda(u)+\lambda(v)=1$ or $\lambda(u)+\lambda(v)=2$. There are two subcases arises:
Subcase 1: n is odd
In this case, the maximum number of edges with label 1 is 3 . That is $\overline{\mathbb{S}}_{\lambda_{1}} \leq 3$. Then $\overline{\mathbb{S}}_{\lambda_{1}^{c}} \geq n+2-3=n-1$. Hence $\overline{\mathbb{S}}_{\lambda_{1}^{c}}-\overline{\mathbb{S}}_{\lambda_{1}} \geq n-1-3=n-4>1$, a contradiction.
Subcase 2: n is even
In this case, the maximum number of edges with label 1 is 4 . That is $\overline{\mathbb{S}}_{\lambda_{1}} \leq 4$. Then $\overline{\mathbb{S}}_{\lambda_{1}^{c}} \geq n+2-4=n-2$. Hence $\overline{\mathbb{S}}_{\lambda_{1}^{c}}-\overline{\mathbb{S}}_{\lambda_{1}} \geq n-2-4=n-6>1$, a contradiction.

Theorem 15. The bistar graph $B_{m, n}(m \geq 2, n \geq 2)$ is pair mean cordial if and only if $m+n \leq 9$.

Proof. Let $V\left(B_{m, n}\right)=\left\{u, v, u_{i}, v_{j}: 1 \leq i \leq m, 1 \leq j \leq n\right\}$ and $E\left(B_{1, n}\right)=\left\{u v, u u_{i}, v v_{j}\right.$: $1 \leq i \leq m, 1 \leq j \leq n\}$. Then $B_{m, n}$ has $m+n+2$ vertices and $m+n+1$ edges. This proof is divided into two cases:
Case 1: $m+n \leq 9$
There are three subcases arises:
subcase 1: $m=2, n=2$
Define $\lambda(u)=-1, \lambda\left(u_{1}\right)=1, \lambda\left(u_{2}\right)=2, \lambda(v)=3, f\left(\lambda_{1}\right)=-2, \lambda\left(v_{2}\right)=-3$. Hence $\overline{\mathbb{S}}_{\lambda_{1}}=3$ and $\overline{\mathbb{S}}_{\lambda_{1}^{c}}=2$.
subcase 2: $m=2, n>2$
The following table shows that $B_{2, n}, 3 \leq n \leq 7$ is pair mean cordial.

n	v	u_{1}	u_{2}	v_{3}	v_{4}	v_{5}	v_{6}	v_{7}
3	3	1	2	1				
4	3	1	2	-4	4			
5	4	2	3	-4	1	1		
6	4	2	3	-4	-5	5	1	
7	4	2	3	-4	-5	5	1	-3

Define $\lambda(u)=-1, \lambda\left(v_{1}\right)=-2, \lambda\left(v_{2}\right)=-3$
Subcase 3: $m>2, n>2$
If $m+n$ is even, define the function $\lambda: V\left(B_{m, n}\right) \rightarrow\left\{ \pm 1, \pm 2, \ldots, \pm \frac{m+n+2}{2}\right\}$ by $\lambda(u)=$ $-1, \lambda(v)=4, \lambda\left(u_{1}\right)=2, \lambda\left(u_{2}\right)=3, \lambda\left(\lambda_{1}\right)=-2, \lambda\left(v_{2}\right)=-3, \lambda\left(v_{3}\right)=-2$. Next we assign the remaining labels to the remaining vertices in any order.
If $m+n$ is odd, define the function $f: V\left(B_{m, n}\right) \rightarrow\left\{ \pm 1, \pm 2, \ldots, \pm \frac{m+n+1}{2}\right\}$ by $\lambda(u)=$ $-1, \lambda(v)=4, f\left(\lambda_{1}\right)=2, f\left(\lambda_{2}\right)=3, \lambda\left(v_{1}\right)=-2, \lambda\left(v_{2}\right)=-3$. Next we assign the remaining labels to the remaining vertices in any order.
Case 2: $m+n>9$
Suppose λ is a pair mean cordial labeling. If the edge $u v$ get the label 1 , the possibilities are $\lambda(u)+\lambda(v)=1$ or $\lambda(u)+\lambda(v)=2$.
There are two subcases arises:
Subcase 1: $m+n$ is even
In this case, the maximum number of edges with label 1 is 4 . That is $\overline{\mathbb{S}}_{\lambda_{1}} \leq 4$. Then $\overline{\mathbb{S}}_{\lambda_{1}} \geq m+n+1-4=m+n-3$. Hence $\overline{\mathbb{S}}_{\lambda_{1}^{c}}-\overline{\mathbb{S}}_{\lambda_{1}} \geq m+n-3-4=m+n-7>1$, a contradiction.
Subcase 2: $m+n$ is odd
Then the maximum number of edges with label 1 is 5 . That is $\overline{\mathbb{S}}_{\lambda_{1}} \leq 5$. Then $\overline{\mathbb{S}}_{\lambda_{1}^{c}} \geq$ $m+n+1-5=m+n-4$. Hence $\overline{\mathbb{S}}_{\lambda_{1}^{c}}-\overline{\mathbb{S}}_{\lambda_{1}} \geq m+n-4-5=m+n-9>1$, a contradiction.

Theorem 16. The comb $P_{n} \odot K_{1}$ is pair mean cordial.
Proof. Let P_{n} be the path $u_{1} u_{2} \ldots u_{n}$. Let $V\left(P_{n} \odot K_{1}\right)=\left\{u_{i}, v_{i}: 1 \leq i \leq n\right\}$ and $E\left(P_{n} \odot K_{1}\right)=\left\{u_{i} v_{i}: 1 \leq i \leq n\right\} \cup\left\{u_{i} u_{i+1}: 1 \leq i \leq n-1\right\}$. Then $P_{n} \odot K_{1}$ has $2 n$ vertices and $2 n-1$ edges.
Define the function $\lambda: V\left(P_{n} \odot K_{1}\right) \rightarrow\{ \pm 1, \pm 2, \ldots, \pm n\}$ by $\lambda\left(u_{i}\right)=i$, for $1 \leq i \leq n$, $\lambda\left(v_{i}\right)=-i+1$, for $2 \leq i \leq n$ and $\lambda\left(v_{1}\right)=-n$. Hence $\overline{\mathbb{S}}_{\lambda_{1}}=n-1$ and $\overline{\mathbb{S}}_{\lambda_{1}^{c}}=n$.

Theorem 17. The ladder L_{n} is pair mean cordial for all values of n except $n \neq 2$
Proof. Let $V\left(L_{n}\right)=\left\{u_{i}, v_{i}: 1 \leq i \leq n\right\}$ and $E\left(L_{n}\right)=\left\{u_{i} v_{i}: 1 \leq i \leq n\right\} \cup\left\{u_{i} u_{i+1}, v_{i} v_{i+1}\right.$: $1 \leq i \leq n\}$. Then the ladder graph L_{n} has $2 n$ vertices and $3 n-2$. For $n=2, L_{2} \simeq C_{4}$ is not a pair mean cordial. This proof is divided into two cases:
Case 1: $n \equiv 0(\bmod 4)$
First assign the label $-1,-3,-5, \ldots,-n+1$ to the vertices $u_{1}, u_{3}, u_{5}, \ldots, u_{\frac{n+1}{2}}$ respectively. Assign the labels $3,5,7, \ldots, \frac{n+2}{2}$ respectively to the vertices u_{2}, u_{4},
$u_{6}, \ldots, u_{\frac{n}{2}}$. Then we assign the labels $\frac{-n-4}{2}, \frac{-n-8}{2}, \ldots,-n$ to the vertices $u_{\frac{n+4}{2}}$, $u_{\frac{n+8}{2}}, \ldots, u_{n}$ respectively. Next we assign the labels $2,4,6, \ldots, n$ respectively to the vertices $v_{1}, v_{3}, v_{5}, \ldots, v_{n-1}$. Now we give labels $-2,-4,-6, \ldots, \frac{-n}{2}$ in the vertices $v_{2}, v_{4}, v_{6}, \ldots, v_{\frac{n}{2}}$ respectively. We give labels $\frac{-n-4}{2}, \frac{-n-8}{2}, \ldots, n$ respectively in the vertices $v_{\frac{n+6}{2}}, v_{\frac{n+10}{2}}, \ldots, v_{n-2}$. Finally assign the label 1 to the vertex v_{n}. Hence $\overline{\mathbb{S}}_{\lambda_{1}}=\frac{3 n-2}{2} n-1$ and $\overline{\mathbb{S}}_{\lambda_{1}^{c}}^{2}=\frac{3 n-2}{2}$.
Case 2: $n \equiv 1(\bmod 4)$
First assign the label $-1,-3,-5, \ldots, \frac{-n-1}{2}$ to the vertices $u_{1}, u_{3}, u_{5}, \ldots, u_{n-1}$ respectively. Assign the labels $3,5,7, \ldots, n$ respectively to the vertices u_{2}, u_{4}, u_{6}, \ldots, u_{n-1}. Then we assign the labels $\frac{n+7}{2}, \frac{n+11}{2}, \ldots, n-1$ to the vertices $u_{\frac{n+5}{2}}$, $u_{\frac{n+9}{2}}, \ldots, u_{n-2}$ respectively. Assign the label 1 to the vertex u_{n}. Next we assign the labels $2,4,6, \ldots, \frac{n+3}{2}$ respectively to the vertices $v_{1}, v_{3}, v_{5}, \ldots, v_{\frac{n+1}{2}}$. Now we give labels $-2,-4,-6, \ldots,-n+1$ in the vertices $v_{2}, v_{4}, v_{6}, \ldots, v_{n-1}$ respectively. Finally we give labels $\frac{-n-5}{2}, \frac{-n-9}{2}, \ldots,-n$ respectively in the vertices $v_{\frac{n+5}{2}}, v_{\frac{n+9}{2}}, \ldots, v_{n}$. Hence $\overline{\mathbb{S}}_{\lambda_{1}}=\frac{3 n}{2}$ and $\overline{\mathbb{S}}_{\lambda_{1}^{c}}=\frac{3 n-4}{2}$.
Case 3: $n \equiv 2(\bmod 4)$
First assign the label $-1,-3,-5, \ldots, \frac{-n}{2}$ to the vertices $u_{1}, u_{3}, u_{5}, \ldots, u_{\frac{n}{2}}$ respectively. Assign the labels $3,5,7, \ldots, n-1$ respectively to the vertices u_{2}, u_{4}, u_{6}, \ldots, u_{n-2}. Then assign the labels $\frac{n+6}{2}, \frac{n+10}{2}, \ldots, n$ to the vertices $u_{\frac{n+4}{2}}, u_{\frac{n+8}{2}}$,
\ldots, u_{n-1} respectively. Finally assign the 1 to the vertex u_{n}. Next we assign the labels $-2,-4,-6, \ldots,-n$ respectively to the vertices $v_{2}, v_{4}, v_{6}, \ldots, v_{n}$. Now we give labels $2,4,6, \ldots, \frac{n+2}{2}$ in the vertices $v_{1}, v_{3}, v_{5}, \ldots, v_{\frac{n}{2}}$ respectively. Finally we give labels $\frac{-n-4}{2}, \frac{-n-8}{2}, \ldots,-n+1$ respectively in the vertices $v_{\frac{n+4}{2}}, v_{\frac{n+8}{2}}$,
\ldots, v_{n-1}. Hence $\overline{\mathbb{S}}_{\lambda_{1}}=\frac{3 n-2}{2}$ and $\overline{\mathbb{S}}_{\lambda_{1}^{c}}=\frac{3 n-2}{2}$.
Case 4: $n \equiv 3(\bmod 4)$
First assign the label $-1,-3,-5, \ldots,-n$ to the vertices $u_{1}, u_{3}, u_{5}, \ldots, u_{n}$ respectively. Assign the labels $3,5,7, \ldots, \frac{n+3}{2}$ respectively to the vertices u_{2}, u_{4}, u_{6}, $\ldots, u_{\frac{n+1}{2}}$. Then we assign the labels $\frac{-n-5}{2}, \frac{-n-9}{2}, \ldots, n-1$ to the vertices $u_{\frac{n+5}{2}}, u_{\frac{n+9}{2}}, \ldots, u_{n-1}$ respectively. Next we assign the labels $-2,-4,-6, \ldots$, $\frac{-n-1}{2}$ respectively to the vertices $v_{2}, v_{4}, v_{6}, \ldots, v_{\frac{n+1}{2}}$. Now we give labels $2,4,6$, $\ldots, n-1$ in the vertices $v_{1}, v_{3}, v_{5}, \ldots, v_{n-2}$ respectively. We give labels $\frac{n+7}{2}, \frac{n+11}{2}$, \ldots, n respectively in the vertices $v_{\frac{n+5}{2}}, v_{\frac{n+9}{2}}, \ldots, v_{n-1}$. Finally assign the label 1 to the vertex v_{n}. Hence $\overline{\mathbb{S}}_{\lambda_{1}}=\frac{3 n}{2}$ and $\overline{\mathbb{S}}_{\lambda_{1}^{c}}=\frac{3 n-4}{2}$.
Theorem 18. $L_{n} \odot K_{1}$ is pair mean cordial for all $n \geq 2$.
Proof. Let $V\left(L_{n} \odot K_{1}\right)=\left\{u_{i}, v_{i}, x_{i}, y_{i}: 1 \leq i \leq n\right\}$ and $E\left(L_{n} \odot K_{1}\right)=\left\{u_{i} v_{i}, u_{i} x_{i}, v_{i} y_{i}\right.$: $1 \leq i \leq n\} \cup\left\{u_{i} u_{i+1}, v_{i} v_{i+1}: 1 \leq i \leq n\right\}$. Then the graph $L_{n} \odot K_{1}$ has $4 n$ vertices and $5 n-2$. This proof is divided into two cases:
Case 1: n is odd
First assign the labels $-1,-5,-9, \ldots,-2 n+1$ to the vertices $u_{1}, u_{3}, u_{5}, \ldots, u_{n}$ respectively. Then we assign the labels $4,8,12, \ldots, 2 n-2$ respectively to the vertices $u_{2}, u_{4}, u_{6}, \ldots, u_{n-1}$. Next we assign the labels $2,6,10, \ldots, 2 n$ to the vertices $x_{1}, x_{3}, x_{5}, \ldots, x_{n}$ respectively. Now
we give labels $-3,-7,-11, \ldots$,
$-2 n+3$ respectively in the vertices $x_{2}, x_{4}, x_{6}, \ldots, x_{n-1}$. Assign the labels $3,5,7, \ldots, 2 n+1$ to the vertices $v_{1}, v_{2}, v_{3}, \ldots, v_{n-1}$ respectively. Next we assign the label 1 to the vertex v_{n}.
Finally we give labels $-2,-4,-6, \ldots,-2 n$ respectively in the vertices $y_{1}, y_{2}, y_{3}, \ldots, y_{n}$. Hence $\overline{\mathbb{S}}_{\lambda_{1}}=\frac{5 n-3}{2}$ and $\overline{\mathbb{S}}_{\lambda_{1}^{c}}=\frac{5 n-1}{2}$.
Case 2: n is even
First assign the labels $-1,-5,-9, \ldots,-2 n+3$ to the vertices $u_{1}, u_{3}, u_{5}, \ldots, u_{n-1}$ respectively. Then we assign the labels $4,8,12, \ldots, 2 n$ respectively to the vertices $u_{2}, u_{4}, u_{6}, \ldots, u_{n}$. Next we assign the labels $2,6,10, \ldots, 2 n-2$ to the vertices $x_{1}, x_{3}, x_{5}, \ldots, x_{n-1}$ respectively. Now we give labels $-3,-7,-11, \ldots,-2 n+1$ respectively in the vertices $x_{2}, x_{4}, x_{6}, \ldots, x_{n}$. Assign the labels $3,5,7, \ldots, 2 n-1$ to the vertices $v_{1}, v_{2}, v_{3}, \ldots, v_{n-1}$ respectively. Next we assign the label 1 to the vertex v_{n}. Finally we give labels $-2,-4,-6, \ldots,-2 n$ respectively in the vertices $y_{1}, y_{2}, y_{3}, \ldots, y_{n}$. Hence $\overline{\mathbb{S}}_{\lambda_{1}}=\frac{5 n-2}{2}$ and $\overline{\mathbb{S}}_{\lambda_{1}^{c}}=\frac{5 n-2}{2}$.

Theorem 19. The wheel W_{n} is not a pair mean cordial graph for all $n \geq 3$.
Proof. Let $W_{n}=C_{n}+K_{1}$ be a wheel graph where C_{n} is the cycle $u_{1} u_{2} \cdots u_{n} u_{1}$ and $V\left(K_{1}\right)=u$. Then the graph W_{n} has $n+1$ vertices and $2 n$ edges. If possible, let there be a pair mean cordial labeling λ. If the edge $u v$ get the label 1 , the possibilities are $\lambda(u)+\lambda(v)=1$ or $\lambda(u)+\lambda(v)=2$. This proof is divided into two cases:
Case 1: n is odd
In this case, the maximum number of edges with label 1 is $n-2$. That is $\overline{\mathbb{S}}_{\lambda_{1}} \leq n-2$. Then $\overline{\mathbb{S}}_{\lambda_{1}^{c}} \geq n+2$. Hence $\overline{\mathbb{S}}_{\lambda_{1}^{c}}-\overline{\mathbb{S}}_{\lambda_{1}} \geq n+2-n+2=4>1$, a contradiction.
Case 2: n is even
In this case, the maximum number of edges with label 1 is $n-1$. That is $\overline{\mathbb{S}}_{\lambda_{1}} \leq n-1$. Then $\overline{\mathbb{S}}_{\lambda_{1}^{c}} \geq n+1$. Hence $\overline{\mathbb{S}}_{\lambda_{1}^{c}}-\overline{\mathbb{S}}_{\lambda_{1}} \geq n+1-n+1=2>1$, a contradiction.
Theorem 20. The helm H_{n} is a pair mean cordial graph for all $n \geq 3$.
Proof. Let $V\left(H_{n}\right)=\left\{u, u_{i}, v_{i}: 1 \leq i \leq n\right\}$ and $E\left(H_{n}\right)=\left\{u u_{i}, u_{i} v_{i}: 1 \leq i \leq n\right\}$. Then H_{n} consists of $2 n+1$ vertices and $3 n$ edges. This proof is divided into two cases:
Case 1: n is odd
Fix the the label 3 to the vertex u. Next assign the label -1 to the vertex u_{1}. We assign the labels $-2,-4, \cdots-n+1$ to the vertices $u_{2}, u_{4}, \cdots, u_{n-1}$ respectively. Now we give labels $4,6, \cdots, n-1$ respectively in the vertices $u_{3}, u_{5}, \cdots, u_{n-2}$. Next we fix the label 1 to the vertex u_{n}. Then assign the label 2 to the vertex v_{1}. Then we assign the labels $3,5, \cdots, n$ to the vertices $v_{2}, v_{4}, \ldots, v_{n-1}$ respectively. Also we assign the the labels $-3,-5, \cdots,-n$ respectively to the vertices $v_{3}, v_{5}, \cdots, v_{n}$. Finally assign the label 1 to the vertex v_{n}. Hence $\overline{\mathbb{S}}_{\lambda_{1}}=\frac{3 n-1}{2}$ and $\overline{\mathbb{S}}_{\lambda_{1}^{c}}=\frac{3 n+1}{2}$.

Case 2: n is even

Fix the the label 3 to the vertex u. Next we assign the label -1 to the vertex u_{1}. We assign the labels $-2,-4, \cdots-n$ to the vertices $u_{2}, u_{4}, \cdots, u_{n}$ respectively. Now we give labels $4,6, \cdots, n$ respectively in the vertices $u_{3}, u_{5}, \cdots, u_{n-1}$. Next we fix the label 2 to the vertex v_{1}. Then assign the labels $3,5, \cdots, n-1$ to the vertices $v_{2}, v_{4}, \ldots, v_{n-2}$ respectively. Also
we assign the the labels $-3,-5, \cdots,-n+1$ respectively to the vertices $v_{3}, v_{5}, \cdots, v_{n-1}$. Finally assign the label 1 to the vertex v_{n}. Hence $\overline{\mathbb{S}}_{\lambda_{1}}=\frac{3 n}{2}$ and $\overline{\mathbb{S}}_{\lambda_{1}^{c}}=\frac{3 n}{2}$.
Theorem 21. The fan graph $f_{n}=P_{n}+K_{1}$ is pair mean cordial if n is even and $n \neq 4$
Proof. Let P_{n} be the path $u_{1} u_{2} \ldots u_{n}$. Let $V\left(f_{n}\right)=V\left(P_{n}\right) \cup\{v\}, E\left(f_{n}\right)=E\left(P_{n}\right) \cup\left\{u_{i} v\right.$: $1 \leq i \leq n\}$. Then the fan graph f_{n} has $n+1$ vertices and $2 n-1$ edges. When $n=4$, suppose λ is a pair mean cordial of f_{4}. Then the maximum number of edges label 1 is 2 . That is $\overline{\mathbb{S}}_{\lambda_{1}} \leq 2$. Hence $\overline{\mathbb{S}}_{\lambda_{1}^{c}} \geq 5$. Thus $\overline{\mathbb{S}}_{\lambda_{1}^{c}}-\overline{\mathbb{S}}_{\lambda_{1}} \leq 5-2=3>1$ a contradiction. Let n be even and $n \neq 4$. Then we define the function $\lambda: V\left(f_{n}\right) \rightarrow\left\{ \pm 1, \pm 2, \ldots, \pm \frac{n}{2}\right\}$ by

$$
\begin{aligned}
\lambda\left(u_{1}\right) & =1 \\
\lambda\left(u_{2 i}\right) & =i+1, \text { for } 1 \leq i \leq \frac{n-2}{2} \\
\lambda\left(u_{2 i+1}\right) & =-i, \text { for } 1 \leq i \leq \frac{n-2}{2} \\
\lambda\left(u_{n}\right) & =\frac{-n}{2} \\
\lambda(v) & =\frac{n}{2}
\end{aligned}
$$

Hence $\overline{\mathbb{S}}_{\lambda_{1}}=n-1$ and $\overline{\mathbb{S}}_{\lambda_{1}^{c}}=n$.
Theorem 22. The fan graph $f_{n}=P_{n}+K_{1}$ is not pair mean cordial if n is odd and $n>1$.
Proof. For $n=1, f_{1} \simeq P_{2}$ is a pair mean cordial. Let n be odd and $n>1$. Suppose λ is a pair mean cordial. Then if the edge $u v$ get the label 1 , the possibilities are $\lambda(u)+\lambda(v)=1$ or $\lambda(u)+\lambda(v)=2$. Hence the maximum number of edges with label 1 is $n+1$. That is $\overline{\mathbb{S}}_{\lambda_{1}} \leq n+1$. Thus $\overline{\mathbb{S}}_{\lambda_{1}^{c}} \geq 2 n-1-n-1=n-2$. Therefore $\overline{\mathbb{S}}_{\lambda_{1}^{c}}-\overline{\mathbb{S}}_{\lambda_{1}} \geq n+1-n+2=3>1$, a contradiction.

References

[1] Harary. F, Graph theory, Addison Wesely, Reading Mass., 1972.
[2] Gallian .J.A., A dynamic survey of graph labeling, The Electronic Journal of Combinatorics, 24(2021).
[3] Cahit .I., Cordial graphsz: a weaker versionof graceful and harmonious graphs.
[4] Somasundaram .S and Ponraj. R, Mean labeling of graphs, National Academy Science Letter, 26(2003), 210-213.
[5] Ponraj. R., Gayathri.A. and Somasundaram. S., Pair difference cordial labeling of graphs, J. Math. Compt. Sci., 11 (2021), no. 3 2551-2567.
[6] Ponraj. R., Gayathri.A. and Somasundaram. S., Some pair difference cordial graphs, Ikonion Journal of Mathematics, 3(2) (2021), 17-26.

[^0]: *Corresponding author: R. Ponraj. Email: ponrajmaths @gmail.com
 ${ }^{\dagger}$ selvaprabhu12 @gmail.com

