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Abstract 
This paper presents a systematic formulation of the hyperbolic shear deformation theory for 

bending problems of thick beams; and the Fourier series method for solving the resulting system of 

coupled differential equations and ultimately finding the displacements and stress fields. Hyperbolic 

sine and cosine functions are used in formulating the displacement field components such that 

transverse shear stress free conditions are achieved at the top and bottom surfaces of the beam, thus 

obviating the shear correction factors of the first order shear deformation theories. The vanishing of 

the first variation of the total potential energy functional is used to obtain the system of coupled 

differential equations for the domain and the boundary conditions. The domain equations are solved 

using Fourier series method for simply supported ends for linearly distributed and uniformly 

distributed loads. The solutions are found as infinite series with good convergence. Solutions obtained 

for the axial and transverse displacements, and normal and shear stresses at critical points on the beam 
agree remarkably well with previous solutions, and for normal stresses, the errors of the present 

method are less than 0.5% for aspect ratio of 4 and less than 1.9% for aspect ratio of 10. 

Keywords: Hyperbolic shear deformation beam theory; Fourier series method; thick beams; total potential 

energy functional; first variation of total potential energy functional. 

1. Introduction 
 

Beams are structural members which carry transverse loads which may be applied at points on the beam or 

distributed over the entire span or parts of the span. The load may be static or dynamic. Beams may also be 

subjected to compressive loads which may be concentrically or eccentrically applied; in which case the behaviour in 

buckling becomes important. Beam problems in static flexure, dynamic and stability have been extensively studied 

by various researchers using different techniques. The ratio of the beam thickness to the span has been found to 

govern the classification of beams as thin, moderately thick and thick. 

Euler and Bernoulli independently developed a theory of beams using the hypothesis that straight lines that are 

on the cross-section which are originally perpendicular to the neutral axis before the beam bending deformation 
remain straight and perpendicular to the neutral axis after deformation. 

The hypothesis of orthogonality of straight lines on the cross-section before and after bending deformation 

effectively implies that transverse shear strains are ignored, and this limits the scope of the resulting formulation to 

thin beams only where transverse shear deformations do not have significant impacts on the flexural, vibration or 

stability behaviours of the beam [1 – 5]. 

The Euler-Bernoulli beam theory EBBT is satisfactory for thin beams, but unsatisfactory for moderately thick 

and thick beams [1 – 5]. 

Timoshenko [6] presented first order shear deformation theory (FSDT) which extends the classical EBBT to 

account for transverse shear deformation. For FSDT the orthogonality criterion is modified so that a line on the 

plane cross-section initially perpendicular to the neutral axis before deformation may not remain perpendicular to 

the neutral axis after deformation. Hence for Timoshenko beams, the foundational hypothesis is that plane cross-
sections that are initially normal to the neutral axis of the beam before deformation would remain plane but would 

not necessarily be normal to the neutral axis after deformation. FSDT assumes constant transverse shear strain 

through the beam thickness, thus violating the transverse shear stress free conditions on the top and bottom beam 

surfaces. The theory thus has the major short coming of requiring problem dependent shear modification factors to 

appropriately represent the strain energy of deformation. 
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Other first order shear deformation theories were developed by Reissner, Mindlin, Pakhare et al [7] and others. 

Senjanovic et al [8] derived a new FSDT with in-plane shear influence considered. Their new formulation which 

employed Hamilton’s principle assumed the coupling of flexural and in-plane shear vibrations. They confirmed their 
formulation with illustrative problems to demonstrate its effectiveness and accuracy compared with the Timoshenko 

theory. 

Ike [9] presented a variational formulation of the Timoshenko beam theory under static flexure and solved the 

resulting formulation in closed form. 

Ike et al [10] used the modified single finite Fourier cosine integral transform method to satisfactorily obtain 

buckling loads and critical buckling loads of first order shear deformable beams with fixed ends. 

Ike et al [11] used the Laplace transform method to solve the elastic buckling problems of moderately thick 

beams modelled using the single variable FSDT, and obtained exact solutions for the buckling loads for various 

boundary conditions considered. 

Onah et al [12] solved the elastic buckling problems of moderately thick beams modelled using the single 

variable FSDT by the rigorous mathematical tool of the method of trial functions. They obtained exact solutions to 

the resulting eigenvalue-eigenvector problem for different considered boundary conditions of the beam. 
Shimpi et al [13] used a displacement based formulation to derive a two-variable refined theory for shear 

deformable beams. They assumed linearly elastic homogeneous isotropic material and uniform rectangular cross-

section. Their theory gave quadratic variation of transverse shear strain through the beam thickness and transverse 

shear stress free boundary conditions at the top and bottom surfaces of the beam. They obtained two fourth order 

partial differential equations which are uncoupled for static problems but inertially coupled for dynamic problems. 

They validated the theory by solved bending and vibration problems which gave results comparable with previous 

solutions in the literature. 

Shimpi et al [14] developed a simple one-variable shear deformation theory for beam with prismatic rectangular 

cross-section and isotropic homogeneous material. They obtained a fourth order equation of equilibrium for the 

domain which is a close analogue of the equation of the Euler-Bernoulli theory for the cases of bending problems. 

Levinson [15] developed a novel theory for rectangular beams which considers warping of the cross-section, 
and satisfies the transverse shear stress free boundary conditions at the beam surfaces. The theory does not need 

shear correction factors and the governing domain equations are a pair of coupled differential equations. 

Gao and Wang [16] used elasticity theory to derive a refined theory of rectangular beams without adhoc 

assumptions. Shi and Voyiadjis [17] derived a new beam theory governed by sixth order differential equations for 

the analysis of shear deformable beams. 

Ike and Oguaghamba [18] used the Fourier series method to solve the governing domain equations of 

equilibrium of bending problems of thick beams modelled within the framework of trigonometric shear deformation 

theory. They obtained exact solutions with the framework of the theory used. Ike [19] used the Ritz variational 

method to solve the flexural problems of third order shear deformable beams with simply supported ends; and 

obtained results that agreed with previously obtained solutions. 

Ghugal and Nakhate [20], and Ghugal and Shimpi [21] presented trigonometric shear deformation theories for 

thick beams and used them to successfully solve flexural and vibration problems of isotropic thick beams by seeking 
closed form analytical solutions.  Ghugal and Shimpi [22] presented a review of refined shear deformation theories 

for laminated beams of isotropic and anisotropic materials. 

Ghugal and Dahake [23] used the refined shear deformation beam theory to solve bending problems of thick 

beams subjected to parabolic load. Pote Rohit et al [24] presented a refined beam theory for solving flexural 

problems of composite beams. 

Pakhare et al [25] presented the analysis of stability problems of thick isotropic shear deformable beams. 

Sayyad and Ghugal [26] derived single variable refined beam theories for the flexural stability and eigenfrequency 

analysis of beams made of homogeneous materials. 

Ghugal [27] presented a new refined bending theory for thick beams that include transverse shear and 

transverse normal strain effects. Ghugal [28] presented a single variable parabolic shear deformation theory for 

solving problems of the static bending and vibration of thick isotropic beams. 
Hyperbolic shear deformation theory for flexure of thick beams have been derived using virtual work principles 

by Darak and Bajad [29]. Ghugal and Sharma [30] presented the hyperbolic shear deformation theory for the flexure 

and flexural vibration of thick isotropic beams. Sayyad and Ghugal [31] derived a new hyperbolic shear deformation 

theory for the flexural analysis of thick beams and used it to accurately solve for stresses and displacements in thick 

beams. 
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Timoshenko and Goodier [32], and Ghugal [33] used the theory of elasticity formulations to solve the thick 

beam bending problems. They thus obtained exact elasticity solutions for the thick beam flexure problems based on 

two-dimensional elasticity theory. 
Krisha Murthy [34] presented higher order deformation beam theories. Ghugal [35] studied the bending and 

vibration behaviour of deep beams using trigonometric shear deformation theory. Reddy [36 – 38] applied energy 

and variational methods to the analysis of shear deformable beams and plates. Naik et al [39] presented refined 

beam theory and applied it to bending analysis of deep beams under different load conditions. 

Canales and Mantari [40] presented closed form solutions to the static bending problems of deep rectangular 

beams for different restraint conditions. They used Carrera’s Unified Formulation (CUF) in order to account for 

shear deformation theories of arbitrary order. They applied a boundary discontinuous Fourier technique to account 

for clamped boundaries in the analytical solution obtained. 

Their formulation has some advantages over Navier – type methods which apply only to simply supported 

boundaries. They used the virtual work principle to obtain the domain equations. They obtained numerical solutions 

for beams submitted to bending and torsion, and validated their work by favourable comparison with finite element 

solutions. 
A generalization of the Fourier series method called the boundary discontinuous Fourier method has been 

developed. It extends the application of the Fourier series method beyond simply supported ends and allows 

applications to clamped ends. 

More complex problems of elasticity theory involving beams, curved pipes and nanobeams have been studied 

by Barati et al [41]. Nejad and Hadi [42, 43], Ghumare and Sayyad [44] and Zidi et al [45]. Fouseca et al [46] have 

presented numerical study of curved pipes submitted to in-plane loading condition. 

 Fonseca et al [47] have employed trigonometric functions in the formulation of a multi-nodal finite tabular 

element. Karamanli [48] derived solutions for buckling of functionally graded beams modelled using Reddy’s third 

order shear deformation beam theory. Sayyad and Ghugal [49] have also presented buckling solutions for 

functionally graded sandwich beams modelled with unified beam thoery. 

 Fonseca et al [50] also employed Fourier series method in their numerical analysis studies of piping elbows 
under in-plane bending and internal pressure. Their formulation used thin shell displacement theory where the 

displacement is assumed in the form of higher order polynomials or trigonometric functions for rigid beam 

displacement. 

Fonseca et al [51] have also presented a semi-analytical derivation using Fourier trigonometric series method to 

solve the bending problem in curved pipes. They used a displacement finite element formulation and Fourier series 

basis functions to derive the governing equations for the pipe element, assumed as part of a toroidal shell. They 

solved the resulting system of differential equations using computational software tools. 

 Recently Hadi et al [52 – 55] have investigated the elasticity, vibration and buckling behaviours of nanobeams, 

beams and plates made of functionally graded materials (FGM). Hosseini et al [56, 57] have presented elasticity 

analysis of FGM structures with variable thickness. Nejad et al [58 – 62] have presented studies on elasticity, 

buckling and vibrations of FGM beams using nonlocal elasticity theory and consistent couple stress theory. 

Shishesaz et al [63] and Shishesaz and Hosseini [64] have used the strain gradient theory to study FGM cylinders for 
thermoelastic loading and for radial pressure conditions. 

 Other seminal works on the subject of this paper which make important contributions to the literature include 

Mohammadi et al [65], Gorgani et al [66], Khoram et al [67, 68], Daneshmehr [69], Mazarei et al [70], Gharibi et al 

[71], Noroozi et al [72] and Barati et al [73]. 

This study undertakes a systematic first principles presentation of the Hyperbolic Shear Deformation Theory for 

thick isotropic beams and used the Fourier series method in a systematic way to solve the resulting system of 

domain equations. 

 

Case Study 
 The case study considered is a thick beam with rectangular cross-sections which is modelled using Hyperbolic 

Shear deformation theory. The theory is presented.  
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2. Formulation of Hyperbolic Shear Deformation Beam Theory (HSDBT) 
 

2.1. Thick Beam Considered 

 The considered beam which is subjected to transverse distributed load of intensity q(x) is assumed to be made 

of homogeneous, isotropic, linearly elastic material. The domain is defined with reference to the three dimensional 

(x, y, z) Cartesian coordinates as 0 ,x l   2 2,b by    2 2
t tz    where l is the length in the x-direction, b 

is the width in the y-direction, t is the depth of the beam. x, y, z are the Cartesian coordinate axes.  Figure 1 shows 

the beam under consideration. 

 

 

 
Figure 1: Longitudinal and cross-sectional views of the thick beam under bending in  

the xz coordinate plane due to transverse load q(x). 

 

 Assumptions 

The assumptions are: 

(i) The displacement in the longitudinal direction is made up of components due to bending deformation and shear 

deformation. 

(ii) The transverse component of the displacement field depends only on the longitudinal coordinate, x. 

(iii) The material constitutive equations are one dimensional. 

(iv) Body forces are neglected but can be considered by including them in the applied loads. 

(v) Beam material is homogeneous, isotropic and linearly elastic. 

 

The displacement field 

 The displacement field components are: 

( , ) ( ) ( )
dw

u x z z g z x
dx

                      (1) 

where g(z) is a shape function which determines the shearing stress variation across the thickness of the beam. g(z) 

which satisfies shear stress free conditions at the beam boundaries 
2

t
z   is given by: 

 
1

( ) cosh sinh
2

z
g z z t

t

 
  
 

                  (2) 

( )x  is the warping function which measures the rotation of the cross-section of the beam at its neutral axis. ( )x  

is an unknown function which is to be determined. 

( , ) 0v x z                        (3) 

( , ) ( )w x z w x                      (4) 

u is the displacement in the x direction, v is the displacement in the y direction, w is the transverse displacement in 

the z direction. 

 

Strain fields 

The strain fields are found using the strain-displacement equations of linear elastic theory as: 
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2

2

( )
( )xx

u d w d x
z g z

x dxdx

 
    


                 (5) 

1
( ) ( ) cosh cosh ( )

2
xz

u dw z
g z x x

z dx t

     
                

           (6) 

xx  is the axial (normal) strain, and xz  is the transverse shear strain 

From Equation (6),  , 0
2xz

tx z     

 

Stress fields 

The stress fields are obtained using the stress-strain law as: 
2

2

1
cosh sinh

2
xx xx

d w z d
E zE E z t

t dxdx

 
       

 
             (7) 

1
cosh cosh ( )

2
xz xz

z
G G x

t

 
      

 
                (8) 

where E is the Young’s modulus, G is the shear modulus of the beam material. 

From Equation (8),  , 0
2xz

tx z     

2.6 Total potential energy functional   
The total potential energy functional   is: 

/2 /2

/2 0 /2 0

1
( ) ( ) ( )

2

b l t l

xx xx xz xz

b t

dydxdz q x w x dx

 

                       (9) 

For equilibrium, 

0                         (10) 

where   is the variational operator. 

Thus, 
/2

0 /2 0

( ) ( ) ( ) 0
l t l

xx xx xz xz

t

b dxdz q x w x dx



                       (11) 

/2 2

2
0 /2

1
cosh sinh

2

l t

t

d w z d
b E z z t

t dxdx

    
      

   
   

2

2

1
cosh sinh

2

d w z d
z z t

t dxdx

  
      

  
  

 
1 1

cosh cosh ( ) cosh cosh ( )
2 2

z z
G x x dxdz

t t

   
        

    
0

( ) ( ) 0
l

q x w x dx       (12) 

Integration by parts and simplification by bringing like terms together after using Green’s theorem in Equation (12) 

successively, gives the following: 

4 3

04 3
0

( )
l

d w d
EI c EI q x wdx

dx dx

 
    

 
  

3 2

0 1 23 2
0

( ) ( )
l

d w d
c EI c EI c GA x x dx

dx dx

 
     

 
   

2

02
0

l
d w d d w

EI c EI
dx dxdx

  
  

  

3 2

03 2
0

l
d w d

EI c EI w
dx dx

 
    

  

2

0 12
0

0

l
d w d

c EI c EI
dxdx

 
    

  
(13) 

c0, c1, c2 are the stiffness coefficients. 

I is the moment of inertia. 

The domain equations of equilibrium are obtained from the conditions for the vanishing of the integrals in Equation 

(13). Using 0w   and 0   the following coupled Euler-Lagrange equations which are the equations of 

equilibrium of the beam flexure problem are obtained as: 
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4 3

04 3
( ) 0

d w d
EI c EI q x

dx dx


                    (14) 

3 2

0 1 23 2
0

d w d
c EI c EI c GA

dx dx


                    (15) 

A = bt                      (16)  

where A is the cross-sectional area of the beam. 

The stiffness coefficients are: 

0
1 1 1

cosh 12 cosh 2  0.102401sinh
2

71
2 2

2c
      

        
    


 

           (17) 

 2
1

1
cosh 6 sinh(1) 1

2
c

 
    

 

1 1 1
24cosh cosh 2sinh

2 2 2

      
      

      
= 0.010608508    (18) 

 2
2

1 1 1 1
cosh sinh(1) 1 4cosh sinh

2 2 2 2
c

     
        

     
= 0.0087385269        (19) 

The boundary conditions are: 

Either 
3 2

03 2
0x

d w d
V EI c EI

dx dx


                   (20) 

or w is known 

Either 
2

02
0x

d w d
M EI c EI

dxdx


                   (21) 

or 
dw

dx
 is known 

Either 
2

0 12
0x

d w d
M c EI c EI

dxdx


                   (22) 

or   is given. 

Vx and Mx are the shear force and bending moment resultants. 

 

 

3. Methodology 
 

The problem considered is a thick beam under two cases of distributed loads; namely: 
(a)  uniformly distributed load, and  

(b)  linearly distributed load as shown in Figure 2 

 

 
 

Figure 2: (i) thick beam subjected to uniform distributed load over the span, (ii) thick beam subjected to linearly distributed load over 

the entire span. 

The boundary conditions for w(x) and ( )x  at the simple supports x = 0, and x = l are: 
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( 0) ( ) 0

( 0) ( ) 0

( 0) ( ) 0

w x w x l

w x w x l

x x l

   

    

      

                  (23) 

Thus, suitable functions that satisfy the conditions are constructed using Fourier series as: 

1

( ) sinn
n

n x
w x w

l






                    (24) 

1

( ) cosn
n

n x
x

l






                      (25) 

where wn and n  are the generalized displacement parameters for w(x) and ( ).x  wn and n  are the Fourier 

coefficients of w(x) and ( )x  respectively. 

Let 
1

( ) sinn
n

n x
q x p

l






                    (26) 

where pn is the Fourier coefficient of q(x) given by Fourier series theory as: 

0

2
( )sin

l

n
n x

p q x dx
l l


                     (27) 

The reasons for the choice of Fourier series are as follows: (a) the Fourier series chosen in Equations (24) and (25) 

for w(x) and (x) satisfies all the boundary conditions stated in Equation (23). Also the Fourier series theory shows 
the representation of any distribution of loading function q(x) as the Fourier series given by Equation (26). 

Then, the governing Equations (14) and (15) become: 
4 3

0
1 1

sin sinn n
n n

n n x n n x
EI w c EI

l l l l

 

 

      
    

   
 

1

sinn
n

n x
p

l






          (28) 

3 2

0 1
1 1

cos cosn n
n n

n n x n n x
c EI w c EI

l l l l

 

 

      
      

   
  2

1

cos 0n
n

n x
c GA

l






    

Hence, 
3 2

0 1
1 1

cos cosn n
n n

n n x n n x
c EI w c EI

l l l l

 

 

      
      

   
  2

1

cos 0n
n

n x
c GA

l






        (29) 

Orthogonalizing, the equations give after simplification; 

4 3

0

3 2

0 1 2
0

n n

n

n n
w pEI c EI

l l

n n
c EI c EI c GA

l l

     
        

        
                            

            (30) 

Solving, using Cramer’s rule, wn is found as: 
3

0

2

1 2

4 3

0

3 2

0 1 2

0

n

n

n
p c EI

l

n
c EI c GA

l
w

n n
EI c EI

l l

n n
c EI c EI c GA

l l

 
  

 

  
  

  
    

   
   

     
     

    

              (31) 

Simplifying Equation (31) gives: 
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Simplifying Equation (33) gives: 
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Then from Equation (24), 
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4. Results 
The results for axial displacement u is found by using the expression for w(x) and (x) in Equation (1). Hence, 
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The axial displacement at x = l/2, z = t/2 is given by 
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The normal stress xx is found using Equation (7) as: 
2
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The normal stress at 
2

,
l

x   
2

t
z    is obtained by substitution as: 
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Similarly w at 
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l
x   is found as: 
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The shear stress distribution is found from Equation (8) as: 
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The shear stress at x = 0, z =0 is found as: 
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The results are tabulated using dimensionless parameters for displacements and stresses defined to conform to 

literature as follows: 

0

bE
u u

p t
                        (44)  

3

4
0

100Ebt
w w

p l
                       (45)  

0
xx xx

b

p
                         (46)  

0
xz xz

b

p
                        (47)  

 

 

5. Numerical results  
 

The beam parameters considered are E = 210GPa, 0.30,   where  is the Poisson’s ratio of the beam material. 

For uniformly distributed load, of intensity, p0, the Fourier coefficient pn is: 
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For linearly varying load, 1( ) ,
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  pn is found from Fourier series theory as: 

1

0

2
sin

l

n

p x n x
p dx

l l l


 

1
2

0

2
sin

l
p n x

x dx
ll


 

12p

n



             (49) 

 

6. Discussion 
 

The Fourier series method has been successfully applied in this work to solve the flexural problems of thick 

beams modelled using Hyperbolic Shear Deformation Theory (HPSDT). The equations that were solved are a 

system of two coupled equations in terms of transverse deflection and warping function. The problems were solved 

for linearly distributed and uniformly distributed loads. The results obtained for displacements and stresses for the 

present study and previous studies for different aspect ratios for simply supported thick beams were shown in Table 

1 for the case of linearly distributed loading over the domain. Table 1 shows that that present results agree 

remarkably well with previous results presented by Darak and Bajad who used a Modified Hyperbolic Shear 
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Deformation Beam Theory (MHPSDBT) and KrishnaMurthy who used a Higher Order Shear Beam Deformation 

Beam Theory (HOSDBT). The results for displacements and stresses in simply supported thick beam subjected to 

uniformly distributed load for various aspect ratios are shown in Table 2 for displacements and Table 3 for stresses. 
Tables 2 and 3 show that the present results agree remarkably well with the previous results obtained by Ike [19], 

Naik et al [39], Sayyad and Ghugal [31] and Reddy [36 – 38]. The present results are also in close agreement with 

the exact results from the elasticity theory with errors in xx  being generally less than 0.5% for l/t = 4, and less than 

1.9% for l/t = 2.  

 

 

 
 

 

 
Table 1: Comparison of dimensionless displacement and stress parameters for simply supported thick beams subjected to linearly 

distributed load p(x) = p1x/l for various aspect ratios 

3 3
, , , 0 ,

4 2 4

l t l
u x z w x z
   

      
   

  
3

, , ( 0, 0)
4 2

xx xz
l t

x z x z
 

      
 

 

3

4
1 1

100
, ,

bE Ebt
u u w

p t p l
    

1 1

,xx xx xz xz
b b

p p
       

l/t Reference / Theory u  

%  

Diff 

with 

EBBT 

w  

%  

Diff 

with 

EBBT 

xx  

%  

Diff 

with 

EBBT 

xz  

%  

Diff 

with 

FSDBT 

4 

Present (HPSDBT) 5.5902 2.18 0.6874 18.29 5.4449 3.71 0.9989 24.86 

Krishna Murthy [34] (HOSDBT) 5.5902 2.18 0.6874 18.29 5.4450 3.71 0.9988 24.85 

Ghugal [35] (TSDBT) 5.1100 6.60 0.6872 18.26 7.6927 40.53 1.2007 50.09 

Darak and Bajad [29] (MHPSDBT) 5.5903 2.18 0.6874 18.29 5.4451 3.72 0.9959 24.49 

Timoshenko [6] (FSDBT) 5.9375 6.35 0.6877 18.34 5.2500 0 0.80 0 

Darak and Bajad [29] (EBBT) 5.4708 0 0.5811 0 5.2500 0 –  

10 

Present (HPSDBT) 85.7799 0.35 0.5981 0 33.0075 0.59 2.4997 24.99 

Krishna Murthy [34] (HOSDBT) 85.7798 0.35 0.5981 0 33.0075 0.59 2.4995 24.98 

Ghugal [35] (TSDBT) 84.05 1.67 0.5981 0 34.0105 3.65 2.5801 72.51 

Darak and Bajad [29] (MHPSDBT) 85.7800 0.35 0.5981 0 33.0076 0.59 2.5005 25.025 

Timoshenko [6] (FSDBT) 92.7734 8.53 2.5981 0 32.8125 0 2 0 

Darak and Bajad [29] (EBBT) 85.4818 0 0.5981 0 32.8125 0 –  

  HPSDBT: Hyperbolic shear deformation beam theory. 

  HOSDBT: Higher order shear deformation beam theory. 

 % Difference for ,u  w  and xx  are calculated with respect to the EBBT presented by Darak and Bajad 

[29]. 

 % Difference for xz  is calculated with respect to the FSDBT of Timoshenko [6]. 
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Table 2: Comparison of non-dimensional displacement parameters for simply supported thick beams subjected to uniformly distributed 

loads for various aspect ratios (l/t) 

   , , , 0
2 2 2

l t lu x z w x z     

l/t Reference or Source Model / Theory u  
% 

Difference 
w  

% 

Difference 

2 

Present study HPSDBT 2.240 1.818 2.530 3.139 

Ike [19] TODBT – – 2.532 3.465 

Timoshenko [6] FSDBT 2.000 –9.091 2.532 3.465 

Naik et al [39] EBBT 2.000 –9.091 1.563 –36.282 

Reddy theory [36–38], Naik et al [39] HSDBT 2.245 2.045 2.532 3.221 

Naik et al [39] RBBT 2.259 2.682 2.529 3.098 

Timoshenko and Goodier [32] Exact Elasticity 2.200 0 2.453 0 

4 

Present study  16.420 3.924 1.803 1.008 

Ike [19]  – – 1.806 1.176 

Sayyad and Ghugal [31] TSDBT 16.487 4.348 1.804 1.064 

Timoshenko [6] FSDBT 16.000 1.265 1.806 1.176 

Naik et al [39] EBBT 16.000 1.265 1.563 –12.437 

Reddy [36–38], Naik et al [39]  16.504 4.456 1.806 1.176 

Naik et al [39]  16.535 4.652 1.805 1.120 

Timoshenko and Goodier [32] Exact Elasticity 15.800 0 1.785 0 

10 

Present study  251.10 0.641 1.602 0.250 

Ike [19]  – – 1.602 0.250 

Sayyad and Ghugal [31] TSDBT 251.23 0.693 1.601 0.188 

Timoshenko [6]  250.00 0.20 1.602 0.250 

Naik et al [39]  250.00 0.20 1.563 –2.19 

Reddy [36 – 38], Naik et al [39]  251.27 0.709 1.602 0.25 

Naik et al [39]  251.35 0.745 1.601 0.188 

Timoshenko and Goodier [32] Exact Elasticity 249.50 0 1.598 0 

TSDBT: Trigonometric shear deformation beam theory 

MHPSDBT: Modified hyperbolic shear deformation beam theory 

FSDBT: First order shear deformation beam theory 

EBBT: Euler-Bernoulli beam theory 

RBBT: Refined thick beam bending theory 
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Table 3: Comparison of non-dimensional stress parameters for simply supported thick beams subjected to uniformly distributed loads 

for various aspect ratios (l/t) 

 , 0 , ( 0, 0)
2xx xz

lx z x z       

l/t Reference / Model xx  
% 

Difference xz  % Difference 

2 

Present (HPSDBT) 3.260 1.875 1.4110 –5.933 

Ike [19] 3.261 1.90625 1.4115 –5.667 

Timoshenko [6] (FSDBT) 3.465 3.00 0.984 –34.4 

Naik et al [39] (EBBT) 3.00 –6.25 – – 

Reddy (HSDBT) [36 – 38], Naik et al [39] 3.261 1.960 1.415 –5.667 

Naik et al (RBBT) [39] 3.278 2.438 1.451 –3.267 

Timoshenko & Goodier [32] (Exact) 3.20 0 1.50 0 

4 

Present (HPSDBT) 12.260 0.4918 2.90 –3.333 

Ike [19] 12.623 0.5164 2.908 –3.067 

Sayyad and Ghugal [31] 12.254 0.443 2.882 –3.933 

Timoshenko [6] (FSDBT) 12.000 –1.6393 1.969 –34.367 

Naik et al (EBBT) [39] 12.00 –1.6393 – – 

Reddy (HSDBT) [36 – 38], Naik et al [39] 12.263 0.516 2.908 –3.067 

Naik et al [39] (RBBT) 12.280 0.656 2.993 –0.233 

Timoshenko & Goodier [32] (Exact) 12.20 0 3.00 0 

10 

Present (HPSDBT) 75.260 0.0798 7.350 –2.000 

Ike [19] 75.268 0.0904 7.361 –1.853 

Sayyad and Ghugal [31] 75.259 0.0785 7.312 –2.507 

Timoshenko [6] (FSDBT) 75.000 –0.266 4.922 –34.373 

Naik et al [39] (EBBT) 75.000 –0.266 – – 

Reddy (HSDBT) [36 – 38], Naik et al [39] 75.268 0.090 7.361 –1.853 

Naik et al [39] (RBBT) 75.284 0.112 7.591 1.2133 

Timoshenko & Goodier [32] (Exact) 75.20 0 7.50 0 

 

7. Conclusion 
 

In this paper a systematic presentation and formulation of the HPSDT for thick, isotropic, homogeneous beams 

has been done. The resulting equations are variationally consistent. The formulation ensured that transverse shear 

stress free boundary conditions are achieved at the top and bottom surfaces of the beam, and no shear correction 

factor is required. The vanishing of the first variation of the total potential energy functional is used to obtain the 

governing equations of equilibrium and the boundary conditions. 

Fourier series method is used to obtain the solutions for the unknown transverse displacement w(x) and warping 

function ( )x  as infinite series. The displacements and stresses are found as single series of infinite terms with good 

convergence. The results are validated by good agreement with previous results obtained for the two load cases 

considered. 

 

Nomenclature 
x, y, z   three dimensional coordinates or Cartesian coordinates 

l   length of beam in the x-direction 

b   width of beam in the y-direction 

t   depth or thickness of beam 

q(x)   intensity of transverse distributed load 
u(x, z)  displacement in the x-direction 

v   displacement in the y-direction 

w(x)   transverse displacement in the z-direction 

g(z)   shape function which determines the shearing stress variation across the beam thickness 

(x)   warping function which measures the rotation of the beam cross-section at its neutral axis 
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xx   normal strain 

xz   transverse shear strain 

g(z)   derivative of g(z) with respect to z 

xx   normal stress 

xz   transverse shear stress 
E   Young’s modulus of elasticity 

G   shear modulus of the beam material 

    total potential energy functional 

   variational operator 

   integral operator 

   double integral operator 

   triple integral operator 
c0, c1, c2  stiffness coefficients 

A   cross-sectional area 

I   moment of inertia 

Vx   shear force 

Mx   bending moment resultant 

   summation 
wn   generalized displacement parameter for transverse displacement 

n   generalized displacement parameter for the warping function 
pn   Fourier series coefficient of the transverse loading function 

n   integer 

   infinity 

u     dimensionless form of u 

w    dimensionless form of w 

xx     dimensionless form of xx 

xz    dimensionless form of xz 

EBBT  Euler-Bernoulli beam theory 

FSDT  First order shear deformation theory 

FSDBT  First order shear deformation beam theory 

HSDBT  Hyperbolic shear deformation beam theory 

HOSDBT Higher order shear deformation beam theory 

TSDBT  Trigonometric shear deformation beam theory 

MHPSDBT Modified hyperbolic shear deformation beam theory 

RBBT  Refined thick beam bending theory 

FGM  Functionally Graded Materials 

HPSDBT Hyperbolic shear deformation beam theory 
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