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ABSTRACT 

Rice is the main food for the world's people. Monitoring and mapping rice fields play an important role in 

agricultural planning. Nowadays, intelligent management of rice fields has improved by remote sensing 

technology and deep learning algorithms. This research aims to study is the Fusion in-Decoder model and 

Data Augmentation techniques by using extracted  multi-temporal maps of NDVI, LST, and LSWI indices 

from Landsat-8 images for mapping rice fields at the state of California, in 2020. Therefore, six 

architectures of Fusion in-Decoder model were designed, after radiometric corrections, atmospheric 

corrections, and generate multi-temporal maps of NDVI, LST, and LSWI indices, and simulation of 

different phenologies of rice crop with the shift of multi-temporal indices and PCA algorithm: (1) One 

Encoder-one Decoder (NDVI) and use of Data Augmentation techniques by the shift of multi-temporal 

indices and PCA algorithm, (2) Two Encoders-one Decoder (NDVI-LST) and use of Data Augmentation 

techniques by the shift of multi-temporal indices and PCA algorithm, (3) Two Encoders-one Decoder 

(NDVI-LSWI) and use of Data Augmentation techniques by the shift of multi-temporal indices and PCA 

algorithm, (4) Three Encoders-Decoder (NDVI-LST-LSWI) and use of Data Augmentation techniques by 

the shift of multi-temporal indices and PCA algorithm, (5) Three Encoders-one Decoder (NDVI-LST-

LSWI) and use of Data Augmentation technique by the shift of multi-temporal indices, and (6) Three 

Encoders-one Decoder (NDVI-LST-LSWI) without the use of Data Augmentation techniques. The fusion 

in-decoder and Data Augmentation techniques compared with four classifiers Decision Tree (DT), 

Logistic Regression (LR), Multi-Layer Perceptron (MLP), and Auto-Encoder (AE). The results showed 

that the Fusion in-Decoder model with three Encoders-one Decoder (NDVI-LST-LSWI) and use of Data 

Augmentation techniques by the shift of multi-temporal indices and PCA algorithm performed best with 

Kappa coefficient (89/85%) for multi-temporal images of months April to August at the state of California. 

Besides, among the comparison classifiers, AE showed the worst result with Kappa coefficient (31.88%). 
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1. Introduction 

Rice is an important crop and the main food of more than 

half of the world’s people, which needs water and heat to 

grow (Dong et al., 2016; S. Zhao et al., 2020). For example,     

in 2020, the value of United States rice exports to the world  

was $1.9 billion. After Arkansas, California is the second 

producer of rice in the United States that generate 41.21 

                                                           
1 CW (centum weight) =45.36 kg 

(https://www.statista.com/statistics/) 

million CW1 of rice in 2020. Thus, mapping and monitoring 

rice fields with efficient means such as remote sensing 

technology is necessary for food security, climate changes, 

methane greenhouse gas emissions during transplanting and 

flooding, crop disease, lack of sufficient water sources, etc 

(Dong et al., 2016). Mapping rice fields with different types 

of satellite images such as optical images (Landsat, Sentinel-

2, SPOT-VGT, NOAA/AVHRR, MODIS, etc.) and radar 
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images (ERS-1 and 2, RADARSAT-1 and 2, ENVISAT 

ASAR, Sentinel-1, etc.) has advantages and disadvantages. 

The optical images use due to their ability to view the earth's 

surface in the spectral range 0.4 to 2.5 μm for extracting 

multi-temporal maps of vegetation indices such as 

Normalized Difference Vegetation Index (NDVI), Enhanced 

Vegetation Index (EVI), Soil Adjusted Vegetation Index 

(SAVI), Transformed Vegetation Index (TVI), Rice Growth 

Vegetation Index (RGVI), etc. Small rice fields are not 

detected by MODIS images due to low spatial resolution. 

The advantage of radar images in mapping rice fields is that 

they are independent of weather conditions such as cloud 

cover, rain, snow, and solar irradiance. The key factor in the 

mapping of rice fields using radar images is the temporal 

variation of radar backscatter over the growing season. The 

radar images for mapping rice fields are not suitable for 

reasons such as speckles noise, geometric distortions, low 

classification accuracy due to the use of single-polarization, 

and expensive mapping of large-scale areas. Overall to 

improve the mapping of rice fields uses combining optical 

and radar images (Mosleh, Hassan, & Chowdhury, 2015).  

The extracted multi-temporal maps from vegetation 

indices are used to mapping rice fields. The extracted 

phenology from the multi-temporal maps of vegetation 

indices is called Land Surface Phenology (LSP), which is 

important for monitoring and mapping rice fields. Phenology 

is defined as periodic biological phenomena that are 

correlated with climatic conditions. Phenology parameters 

such as the beginning of the growing season, the end of the 

growing season, the maximum values of vegetation index, 

the length of the growing season, etc. are calculated by 

increasing and decreasing values of vegetation indices during 

the planting, holding, and harvesting of rice fields for a 

period. During the late May to early July period, the rice 

fields are flooded before planting, thus the values NDVI are 

less than the values Land Surface Water Index (LSWI) 

during this period. After the growth, NDVI values increase 

to reach their maximum values. Then, due to etiolation and 

senescence, vegetation index values decrease (Wang et al., 

2015). 

Different methods have been provided to mapping rice 

fields from satellite images. For example, Phenology-based 

algorithms have been used for mapping rice fields by setting 

a threshold for extracted indices from Landsat-7/8, MODIS, 

Pi-SAR-L2 images, etc (Ding et al., 2020; Liu et al., 2020; 

Lobell & Asner, 2004; Yonezawa & Watanabe, 2020). 

Further, Feature-based decision methods have been proposed 

to take advantage of extracted features such as backscatter 

difference, the time interval between vegetative growth and 

maturity stages, backscatter variation rate, average 

normalized backscatter, and maximum backscatter from 

Sentinel-1 images (Chang, Chen, Wang, & Chang, 2021). 

Also, algorithms such as Random forest (RF), Decision tree 

(DT), Classification And Regression Trees (CART) model, 

Conventional Decision Tree method, Support Vector 

Machine (SVM), Multiclass relevance vector machine 

(mRVM), K-Nearest Neighbors (KNN), Fourier analysis, 

Wavelet Analysis, and Dynamic models have been proposed 

for mapping rice fields using polarimetric features (such as 

Entropy H, scattering angle, and Anisotropy HH / VV ratio, 

back-scattering of VH/VV channels), phenology features 

(such as sowing-transplanting slopes, yearly average, 

sowing-growing minimum, growing period slopes), and 

extracted indices from optical images (such as NDVI, EVI, 

RVI, MNDWI, and LSWI) (Chen et al., 2020; Inoue, Ito, & 

Yonezawa, 2020; Mansaray, Huang, Zhang, Huang, & Li, 

2017; Talema & Hailu, 2020;  Wang, Zang, & Tian, 2020; 

Yang et al., 2017; Zhan, Zhu, & Li, 2021). 

According to that machine learning methods such as SVM, 

KNN, RF, etc. cannot fully extract the spectral and spatial 

features, deep learning algorithms have been proposed to 

improve mapping accuracy using high-level features 

extraction from low-level features in rice fields ( Zhao et al., 

2020). For example, Convolutional Neural Networks 

(CNNs) have been proposed for mapping rice fields using 

STARFM Spatio-temporal fusion techniques of Landsat-8 

and MODIS images (Zhang, Lin, Wang, Sun, & Fu, 2018). 

Also, CNNs have been provided to identify five rice varieties 

in Australia by using Sentinel-2 MSI, with higher spatial and 

spectral resolutions than Landsat images (Guo, Jia, & Paull, 

2018). One study has been done combining deep learning 

techniques such as Data Augmentation to overcome the 

limitations of data using Sentinel-1 images (Jo et al., 2020). 

The result showed that Data Augmentation had the best 

performance in improving mapping accuracy in rice fields 

(Jo et al., 2020). In another study, CNNs algorithms one-

dimensional, two-dimensional, and three-dimensional have 

been developed using Sentinel-2 images. The results showed 

that two-dimensional Convolution Neural Networks had the 

best performance in mapping rice fields ( Zhang, Liu, Wu, 

Zhan, & Wei, 2020). Also, combining pre-trained LeNet-5 

and Decision Tree have been proposed using Hj1-A/B 

images (Zhao et al., 2020). This method contains 2 steps as 

follows: (1) The use of a pre-trained LeNet-5 to classify the 

crop class from other classes such as a river, forest, etc., and 

(2) The use of DT model with extracted phenological 

variables from multi-temporal maps of NDVI index to 

separate rice paddies from abandoned fields. As well, CNNs 

have been used to extract features such as abstract, shape, 

and amplitude from the multi-temporal curve of vegetation 

indices to identify rice fields at the pixel level using Hj1-A/B 

images (Jiang, Liu, & Wu, 2018). In a recent study, 1-D CNN 

and CNN-LSTM have been used to mapping rice fields at the 

state level using Sentinel-2 and Landsat-8 images. The 

results of these methods shown that the use of 1-D CNN 

could successfully identify rice fields in comparison to CNN-

LSTM (Rawat, Kumar, Upadhyay, & Kumar, 2021). 

In this paper, we present the Fusion in-Decoder networks 
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and Data Augmentation to an automatic mapping of rice 

fields using Landsat-8 optical images. Some key 

contributions of our work are as follows: (1) Multi-temporal 

maps of NDVI, LST, and LSWI indices were extracted from 

Landsat-8 multi-temporal images, (2) Data Augmentation 

techniques were used to simulate various phenologies, (3) 

Different combinations of multi-temporal images were used 

as the input of proposed method, (4) Fusion in-Decoder 

networks were designed, which consists several encoders 

and a decoder, (5) Thermal growth season characteristics 

were extracted from multi-temporal maps of Land Surface 

Temperature (LST) index, and (6) Flooding period 

characteristics were extracted from multi-temporal maps of 

Land Surface Water Index (LSWI). LST (surface skin 

radiative temperature) is an important parameter related to 

albedo, vegetation, and soil moisture, which is calculated 

from the thermal infrared band. The Land Surface Water 

Index (LSWI) that sensitive to the total amount of water in 

vegetation and its soil is calculated from the shortwave 

infrared (SWIR) and the NIR bands. Normalized Difference 

Vegetation Index is the most well-known index to detect 

vegetation by using bands of NIR and Red. 

INNOVATION. Our work innovations are as follows: (1) 

The use of Fusion in-Decoder CNN models, (2) Simulation 

of rice planting time in optical images with a shift of multi-

temporal maps, (3) Improvement of edges by using PCA 

algorithm, and (4) Feature extraction from thermal growth 

season with Fusion in-Decoder Networks. 

2. The Studied areas and Material 

2.1. Study area 

California is one of the western United States that covers 

Latitude of 32° 30' N to 42° N and Longitude of 114° 8' W 

to 124° 24' W. California is the 2nd producer of rice in the 

US for reasons such as well soil, enough water, and 

Mediterranean climate in summer (hot days and cool nights) 

(https://www.statista.com/statistics/190823/top-us-states-

for-rice-production/). Glenn, Butte, Lake, Colusa, Yuba, 

Yolo, Sutter, Napa, Sacramento, El Dorado, Placer, and 

Nevada are the study counties of rice producers in California 

(Figure 1). 

 

 

 

 
Figure 1. Study counties 
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2.2. Data Set 

In the study, Landsat-8 OLI images were downloaded from 

USGS2. The cloudless images were used from April to 

October 2020. Landsat-8 images were pre-processed by 

radiometric calibration and atmospheric correction using the 

Quick Atmospheric Correction (QUAC) algorithm 

(Bernstein, Jin, Gregor, & Adler-Golden, 2012). Finally, 

three indices including Land Surface Temperature (LST) 

(Artis & Carnahan, 1982), Land Surface Water Index 

(LSWI) (Chandrasekar, Sesha Sai, Roy, & Dwevedi, 2010), 

and Normalized Difference Vegetation Index (NDVI) 

(Rouse, Haas, Schell, & Deering, 1974) were calculated. 

LST is calculated by using Equations 1-6:  

NDVI =
ρnir−ρred

ρnir+ρred
)                                                                              (1)         

Lλ = gain × DN + offset                                                             (2)            

BT =
K2

ln(
K1
Lλ

+1)
− 273.15                                                            (3)                             

K1 = 666.09 , K2 = 1282.71 

PV = (
NDVI−minNDVI

maxNDVI−minNDVI
)2

                                                               (4)                  

 ε = 0.004 × PV + 0.98                                                     (5) 

LST =
BT

1+(
λ×TB

p
)×ln ε

                                                                      (6)                     

p= 1.438 × 10−3 mk 

 

Where Lλ, DN, BT, and ε are spectral radiance, Digital 

Namber, Brightness Temprature, Land Surface Emissivity 

respectively. 

 Therefore, a total of 27 extracted features from Landsat-8 

images of nine-date were used to mapping rice fields over the 

study areas, and each date includes NDVI, LSWI, and LST 

indices (Figure 2). Used images are shown in Table 1. 

 

Table 1. Used images 

Number Date 

1 2020/04/03 

2 2020/05/21 

3 2020/06/06 

4 2020/06/22 

5 2020/07/08 

6 2020/07/24 

7 2020/08/09 

8 2020/10/12 

9 2020/10/28 

2.3. Ground truth  

Ground truth map with spatial resolution 30 m was 

downloaded from USDA3. Crop fields were classified based 

on the Maximum Likelihood classifier method using Landsat 

TM/ETM satellites, before 2006. But the Decision Tree 

method is used to classify crop fields by using Landsat 8 

sensor, Disaster Monitoring Constellation DEIMOS-1, and 

                                                           
2 https://earthexplorer.usgs.gov/ 

UK2, ISRO ResourceSat-2 LISS-3, and the ESA Sentinel-2 

A/B sensors in USDA from 2006. Figure 2 shows the ground 

truth map.  

3. Method 

In this study, a new method by using Fusion in-Decoder, 

Data Augmentation techniques, and Landsat-8 optical 

images was proposed for automatic mapping of rice fields in 

the state of California. First, indices (NDVI, LSWI, and LST) 

were calculated using Landsat-8 images. Then phenology 

various was simulated by the shift of multi-temporal indices 

and the PCA algorithm. Finally, the Fusion in-Decoder 

model with different architectures was used for mapping rice 

fields. The flowchart of the proposed method is shown in 

Figure 3.  

3.1 Feature selection 

The selected features in the study included 3 indices 

(NDVI, LSWI, and LST) were extracted from the Landsat-8 

multi-temporal images. LST and LSWI were used along with 

NDVI to improve mapping rice fields. Six experimental with 

different features and architectures were designed to evaluate 

the mapping of rice fields. The different architectures and 

models with different features are shown in Table 2.  

3.2 Data Augmentation 

Data augmentation techniques such as rotation, 

partitioning, and scaling, are used to overcome the 

limitations of training data. Also, the data augmentation 

techniques are applied via temporal differences and 

photometric differences (Jo et al., 2020). For example, the 

rice planting season in California varies from late May to 

early July, depending on the geographical conditions and 

type of rice. So a shift of multi-temporal indices values and 

a shift of each pixel value to new pixel values could minimize 

the phenological differences in various areas. Thus, temporal 

differences and phenological differences were simulated by 

moving back and forth between the multi-temporal maps of 

indices (Figure 4) and a shift of each pixel value to new pixel 

values by PCA algorithm (Taylor & Nitschke, 2018) 

(Algorithm 1 and Figure 5) in California.  

Algorithm 1 

Source indices: NDVIt, LSTt, LSWItand t = [1, … ,7] 

MNDVI , MLST, and MLSWI ← Create three N ×7 matrices 

where the columns represent the multi-temporal indices 

values for each patch image (N: number of pixels) 

PCA is performed on MNDVI , MLST, and MLSWI . 

for all Pixels MNDVI(x, y),  MLST(x, y), and MLSWI(x, y) 

do 

        [MNDVIxy
1 , . . . , MNDVIxy

t ] ← Add [pNDVI
1 , … , pNDVI

t ] ×

[α βNDVI
1 , … , α βNDVI

t ]T

3 https://nassgeodata.gmu.edu/CropScape/ 

https://earthexplorer.usgs.gov/
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(a) (b) 

  

(c) (d) 

 

(e) 

 

Figure 2. Study area. (a) RGB image, (b) NDVI image, (c) LSWI image (d) LST image, and (e) Ground truth map. 

    

 [MLSTxy
1 , . . . , MLSTxy

t ] ← Add [pLST
1 , … , pLST

t ] ×

[α βLST
1 , … , α βLST

t ]T 

        [MLSWIxy
1 , . . . , MLSWIxy

t ] ← Add [pLSWI
1 , … , pLSWI

t ] ×

[α βLSWI
1 , … , α βLSWI

t ]T 

 βtis eigenvalue corresponding to the 

eigenvector pt. 

 Tistranspose. 

 αis a random variable that is drawn from 

a Gaussian with 0 mean and standard deviation 

0.1. 

    end for 

return MNDVI, MLST, and MLSWI. 
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3.3. Fusion in-decoder CNN 

In this paper, we propose Fusion in-Decoder networks by 

using NDVI, LST, and LSWI multi-temporal indices. Fusion 

in-Decoder networks are a deep learning algorithm that 

fusions n Encoder at the end of the Encoding step (Liu et al., 

2020). Thus, Fusion in-Decoder networks have two parts: n 

number Encoder that extracts features from input images, 

and a Decoder that reconstructs input images in output 

(Izacard & Grave, 2020). The proposed Fusion in-Decoder 

networks include two or three Encoders and one Decoder 

(Depending on the number of indices). 

The proposed method is used from image patches with the 

size of 512˟512˟7 or 512˟512˟9 as input for each Encoder. 

For each image patch, feature maps are calculated by using 

Equations 7-9: 

FNDVI
l = Pool2×2(max (0, FNDVI

l−1 ∗ WNDVI
l + BNDVI

l ))        (7) 

                                

FLST
l = Pool2×2(max (0, FLST

l−1 ∗ WLST
l + BLST

l ))                (8)       

                  

FLSWI
l = Pool2×2(max (0, FLSWI

l−1 ∗ WLSWI
l + BLSWI

l ))        (9)                        

 

Where Fl−1, Fl, Wl, Bl, L, and ∗ are the input feature map, 

output feature map, weights, bias, layer number, and 2D 

Convolution block (Extraction of high-level features from 

low-level features using spatial relationships between pixels) 

for each Encoder, respectively (LeCun, Bengio, & Hinton, 

2015). In our model, initial values of weight and bias are 

generated using the Glorot uniform method (Gao, Chai, & 

Liu, 2017). Also is used ReLU as the activation function 

(Agarap, 2018). 

According to Equations 7-9, a max-pooling (Pool) layer 

with size 2×2 is performed to prevent over-fitting, reduce 

feature map dimensions and network parameters after the 

convolution layer. Then, extracted feature maps from the 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 3. Flowchart of the proposed method. 
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Fusion in-Decoder 
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corresponding layers of Encoders are concatenated (𝐹𝑙) and 

 

 

 

Table 2a. Experiment with different architectures with different features. 

Experimental 

architectures 

features  Feature dimensions  

1 Encoder – 1 Decoder NDVI 7 (with DA by the shift of multi-temporal indices and PCA 

algorithm) 

2 Encoder – 1 Decoder NDVI, LST 14 (with DA by the shift of multi-temporal indices and PCA 

algorithm) 

2 Encoder – 1 Decoder NDVI, LSWI 14 (with DA the shift of multi-temporal indices and PCA 

algorithm) 

3 Encoder – 1 Decoder NDVI, LST, and 

LSWI 

21 (with DA by the shift of multi-temporal indices and PCA 

algorithm) 

3 Encoder – 1 Decoder NDVI, LST, and 

LSWI 

21 (with DA by the shift of multi-temporal indices) 

3 Encoder – 1 Decoder NDVI, LST, and 

LSWI 

27(without the use of DA) 

1 Encoder – 1 Decoder NDVI, LST, and 

LSWI 

27(without the use of DA) 

 

 

 

 

Table 2b. Experiment with other models (Compared methods). 

Decision Tree (DT) NDVI, LST, and 

LSWI 

27(without the use of DA) 

Logistic Regression (LR) NDVI, LST, and 

LSWI 

27(without the use of DA) 

Layer Perceptron -Multi

(MLP) 

NDVI, LST, and 

LSWI 

27(without the use of DA) 

Autoencoder (AE) NDVI, LST, and 

LSWI 

27(without the use of DA) 

 

 

 

 

 

 
Figure 4. Data augmentation techniques by a shift of multi-temporal maps of indices. 
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 the input image is reconstructed by using Equation 10:    

y = max (0,Fl ∗ lW
~ + l)B

~                                                    (10)  

Where lW
~ , lB

~ , and y are the transposition of  B, the 

transposition of  W, and predicted value, respectively (Zhao, 

Guo, Yue, Zhang, & Luo, 2015). Finally, a 2D Convolution 

block with a Softmax activation function is used to generate 

the rice map (Dunne & Campbell, 1997). 

In our method, the cross Entropy loss function is used to 

calculate weight and bias parameters, and the network is 

trained using the ADAM algorithm for 30 epochs (Wahlberg, 

Boyd, Annergren, & Wang, 2012; Zhang & Sabuncu, 2018). 

In addition, the Batch Normalization and Dropout techniques 

are added to improve the network performance. Dropout is 

applied to reduce overfitting and create different 

architectures by using removing neurons randomly in the last 

layer of each Encoder. Batch Normalization is applied to 

keep the distribution of the input values of each layer and 

increase the speed of learning (Garbin, Zhu, & Marques, 

2020). Parameters input into the Fusion in-Decoder model 

and architectures of Fusion in-Decoder are shown in Table 3 

and Figure 6.

 

 

 

 

 
(a) 

 

 

 

 

Table 3. Parameters input into the Fusion in-Decoder (MLP and AE) 

optimization 

Algorithm 

Number of 

epochs 

Patch size Learning rate  Loss function Initialization 

algorithm 

ADAM 30 512*512 0.0001 Cross-Entropy Glorot uniform 
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Figure 5. Example of PCA simulation for Early Planting.
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(f) 

Figure 6. Architectures of Fusion in-Decoder. (a) 1 Encoder-1 Decoder (input feature: NDVI) and use of DA by the 

shift of multi-temporal indices and PCA, (b) 2 Encoder-1 Decoder (input features: NDVI and LST) and use of DA 

by the shift of multi-temporal indices and PCA, (c) 2 Encoder-1 Decoder (input features: NDVI and LSWI) and use 

of DA by the shift of multi-temporal indices and PCA, (d) 3 Encoder-1 Decoder (input features: NDVI, LST, and 

LSWI) and use of DA by the shift of multi-temporal indices and PCA, (e) 3 Encoder-1 Decoder (input features: 

NDVI, LST, and LSWI) and use of DA by the shift of multi-temporal indices, and (f) 3 Encoder-1 Decoder (input 

features: NDVI, LST, and LSWI) without the use of DA. 

 

 

3.4. Compared Methods 

The proposed method was compared with the DT 

(criterion=entropy, max_depth = 4), LR (C=0.01, 

solver=liblinear), MLP (Hidden layer1= 60 neuron and Relu 

activation function, Hidden layer2= 30 neuron and Relu 

activation function, and output layer= 1 neuron and Sigmoid 

activation function), and AE methods. Classification 

accuracies were assessed by Overall Accuracy (OA), Kappa 

coefficient, and F-score calculated using a confusion matrix. 

4. Result 

In this study, 1624940 and 738269 number rice pixels were 

selected to train and validation the Fusion in-Decoder model, 

respectively. The distribution of the training and validation 

sites is shown in Figure 7. 

 

 

Figure7. Training (yellow) and validation (red) sites.  

4.1. Mapping rice fields with proposed Method 

Data Augmentation techniques by using the shift of multi-

temporal indices and PCA algorithm were applied to training 

sites. Mapping of rice fields with different architectures and 

features was performed (Figure 6). To analyze of results, the 

Fusion in-Decoder model was designed in six different 

architectures: (1) One Encoder-one Decoder (NDVI) and use 

of Data Augmentation techniques by the shift of multi-

temporal indices and PCA algorithm, (2) Two Encoders-one 

Decoder (NDVI-LST), and use of Data Augmentation 

techniques by the shift of multi-temporal indices and PCA 

algorithm, (3) Two Encoders-one Decoder (NDVI-LSWI) 

and use of Data Augmentation techniques by the shift of 

multi-temporal indices and PCA algorithm, (4) Three 

Encoders-one Decoder (NDVI-LST-LSWI) and use of Data 

Augmentation techniques by the shift of multi-temporal 

indices and PCA algorithm, (5) Three Encoders-one Decoder 

(NDVI-LST-LSWI) and use of Data Augmentation 

technique by the shift of multi-temporal indices, and (6) 

Three Encoders-one Decoder (NDVI-LST-LSWI) without 

the use of Data Augmentation techniques. For the Fusion in-

Decoder architectures, each Encoder consisted of 5 layers 

containing 2D Convolution block (with 2 convolution 

layers), ReLU activation function, Batch Normalization 

layer, and max pooling layer. The number of filters in each 

layer of the Encoder was 16, 32, 64, 128, and 256, 
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respectively. Also, each Decoder consisted of 4 layers 

containing a 2D Convolution block (with 2 convolution 

layers), ReLU activation function, and Batch Normalization 

layer. The number of filters in each layer of the Decoder was 

128, 64, 32, and 16, respectively. In addition, a Dropout layer 

was used with the rate of 0.5 in the last Decoder layer. 

Following Decoder, the last layer contained 2D Convolution 

block (with 2 convolution layers) and Softmax activation 

function. The batch size and numbers of epochs were 5 and 

30 in the final models. Training images were divided into 

three subsets and the values of the weight parameters in each 

subset were used as the initial values of the next subset. Also, 

to analyze the effect of multi-temporal images combinations 

on the results of each of the Fusion in-Decoder architectures, 

different combinations of multi-temporal images were used: 

(1) Multi-temporal images related to dates 06/06, 06/22, 

07/08, 07/24, 08/09, 10/12, and 10/28, (2) Multi-temporal 

images related to dates 05/21, 06/06, 06/22, 07/08, 07/24, 

08/09, and 10/12, (3) Multi-temporal images related to dates 

04/03, 05/21, 06/06, 06/22, 07/08, 07/24, and 08/09, and (4) 

Multi-temporal images related to dates 04/03, 05/21, 06/06, 

06/22, 07/08, 07/24, 08/09, 10/12, and 10/28. The proposed 

method results are shown with different architectures and 

features in Tables 4-7. 

 

 

Table 4. Validation results for Multi-temporal images related to dates 04/03, 05/21, 06/06, 06/22, 07/08, 07/24, 

08/09, 10/12, and 10/28. 

Data Augmentation (DA)        features OA Kappa F score 

Without DA            NDVI-LST- 

           LSWI 

           96.39 83.93 87.06 

 

 

Table 5. Validation results for Multi-temporal images related to dates 06/06, 06/22, 07/08, 07/24, 08/09, 10/12, 

and 10/28. 

Data Augmentation (DA) features OA Kappa F score 

The shift of multi-temporal 

indices 

 NDVI-LST-

LSWI 

97.13 89.07 91.73 

 

The shift of multi-temporal 

indices & PCA algorithm 

 NDVI 96.35 84.13 87.45 

 NDVI-LST 97.44 89.37 91.67 

 NDVI-LSWI 97.09 88.56 91.17 

 NDVI-LST-

LSWI 

97.36 89.69 92.06 

 

 

Table 6. Validation results for Multi-temporal images related to dates 05/21, 06/06, 06/22, 07/08, 07/24, 08/09, 

and 10/12. 

Data Augmentation (DA) features OA Kappa F score 

The shift of multi-temporal 

indices 

 NDVI-LST-

LSWI 

97.27 89.50 92.00 

 

The shift of multi-temporal 

indices & PCA algorithm 

 NDVI 96.34 84.02 87.19 

 NDVI-LST 97.56 89.83 91.99 

 NDVI-LSWI 97.17 88.76 91.26 

 NDVI-LST-

LSWI 

97.49 89.66 91.88 

 

 

Table 7. Validation results for Multi-temporal images related to dates 04/03, 05/21, 06/06, 06/22, 07/08, 07/24, 

and 08/09. 

Data Augmentation (DA) features OA Kappa F score 

The shift of multi-temporal 

indices 

 NDVI-LST-

LSWI 

96.94 86.21 88.92 

 

The shift of multi-temporal 

indices & PCA algorithm 

 NDVI 96.11 83.16 86.47 

 NDVI-LST 97.50 89.54 91.75 

 NDVI-LSWI 97.09 88.72 91.23 

 NDVI-LST-

LSWI 

97.51 89.85 92.02 
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According to Table 4, for multi-temporal images related to 

dates 04/03, 05/21, 06/06, 06/22, 07/08, 07/24, 08/09, 10/12, 

and 10/28, the Kappa coefficient was 83.93% when NDVI, 

LST, and LSWI multi-temporal indices (three Encoder-one 

Decoder) without DA were used. According to Table 5, for 

multi-temporal images related to dates 06/06, 06/22, 07/08, 

07/24, 08/09, 10/12, and 10/28, the highest Kappa coefficient 

was 89.69% when NDVI, LSWI, and LST multi-temporal 

indices (three Encoders-one Decoder) were used with DA by 

the shift of multi-temporal indices and PCA algorithm. 

According to Table 6, for multi-temporal images related to 

dates 05/21, 06/06, 06/22, 07/08, 07/24, 08/09, and 10/12, the 

highest Kappa coefficient was 89.83% when NDVI and LST 

multi-temporal indices (two Encoders-one Decoder) were 

used with DA by the shift of multi-temporal indices and PCA 

algorithm. According to Table 7, for multi-temporal images 

related to dates 04/03, 05/21, 06/06, 06/22, 07/08, 07/24, and 

08/09, the highest Kappa coefficient was 89.85% when 

NDVI, LST, and LSWI multi-temporal indices (three 

Encoders-one Decoder) were used with DA by the shift of 

multi-temporal indices and PCA algorithm. 

Results of Tables 4-7 show that the Fusion in-Decoder 

model with three Encoders-one Decoder (NDVI-LST-

LSWI) and DA by the shift of multi-temporal indices and 

PCA algorithm for multi-temporal images related to dates 

04/03, 05/21, 06/06, 06/22, 07/08, 07/24, and 08/09 have 

higher Kappa coefficient (89.85%). 

Accuracy and Loss curves are shown for the six 

architectures with kernel size 3×3 using training datasets in 

Figure 8. Generated rice maps by six Fusion in-Decoder 

architectures for test images are shown in Figures 9-11. 

4.1. Mapping rice fields with compared Methods 

The classification results of the proposed method were 

compared with those of other classifiers such as DT, LR, 

MLP, and AE (with one encoder – one decoder), using the 

27 features (NDVI-LST-LSWI). Table 8 shows that the 

Fusion in-decoder networks and Data Agumentation have 

higher accuracy (OA=97.51, Kappa=89.85, and F-

score=92.02) than the other four classifiers. Among the 4 

compared methods, the auto-encoder (AE) method with one 

encoder- one decoder showed the lowest kappa coefficient 

(31.88%) that shows the effect of fusion in-decoder than the 

fused features. 

5. Discussion 

Remote sensing techniques have been proposed to 

mapping rice fields at the state and county level. Various 

sensors (optical and radar sensors) are used to mapping rice 

fields. The main challenges associated with mapping rice 

fields are (1) The cloud coverage in rice planting areas when 

the optical images are used, (2) Not identifying small rice 

fields when the MODIS images are used Due to low when 

resolution, (3) Not identify of rice fields in the sloping area 

the radar images are used, (4) The low accuracy of mapping 

rice fields with radar images compared to optical images, (5) 

Separation of rice fields from rainfed crops, (6) The spectral 

similarity of rice class with other classes, (7) Rice with 

different varieties, etc (Mosleh et al., 2015). 

Machine learning and deep learning algorithms are used 

for mapping rice fields. In some research, machine learning 

algorithms are used to generate a map from rice fields. Deep 

learning methods are high accuracy than machine learning 

methods because high-level features are extracted from 

spectral bands and indices using deep learning algorithms. 

The accuracy of mapping rice fields is improved using deep 

learning algorithms with phenological parameters. One of 

the challenges of deep learning methods is to create 

distortions at the boundary of heterogeneous areas. However, 

the patch-based CNNs perform better than the pixel-based 

CNNs for mapping rice fields (Zhang et al., 2018) .   

One main problem associated with deep learning methods 

is the lack of enough training datasets Therefore, one 

solution for overcoming this problem would be Data 

Augmentation techniques. In this research, we used the shift 

of multi-temporal indices and PCA algorithm to simulate 

different phenology. We also used Fusion in-Decoder 

network with different architectures for mapping rice fields 

by using Landsat-8 multi-temporal images at the several 

counties level. The numerical results from test data validated 

the efficiency of the Fusion in- Decoder and Data 

Augmentation for mapping rice fields at the several counties 

level. A visual interpretation of the results in Figures 9-11

 

show some key advantages our work that is as follows: (1) 

The improve mapping results by using PCA algorithm in the 

edges of rice fields (for example Figure 12), (2) The remove 

some non-rice class (such as water class) from the rice final 

map by planting time simulation using the shift of multi-

temporal indices (for example Figure 13), (3) The use of LST 

multi-temporal indices for feature extract ion of the thermal 

growing season (to remove rainfed crops from the final), (4) 

The use of LSWI multi- temporal indices for feature 

extraction of the rice fields flooding, (5) The use of Fusion 

in-Decoder networks for effective feature extraction from 

each Index (NDVI, LST, and LSWI), and (6) Short run- time. 

The numerical results show the efficiency and superiority of 

the Fusion in-Decoder networks with three Encoders-one 

Decoder (NDVI-LST-LSWI) and Data Augmentation in 

terms of Kappa coefficient (89/85%) for Multi-temporal 

images related to dates 04/03, 05/21, 06/06, 06/22, 07/08, 

07/2, and 08/09, compared with five other Fusion in-Decoder 

architecture. Some disadvantages of our work are as follows: 

(1) Non-identify some of the rice fields and (Figure 14), and 

(2) Identify some of the non-rice crops in rice class due to 

neighbor of rice crop with other crops (Figure 15). 
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Figure 8. Accuracy and loss curves using training datasets for the Various experiments. (a) Data Augmentation by 

the shift of multi-temporal indices and PCA algorithm, (b) Data Augmentation by the shift of multi-temporal 

indices, and (c) Without Data Augmentation. 



Earth Observation and Geomatics Engineering 5(2) (2021) 74-95 
 

88 
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Figure 9. The generated results by Fusion in-Decoder architectures for multi-temporal images related to dates 05/21, 

06/06, 06/22, 07/08, 07/24, 08/09, and 10/12. 
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Figure 10. The generated results by Fusion in-Decoder architectures for multi-temporal images related to dates 04/03, 

05/21, 06/06, 06/22, 07/08, 07/24, and 08/09. 
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Figure 11. The generated results by Fusion in-Decoder architectures for multi-temporal images related to dates 05/21, 

06/06, 06/22, 07/08, 07/24, 08/09, and 10/12. 

 

 

 

Table 8. Validation results for compared methods 

method features OA Kappa F score 

DT  NDVI-LST-LSWI 96.51 84.91 88.06 

LR NDVI-LST-LSWI 96.78 87.39 90.29 

MLP NDVI-LST-LSWI 93.91 74.92 80.003 

AE (Without DA) NDVI-LST-LSWI 80.84 31.88 39.52 

 

 

 

 

 

 Multi-temporal images related to dates 05/21, 06/06, 06/22, 07/08, 07/24, 08/09, and 10/12

  

 

Without DA DA by the shift of 

multi-temporal 

indices 

 DA by the shift of multi-temporal indices and PCA algorithm  

3Encoder-1Decoder, 1Encoder-

1Decoder, 

2Encoder-

1Decoder, 

2Encoder-

1Decoder, 

3Encoder-

1Decoder, 

 

NDVI-LST-LSWI NDVI NDVI-LST NDVI-LSWI NDVI-LST-

LSWI 

Ground truth 

 

Figure 12. The improved results by using the PCA algorithm in the edges. 
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Figure 13. The improve results by using the shift of multi-temporal indices with remove non-rice fields. 
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Figure 15. Identify some of the non-rice crops in the rice class with the proposed method. 

 

6. Conclusions 

Some researches prove that deep learning-based methods 

are highly accurate in mapping rice fields than other 

methods. Thus, in this paper, we proposed a new automatic 

method for mapping rice fields based on Fusion in-Decoder 

with different architectures and Data Augmentation 

techniques by using Landsat-8 multi-temporal images at the 

California State. The Fusion in-Decoder networks are 

constructed by fusion of several Encoders before the 

Decoding stage that learns features from indices such as 

NDVI, LST, and LSWI as its input, and increases the 

accuracy of mapping rice fields at the several counties level. 

This research shows these five results: (1) The improved 

mapping results using Data augmentation by PCA algorithm 

in the edges of rice fields, (2) The effect of different 

combinations of multi-temporal images on Overall 

Accuracy, (3) High accuracy of the proposed method 

compared to other methods based on deep learning and 

machine learning such as Multi-Layer Perceptron, Decision 

Tree, and Regression Logistic, (4) High Kappa coefficient of 

mapping rice fields compared to the proposed method Jo et 

al., 2020 (86%), and (5) The highest Kappa coefficient  

(89.85%) for Fusion in-Decoder model with three Encoders-

one Decoder (NDVI-LST-LSWI) and Data  

Augmentation techniques using multi- temporal images of 

months April to August. This research focused on the 

mapping of rice fields based on Fusion in-Decoder 

Networks, Data Augmentation techniques, and Landsat-8 

multi-temporal images. Despite the high accuracy of the 

proposed method for overcoming not identifying rice fields 

with a smaller area, cloud cover, etc. using other Fusion 

Based Deep CNN structures using sentinel-1/2 will suggest 

in future research.  
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Figure 14. Non-identify some of the rice fields with the proposed method. 
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