تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,501 |
تعداد مشاهده مقاله | 124,099,161 |
تعداد دریافت فایل اصل مقاله | 97,206,766 |
Physico-chemical and rheological properties of sage seed gum extracted by dry method in comparison with the conventional method | ||
Journal of Food and Bioprocess Engineering | ||
دوره 5، شماره 1، شهریور 2022، صفحه 34-42 اصل مقاله (649.5 K) | ||
نوع مقاله: Original research | ||
شناسه دیجیتال (DOI): 10.22059/jfabe.2022.337828.1107 | ||
نویسندگان | ||
Ahmad Reza Hosseini؛ Seyed Mohammad Ali Razavi* | ||
Department of Food Science and Technology, Ferdowsi University of Mashhad, P.O. Box: 91775-1163, Mashhad, Iran | ||
چکیده | ||
This paper aimed to evaluate the chemical compositions, water absorption capacity (WAC), solubility, extraction yield, and steady shear rheological properties of sage seed gum (SSG) extracted by the dry method (DEM) in comparison with the SSG extracted by the conventional wet method (WEM). The chemical compositions (w.b.%) including moisture, ash, protein, fat, and carbohydrate of the gum extracted by DEM were 7.64, 4.11, 7.02, 10.41, and 68.74%, respectively, while the values using WEM were 7.51, 8.69, 3.21, 0.97 and 77.21%, respectively. The solubility and WAC were 41% and 72% in DEM, and 13.73%, and 18.32% in WEM, respectively. Rheological results showed that the best model to fit the time-dependent rheological data was the first-order stress decay model with a non-zero equilibrium stress value. Based on this model, the extent and rate of thixotropy were obtained as 0.042 and 0.0038 s-1 for the DEM-SSG sample and 0.048 and 0.0082 s-1 for the WEM-SSG sample, respectively. The time-independent shear-thinning behavior was described by the Herschel-Bulkley model with excellent correlation. Based on this model, the yield stress, consistency coefficient, and flow behavior index for the WEM-SSG were 3.82 Pa, 3.22 Pa.sn, and 0.41 while the relevant values for DEM-SSG were 1.07 Pa, 0.47 Pa.sn, and 0.56, respectively. According to the findings of this research, the dry extraction method can be used as a fast, single-stage, low energy consumption, cost-effective and environment-friendly process. | ||
کلیدواژهها | ||
Extraction؛ Friction؛ Green technology؛ Mucilaginous seeds؛ Rheology | ||
مراجع | ||
AACC. (1995). Water hydration capacity of protein materials. Approved methods of the AACC (9th ed.). St Paul, MN: The Association.
Abbasi, S., & Rahimi, S. (2015). Persian gum. In: Mishra S, editor. Encyclopedia of Biomedical Polymers and Polymeric Biomaterials. (pp. 9001-9011). USA: Taylor & Francis Group LLC.
Alghooneh, A., Razavi, S. M. A., & Behruzian, F. (2017). Rheological characterization of hydrocolloids interaction: A case study on sage seed gum-xanthan blends, Food Hydrocolloids, 66, 206-215.
AOAC. (2005). Association of Official Analytical Chemists. Official methods of analysis. Arlington.
BahramParvar, M., Razavi, S. M. A., & Khodaparast, M. H. H. (2010). Rheological characterization and sensory evaluation of a typical soft ice cream made with selected stabilizers. Food Science and Technology International, 16, 79-88.
Blanco-Pascual N., Aleman A., Gomez-Guillen M. C., & Montero M. P. (2014). Enzyme-assisted extraction of κ/ι-hybrid carrageenan from Mastocarpus stellatus for obtaining bioactive ingredients and their application for edible active film development. Food and Function, 5, 319– 329.
Bostan, A., Razavi, S. M. A., & Farhoosh, R. (2010). Optimization of hydrocolloid extraction from wild sage seed (Salvia macrosiphon) using response surface methodology. International Journal of Food Properties, 13, 1380–1392.
Cerqueira, M. A., Pinheiro, A. C., Souza, B. W. S., Lima, A. M. P., Ribeiro, C., Miranda, C., et al.. (2009). Extraction, purification and characterization of galactomannans from non-traditional sources. Carbohydrate Polymers, 75, 408-414.
Cui, W. (2005). Food carbohydrates: chemistry, physical properties, and applications. CRC press by Taylor & Francis Group. ISBN 0-8493-1574-3.
Cui, W., & Mazza, G. (1996). Physicochemical characteristics of flaxseed gum. Food Research International, 29(3-4), 397-402.
Dakia, P., Blecker, C., Robert, C., Wathelet, B., & Paquot, M. (2008). Composition and physicochemical properties of locust bean gum extracted from whole seeds by acid or water dehulling pre-treatment. Food Hydrocolloids, 22(5), 807-818.
DuBois, M., Gilles, K. A., Hamilton, J. K., Rebers, P. A., & Smith, F. (1956). Colorimetric method for determination of sugars and related substances. Analytical Chemistry, 28(3), 350-356.
Emadzadeh, B., Razavi, S. M. A., & Hashemi, M. (2011). Viscous flow behavior of low-calorie pistachio butter: A response surface methodology. International Journal of Nuts and Related Sciences, 2, 37 – 47
Farahnaky, A., Askari, H., Majzoobi, M., & Mesbahi, Gh. (2010). The impact of concentration, temperature and pH on dynamic rheology of psyllium gels. Journal of Food Engineering, 100(2), 294–301.
Farahnaky, A., Bakhshizadeh-shirazi, Sh., Majzoobi, M., Mesbahi, Gh., Rezvani, E., & Schleining, G. (2013a). Ultrasound-assisted isolation of mucilaginous hydrocolloids from Salvia macrosiphon seeds and studying their functional properties. Innovative Food Science and Emerging Technologies, 20, 182–190.
Farahnaky, A., Shanesazzadeh, E., Majzoobi, M., & Mesbahi, Gh. (2013b). Effect of various salts and pH condition on rheological properties of Salvia macrosiphon hydrocolloid solutions. Journal of Food Engineering, 116, 782–788.
Francavilla M., Pineda A., Lin C. S. K., Franchi M., Trotta P., Romero A. A., & Luque R. (2013). Natural porous agar materials from macroalgae. Carbohydrate Polymers, 92, 1555–1560.
Glicksman, M. (1982). Food hydrocolloids. FL: CRC Press Inc.
Hosseini, A. R., Razavi, S. M. A., & Taghizadeh, M., (2021). Modeling and optimization of dry extraction conditions of sage seed (Salvia macrosiphon) gum using response surface methodology. Iranian Journal of Food Engineering Research, 20(1), 79–94.
Hosseini -Parvar, S. H., Razavi, S. M. A., Mortazavi, S. A., Matia-Merino, L., Motamedzadegan, A., & Khanipour, E. (2009). Optimisation study of gum extraction from Basil seeds (Ocimum basilicum L.). International Journal of Food Science and Technology, 44, 1755–1762.
Imeson, A. (2010). Food Stabilizers, Thickeners and Gelling Agents, Wiley-Blackwell, Oxford.
Javidi, F., Razavi, S. M. A., & Mazaheri-Tehrani, M. (2014). Application of basil and guar gum as a fat substitute in vanilla ice cream. Twenty-second National Congress of Food Science and Technology, Iran, Gorgan.
Jiang, J. X., Jian, H. L., Cristhian, C., Zhang, W. M. & Sun, R. C. (2011). Structural and thermal characterization of galactomannans from genus Gleditsia seeds as potential food gum, substitutes, Journal of the Science of Food and Agriculture, 91, 732–737
Kaewmanee, Th., Bagnasco, L., Benjakul, S., Lanteri, S., Morelli, C. F., Speranza, G., & Cosulich, M. E. (2014). Characterisation of mucilages extracted from seven Italian cultivars of flax. Food Chemistry, 148, 60-69.
Karazhiyan, H., & Razavi, S. M. A. (2009a). Flow properties and thixotropy of selected hydrocolloids: Experimental and modeling studies. Food Hydrocolloids, 23, 908–912.
Karazhiyan, H., Razavi, S. M. A., Phillips, G. O., Fang, Y., Al-Assaf, S., Nishinari, K., & Farhoosh, R. (2009b). Rheological properties of Lepidium sativum seed extract as a function of concentration, temperature and time. Food Hydrocolloids, 23, 2062–2068.
Karazhiyan, H., Razavi, S. M. A., & Phillips, G. O. (2011). Extraction optimization of a hydrocolloid extract from cress seed (Lepidium sativum) using response surface methodology. Food Hydrocolloids, 25, 915-920.
Keisandokht, S., Haddad, N., Gariepy, Y., & Orsat, V. (2018). Screening the microwave-assisted extraction of hydrocolloids from Ocimum basilicum L. seeds as a novel extraction technique compared with conventional heating-stirring extraction. Food Hydrocolloids, 74, 11-22.
Koocheki, A., Razavi, S. M. A., & Hesarinajad, M. A. (2012). Effect of Extraction Procedures on Functional Properties of Eruca sativa Seed Mucilage. Food Biophysics, 7, 84-92.
Koocheki, A., Taherian, A. R., Razavi, S. M. A., & Bostan, A. (2009a). Response surface methodology for optimization of extraction yield, viscosity, hue and emulsion stability of mucilage extracted from Lepidium perfoliatum seeds. Food Hydrocolloids, 23, 2369–2379.
Koocheki, A., Mortazavi, S. A., Shahidi, F., Razavi, S. M. A., & Taherian, A. R. (2009b). Rheological properties of mucilage extracted from Alyssum homolocarpum seed as a new source of thickening agent. Journal of Food Engineering, 91, 490–496.
Laaman, T. R. (2011). Hydrocolloids in Food Processing, Wiley-Blackwell: Oxford, UK.
Latufa, Y., Laura, L., Pierre, G., Faiza, F., Archana, B., Olivier, M., Christian Lefebvre, D., Dhanjay, D., & Joel, C. (2017). Ultrasound-assisted extraction and structural characterization by NMR of alginates and carrageenans from seaweeds, Carbohydrate Polymers, 166, 55-63.
López-Franco, Y. L., Cervantes-Montaño, C. I., Martínez-Robinson, K. G., Lizardi-Mendoza, J., & Robles-Ozuna, L. E. (2013). Physicochemical characterization and functional properties of galactomannans from mesquite seeds (Prosopis spp.), Food Hydrocolloids, 30, 656-660.
Myers, R. H., & Montgomery, D. C. (1995). Response surface methodology: Process and product optimization using designed experiments. New York: John Wiley & Sons, Inc. 260-264.
Naji-Tabasi, S., & Razavi, S. M. A. (2017). New studies on basil (Ocimum bacilicum L.) seed gum: Part III – Steady and dynamic shear rheology. Food Hydrocolloids, 67, 243-250.
Rafiquzzaman, S. M., Ahmed, R., Lee, J. M., Noh, G., Jo, G., & Kong, I-S. (2016). Improved methods for isolation of carrageenan from Hypnea musciformis and its antioxidant activity. Journal of Applied Phycology, 28, 1265–1274.
Razavi, S. M. A. (2019). Emerging Natural Hydrocolloids: Rheology and Functions. John Wiley and Sons Ltd., Chichester, England.
Razavi, S. M. A., & Hosseini, A.R. (2020). Seed mucilage extractor, Iranian Patent Number 139950840001051690.
Razavi, S. M. A., Mortazavi, S. A., Matia-Merino, L., Hosseini-Parvar, S. H., Motamedzadegan, A., & Khanipour, E. (2009). Optimisation study of gum extraction from Basil seeds (Ocimum basilicum L.). International Journal of Food Science and Technology, 44, 1755–1762.
Razavi, S. M. A., Taheri, H., & Quinchia, L. (2011). Steady shear flow properties of wild sage (Salvia macrosiphon) seed gum as a function of concentration and temperature. Food Hydrocolloids, 25, 451–458.
Razavi, S. M. A., Taheri, H., & Sanchez, R. (2013a). Viscoelastic characterization of sage seed gum. International Journal of Food Properties, 16(7), 1604-1619.
Razavi, S. M. A., Cui, S. W., Guo, Q., & Ding, H. (2013b). Some physicochemical properties of sage (Salvia macrosiphon) seed gum. Food Hydrocolloids, 35, 453-462.
Razavi, S. M. A., Cui, S. W., & Ding, H. (2016). Structural and physicochemical characteristics of a novel water-soluble gum from Lallemantia royleana seed, International Journal of Biological Macromolecules, 83, 142-151.
Razmkhah, S., Razavi, S. M. A., & Mohammadifar, M. A. (2016). Purification of cress seed (Lepidium sativum) gum: A comprehensive rheological study. Food Hydrocolloids, 61, 358-368.
Sciarini, L. S., Maldonado, F., Ribotta, P. D., Pérez, G. T., & León, A. E. (2009). Chemical composition and functional properties of Gleditsia triacanthos gum. Food Hydrocolloids, 23(2), 306-313.
Simas Tosin, F. F., Barraza, R. R., Petkowicz, C. L. O., Silveira, J. L. M., Sassaki, G. L., Santos, E. M. R., Gorin, P. A. J., & Iacomini, M. (2010). Rheological and structural characteristics of peach tree gum exudates. Food Hydrocolloids, 24, 486–493.
Song, K. W., Kim, Y. S., & Chang, G. S. (2006). Rheology of concentrated xanthan gum solutions: steady shear flow behavior. Fibers and Polymers, 7(2), 129-138.
Srivastava, M., & Kapoor, V. P. (2005). Seed galactomannans, an overview. Chemistry and Biodiversity, 2, 295-317.
Sousa A. M. M., Morais S., Abreu M. H., Pereira R., Sousa-Pinto I., Cabrita E. J., Delerue-Matos C., & Goncalves M. P. (2012). Structural, physical, and chemical modifications induced by microwave heating on native agar-like galactans. Journal of Agricultural and Food Chemistry, 60, 4977–4985.
Taghizadeh, M., Razavi, S. M. A., & Ardekani, SH. (2010). Modeling the Time-Dependent Rheological Properties of Pistachio Butter. International Journal of Nuts, 1(1), 38-45.
Towle, G. A., & Christensen, O. (1992). Industrial gums: Polysaccharides and their derivatives, R. Whistler, & J. BeMiller (3th ed.). New York: Academic.
Vazquez-Delfin, E., Robledo, D., & Freile-Pelegrin, Y. (2014). Microwave-assisted extraction of the carrageenan from Hypnea musciformis (Cystocloniaceae Rhodophyta). Journal of Applied Phycology, 26, 901–907.
Varadarajam, S. A., Ramli, N., Ariff ,A., Said, M., & Yasir, S. M. (2009). Development of high yielding carrageenan extraction method from Eucheuma cotonii using cellulose and Aspergillus niger. in ‘Prosiding Seminar Kimia Bersama UKM-ITB VIII. Bangi, Malaysia.
Wang, Q., Ellis, P. R., & Ross-Murphy, S. B. (2003). Dissolution kinetics of guar powders-II.Effects of concentration and molecular weight. Carbohydrate Polymers, 53, 75–83.
Wu, Y., Cui, W., Eskin, N. A. M., & Goff, H. D. (2009). An investigation of four commercial galactomannans on their emulsion and rheological properties. Food Research International, 42(8), 1141-1146
Yousefi, A. R., Eivazlou, R., & Razavi, S. M. A. (2016). Steady shear flow behavior of sage seed gum affected by various salts and sugars: Time-independent properties, International Journal of Biological Macromolecules, 91, 1018–1024.
Zahedi, Y., Mahdavianfar, H., & Razavi, S. M. A. (2017). Optimization of gum extraction conditions from Plantago major L. seeds using response surface method, Iranian Food Science & Technology Research Journal, 13(3), 1-13. | ||
آمار تعداد مشاهده مقاله: 364 تعداد دریافت فایل اصل مقاله: 286 |