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Abstract 

Due to the high latent heat value, using microencapsulated PCMs increases the heat transfer 

coefficient in the heat sinks in mini electronic devices, chilled celling, … . In this paper, 

convective heat transfer by mixed PCM particles in a fluid as slurry, has been studied by the 

Eulerian-Lagrangian two-phase method. In this method, the fluid phase is studied by the 

Eulerian and the particle phase is studied using the Lagrangian view. In this paper, the base 

fluid is water and the particles made of encapsulated micro-size paraffin wax which has 

covered by a thin layer of Fe3O4. The fluid phase is solved by a control volume method 

(SIMPLE) and the velocities of the particle phase are solved by the 4th order of the Runge-

Kutta method. Due to high Biot number for particles, the lumped temperature assumption for 

particles is not valid and the transient one dimensional conduction equation has been solved. 

In this paper details of solving the energy equation inside the particles has been presented. The 

results include the local and mean Nusselt numbers for different Reynolds numbers including 

200, 350 and 500, wide range of the volume fraction from 0-5% for PCM particle with 10 

micro-meter diameter, inside the mini annular tube with inner diameter of 1 mm and outer 

diameter of 3 mm. The results show for 𝝓 = 𝟎. 𝟎𝟓 and Re=200, 500, the Nusselt number 

increases by 10 and 12.5%, while the pressure loss increases by 2 and 5.5% respectively. The 

maximum performance coefficient is 1.078 and occurs for Re=200 at 𝝓 = 𝟎. 𝟎𝟓. 
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Nomenclature 

Ap Particle area, m2 

Bi Biot number 

Cp specific heat capacity, J.kg-1.K-1 

CD Drag Force Coefficient 
dp, Dp particle diameter, m 

f Friction factor 

F acting force on the particles, N 

g Gravity, m.s-2 

H height of the mini-channel, m 

h Heat transfer coefficient W.m-2.K-1 

hp Particle enthalpy J.kg-1 

k thermal conductivity, W.m-1.K-1 

L channel length, m 

L0 Isotherm length, m 
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Lsl Latent heat of the PCM, J.kg-1 

m Mass, kg 

Np 

np 

np0 

Total particle number 

particle number in a cell 

particle number in a section 

Nu Nusselt number 

NuI Nusselt number increment 

p, P non-dimensional and dimensional pressure, Pa 

PC performance coefficient 

Pe Peclet number 

Pr Prandtl number 

q heat flux, W.m-2 

r Distance from the center, m 

Re Reynolds number 

Rep Particle Reynolds number 

Sb Subcooling number 

Ste Stephane Number 

t time, s 

T non-dimensional temperature 

U, V velocity component in x,y directions, m.s-1 

u, v non-dimensional velocity component in x,y directions 

X, Y x,y coordinate, m 

x, y non-dimensional x,y coordinate 

Greek Symbols  

𝛼 Thermal diffusion coefficient, m2.s-1 

𝛿 domain thickness, m 

𝛿𝑉 The volume of the Eulerian cell, m3 

𝜃 temperature, K 

𝜇 viscosity, Pa.sec 

𝜌 density, kg.m-3 

𝜙 Particle volume concentration 

𝜑 the volume of the shell to the volume of the particle ratio 

∆𝑡∗ Non-dimensional time step 

Superscripts  

* non-dimensional parameters 

Subscripts  

0 Pure fluid 

1 Inner diameter 

2 Outer diameter 

b slurry bulk value, buoyancy 

c cold boundary 

C Particle shell 

D Drag force 

f Fluid 

g Gravity 
h hot boundary 

i Internal particle diameter, m 

l Liquid 

m, M working fluid (mixed fluid and particles) 

p Particle 

ps Particle surface 

PCM Phase change material 

s Solid 

x Local Nusselt number 
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1. Introduction 

Slurry fluids which are made of base fluid containing the PCM particles are used to increase the heat transfer 

coefficient. In this mixed fluids, microencapsulated PCMs absorb the heat of their surrounded fluid and while the 

temperature of the particle does not increase much, they reduce the temperature of their surrounding fluid.  

Nowadays, with the advancement of industry and the growth of technology, the size of equipment, such as some 

electronic components, has become smaller. Some of these components, such as CPUs, generate a lot of heat. The 

small surface of these tiny devices produces a lot of heat flux. One of the ways to increase the heat transfer rate in 

these devices is to use the microencapsulated PCM as a slurry in these components. PCMs usually have a low thermal 
conductivity and high latent heat value. The first characteristic is their weaknesses and the second one is their 

strengths. Cooling these tiny electronic devices, can be improved, due to the high latent heat of these materials. 

Another application of these slurry flows is using them in the chilled celling [1, 2]. 

Many researchers have studied cooling by the slurry flows containing PCM materials. Safdari et al. [3] have 

examined the use of a PCM layer in the various forms as a passive and air as an active coolant in a battery. Batteries 

which contain PCMs, have been studied in three different shapes with circular, square and hexagonal cross-sections 

with the same area. Thermal performance for both circular and hexagonal shapes is almost the same. Heat storage 

systems have been widely studied as latent heat to cover energy supply and demand differences by Yan et al. [4]. They 

examined the storage of latent heat inside a pipe by PCM materials numerically and experimentally. In this work, 

PCM material has been used once in the internal part and once in the external part. Their results show that the presence 

of PCM in the inner part of the pipe performs better. Natural convection in a cavity containing PCM nanoparticles has 

been studied, using homogeneous single-phase model numerically by Ghalambaz et al. [5]. In this case, the particles 
near the hot wall reduce the temperature of the surrounding fluid by receiving heat while melting, and the particles 

near the cold wall, increase the temperature of the surrounding fluid by releasing heat while freezing. They will affect 

the temperature of the surrounding fluid. They reported a 10 percent increase in heat transfer coefficient.  

There are a number of ways to solve the heat transfer problem of encapsulated PCM materials, including a 

homogeneous one phase method, which assumes that the slurry fluid is a homogeneous solution, and for calculation 

of the properties, including density, viscosity, heat capacity and thermal conductivity, researchers use the two-phase 

relations in this method. The results of this method are far from the experimental results [6], which are obtained for 

the metal nanoparticles. It is the major weakness of this method. Another method that is more complicated is the 

Eulerian-Lagrangian two-phase model, which is used in this paper. In this method, the velocity, location and 

temperature of the particles are obtained by tracking the particles. Rostami et al. [6] investigated convective heat 

transfer by nanoparticles in a wavy microchannel by Eulerian-Lagrangian method. Due to the large number of particles 
(up to 32 million particles), their calculations were performed using a parallel processing technique by 256 CPUs of 

a supercomputer with 1400 cores. In this method, due to the non-dependence of the particle results on each other, the 

total number of particles is divided into the number of computer cores, and each core solve the governing equations 

of a certain particles.  

Kalteh et al. [7] investigated the nanofluid flow in a rectangular microchannel using a two-phase model. They 

studied it for water-Al2O3 nanofluid in different volume fraction experimentally and solved the governing equations 

using a control volume method for both phases numerically. Their results show that there is not much difference 

between the velocity and temperature of the two phases, but the two-phase model reports more heat transfer coefficient 

than the single-phase model, and the results of the two-phase model are closer to the experimental results. 

Mirzaei et al. [8] also used the Eulerian-Lagrangian method to study the heat transfer in the entrance length of a 

micro-channel with constant wall temperature boundary condition. Their results also confirm that the results of this 

method are closer to the experimental results in compare with the results of the one phase model. 
The results of [6-8] show that in compare with the homogeneous method the obtained Nusselt number from the 

two-phase model (Eulerian-Lagrangian) are closer to the experimental results. Then, in this paper, the problem has 

been investigated via Eulerian-Lagrangian two-phase model. Also, due to the high Biot number of PCM particles, the 

lumped temperature assumption is not valid for this tiny particles and, in this study the transient one dimensional 

conduction equation has been solved for each particle. Then, one of the main purposes of this work is presenting the 

numerical details of solving the temperature equation in the PCM particles.  

2. Governing Equations and Boundary Conditions 

Fig. 1, shows the geometry of the annular tube. The inner and outer diameters of the tube are 1mm and 3 mm 

respectively. It contains the microencapsulated PCMs with 10 micrometer diameter. Based on the Reynolds number, 

the length of the pipe is chosen so that the flow is developed hydrodynamically for higher Reynolds number (Re=500) 

and the last 10% of the pipe length is insulated. Assuming the homogenous distribution of the particles in angular 
direction, the solution area is also selected as a slit of the tube. 
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Fig. 1: The geometry and the solution domain of the mini-pipe containing water and encapsulated PCM particles. 

Solution domain is shown Fig. 1. Due to the location of the particles away from the walls and to ensure the complete 

placement of each particle inside the solution area, the lower arc length of the solution domain is equal to the particle 

diameter. i.e. 0.5𝐷1𝛽 = 𝐷𝑝. The 𝛽 angle is obtained as follow, 

(1) 
𝛽 =

2𝐷𝑝

𝐷1

, 

By defining the volumetric concentration (total volume of particles to the volume of the solution domain) as,  

(2) 

𝜙 =
𝑁𝑝

𝜋
6 𝐷𝑝

3

𝛽
8

(𝐷2
2 − 𝐷1

2)𝐿
. 

Then, the total number of particles is obtained using Eqs. (1, 2), 

(3) 
𝑁𝑝 =

3(𝐷2
2 − 𝐷1

2)𝐿𝜙

2𝜋𝐷1𝐷𝑝
2

. 

One of the methods of numerical solution of heat transfer in a fluid containing encapsulated PCM is the one phase 

homogeneous method. However, due to the non-homogeneous distribution of particles, the results of this method do 

not have the accuracy of the two-phase method [6, 8]. One of the two phase methods is Eulerian-Lagrangian method. 

In Lagrangian's view, particles are tracked and the effect of the fluid velocity and temperature on the particles position, 

velocity and temperature are investigated. In turn, the effect of particles, which appear as source terms in Eulerian 

equations, is also considered. 

In this paper, the two-phase Eulerian-Lagrangian method is used to solve the problem. In this method, the effect 

of both phases on each other is considered. In the other words, the effect of phases on each other is two-way. 
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By the following dimensionless parameters and using hydraulic diameter as 𝐷ℎ = 𝐷2 − 𝐷1, 

(4) 

𝜙𝑓 = 1 − 𝜙, 𝑥 =
𝑋

𝐷ℎ

.  𝑟∗ =
𝑟

𝐷ℎ

, 𝑑𝑃 =
𝐷𝑃

𝐷ℎ

  𝑡∗ =
𝑈𝑏𝑡

𝐷ℎ

, 𝑢𝑖 =
𝑈𝑖

𝑈𝑏

.  𝑝 =
𝑃

𝜌𝑓𝑈𝑏
2 , 𝑇 =

𝜃 − 𝜃𝑐

𝜃ℎ − 𝜃𝑐

 

𝑃𝑟 =
𝜇𝑓𝐶𝑝𝑓

𝑘𝑓
, Re =

𝜌𝑓𝑈𝑏𝐷ℎ

𝜇𝑓
.  𝑃𝑒 = 𝑅𝑒. 𝑃𝑟, 𝑆𝑡𝑒 =

𝐶𝑝𝑝(𝜃𝑙−𝜃𝑠)

𝐿𝑠𝑙
, 

the fluid phase governing equations in the polar coordinate are as follows [9], 

continuity: 

(5) 

𝜕𝜙𝑓𝑢

𝜕𝑥
+

1

𝑟∗

𝜕𝜙𝑓𝑟∗𝑣

𝜕𝑟∗ = 0, 

momentum: 

(6) 

𝜕𝜙𝑓𝑢𝜓

𝜕𝑥
+

1

𝑟∗

𝜕𝜙𝑓𝑟∗𝑣𝜓

𝜕𝑟∗ = 𝑠𝑃𝜓 + [
𝜕

𝜕𝑥
(

𝜙𝑓

𝑅𝑒

𝜕𝜓

𝜕𝑥
) +

1

𝑟∗

𝜕

𝜕𝑟∗
(

𝜙𝑓

𝑅𝑒

𝜕𝑟∗𝜓

𝜕𝑟∗
)] −

𝜌𝑝

𝜌𝑓

𝜋𝑑𝑝
3

6𝛿𝑉∗
∑

𝑑𝜓𝑝

𝑑𝑡∗𝑛𝑝 , 

where 𝜓 denotes u and v. The last sentence in this equation, is a generated source term by the particles [9] and 𝑛𝑝 and 

𝛿𝑉∗ are the number of particles in an Eulerian cell and the volume of the cell, respectively. Furthermore,  

(7) 

𝑠𝑃𝑢 = −𝜙𝑓
𝜕𝑝

𝜕𝑥
, 

 

 
(8) 

𝑠𝑃𝑣 = −𝜙𝑓
𝜕𝑝

𝜕𝑟∗, 

and the volume of the Eulerian cells can be obtained by, 

(9) 𝛿𝑉∗ = 𝑟∗𝛽∆𝑥∆𝑟∗. 

Using Eq. (1), 

(10) 
𝛿𝑉∗ = 2𝑟∗

𝑑𝑝

𝑑1

∆𝑥∆𝑟∗, 

then, using Eq. (9) and multiplying the Eq. (6) by 𝑟∗ the Eq. (6) changes to, 

 (11) 

𝑟∗
𝜕𝜙𝑓𝑢𝜓

𝜕𝑥
+

𝜕𝜙𝑓𝑟∗𝑣𝜓

𝜕𝑟∗
= 𝑟∗𝑠𝑃𝜓 + [𝑟∗

𝜕

𝜕𝑥
(

𝜙𝑓

𝑅𝑒

𝜕𝜓

𝜕𝑥
) +

𝜕

𝜕𝑟∗
(

𝜙𝑓

𝑅𝑒

𝜕𝑟∗𝜓

𝜕𝑟∗
)] −

𝜌𝑝

𝜌𝑓

𝜋𝑑𝑝
2𝑑1

12∆𝑥∆𝑟∗
∑

𝑑𝜓𝑝

𝑑𝑡∗

𝑛𝑝

. 

Energy equation [9] is, 

(12) 
𝑟∗

𝜕𝜙𝑓𝑢𝑇

𝜕𝑥
+

𝜕𝜙𝑓𝑟∗𝑣𝑇

𝜕𝑟∗
= [𝑟∗

𝜕

𝜕𝑥
(

𝜙𝑓

𝑃𝑒

𝜕𝑇

𝜕𝑥
) +

𝜕

𝜕𝑟∗
(

𝜙𝑓

𝑃𝑒

𝜕𝑟∗𝑇

𝜕𝑟∗
)] −

𝜌𝑝

𝜌𝑓

1

𝐶𝑝𝑓

𝜋𝑑𝑝
2𝑑1

12∆𝑥∆𝑟∗
∑

𝑑ℎ𝑝

𝑑𝑡∗

𝑛𝑝

. 

the enthalpy of the particles is calculated as follows [10],  

(13) 
ℎ𝑝 = ℎ𝑠 + 𝜆𝐿𝑠𝑙   , 𝜆 =  

𝑇 − 𝑇𝑠

𝑇𝑙 − 𝑇𝑠

, 𝑇𝑠 < 𝑇 < 𝑇𝑙 (𝑤ℎ𝑖𝑙𝑒 𝑚𝑒𝑙𝑡𝑖𝑛𝑔) 

where 𝑇𝑠 is the starting temperature of the PCM melting and 𝑇𝑙 is the final temperature of the melting process. Using 

Ste number definition in Eq. (3), the energy equation will be as follows. 

(14) 

𝜕𝜙𝑓𝑢𝑇

𝜕𝑥
+

1

𝑟∗

𝜕𝜙𝑓𝑟∗𝑣𝑇

𝜕𝑟∗
= [

𝜕

𝜕𝑥
(

𝜙𝑓

𝑃𝑒

𝜕𝑇

𝜕𝑥
) +

1

𝑟∗

𝜕

𝜕𝑟∗
(

𝜙𝑓

𝑃𝑒

𝜕𝑟∗𝑇

𝜕𝑟∗
)] −

1

𝑆𝑡𝑒 

𝜌𝑝

𝜌𝑓

𝐶𝑝𝑝

𝐶𝑝𝑓

𝜋𝑑𝑝
2𝑑1

12∆𝑥∆𝑟∗
∑

𝑑𝑇𝑝

𝑑𝑡∗

𝑛𝑝

. 

 

The particle phase governing equation in Lagrangian view: 

The detailed of these governing equations are presented by Wen et al. [11]. 

Velocity 

The thickness of the Fe3O4 as the cover of the particles has been chosen such a way to density of the particle be 

equal to density of the based fluid. This calculation has been presented in [12]. Then, the buoyancy force of the 

particles is equal to the weight of the particles and it doesn’t appear in the Eqs. (16, 17). 
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By defining CD number as [11], 

(15) 

𝐶𝐷 =
18

𝑅𝑒. 𝑑𝑝
2

𝜌𝑓

𝜌𝑝

(1 + 0.15𝑅𝑒𝑝
0.687) 

 

the velocity components of the particle will be achieved by,  

(16) 

 

𝑑𝑢𝑝

𝑑𝑡∗
= 𝐶𝐷(𝑢𝑓 − 𝑢𝑝) 

(17) 𝑑𝑣𝑝

𝑑𝑡∗
= 𝐶𝐷(𝑣𝑓 − 𝑣𝑝) 

and the particle position is obtained by the following relations, 

(18) 𝑑𝑥𝑝 = 𝑢𝑝𝑑𝑡∗, 

(19) 𝑑𝑦𝑝 = 𝑣𝑝𝑑𝑡∗. 

Energy 

As mentioned in [12] the Biot number for PCM is bigger than 0.1. Then the particle temperature is not uniform 

(lump) and the energy equation for PCM is, 

(20) 

𝜕𝑇𝑝

𝜕𝑡∗
=

𝛼𝑝

𝛼𝑓

𝑆𝑡𝑒

𝑃𝑒

1

𝑟∗2

𝜕

𝜕𝑟∗
(𝑟∗2

𝜕𝑇𝑝

𝜕𝑟∗
) 

where 𝛼 is thermal diffusion coefficient. 

Boundary conditions 

At the inlet, velocity and temperature are uniform. Then,  

(21) 𝑢(0, 𝑟∗) = 1, 𝑣(0, 𝑟∗) = 0, 𝑇(0, 𝑟∗) = 0 
Before the outlet boundary, 10% of the wall is assumed to be insulated. Then, the following boundary condition is 

applied for the velocity and temperature, 

(22) 

 𝜕𝑢

𝜕𝑥
|

(𝐿∗,𝑟∗)
= 0,

𝜕𝑣

𝜕𝑥
|

(𝐿∗,𝑟∗)
= 0,

𝜕𝑇

𝜕𝑥
|

(𝐿∗,𝑟∗)
= 0. 

On the inner pipe wall, 

 (23) 

𝑢(𝑥, 0.25) = 0, 𝑣(𝑥, 0.25) = 0, {

𝑇(𝑥, 0.25) = 1, 0 < 𝑥 < 0.9𝐿∗

𝜕𝑇

𝜕𝑟∗
|

(𝑥,0.25)
= 0, 0.9𝐿∗ < 𝑥 < 𝐿∗, 

and on the outer pipe wall, 

 (24) 

𝑢(𝑥, 0.75) = 0, 𝑣(𝑥, 0.75) = 0, {

𝑇(𝑥, 0.75) = 1, 0 < 𝑥 < 0.9𝐿∗

𝜕𝑇

𝜕𝑟∗
|

(𝑥,0.75)
= 0, 0.9𝐿∗ < 𝑥 < 𝐿∗. 

3. Numerical Procedure 

The problem has been modeled in the two phase model by Eulerian-Lagrangian method. The fluid phase governing 
equations are solved by a control volume (SIMPLE) method [13]. To avoid the checkerboard pressure, the Rhie and 

Chow [14] interpolation for the velocity in the pressure correction equation was used. Also, for the convective terms 

calculation, the Hybrid difference scheme [15] was used. To solve the governing equations for particle velocities, the 

4th order of Runge-Kutta method has been used. The two-way coupling between the particles and the fluid is assumed, 

and the exchange of results between the fluid and particle phases continues until the mean Nusselt number is converged 

to a constant value. In this method, to solve the velocity and temperature of the particles, the velocity and temperature 

of its surrounding fluid is needed. For this purpose, first the location of the particle and its Eulerian cell is determined. 

Then the velocity and temperature of the fluid around the particle are averaged from the four corners of that Eulerian 
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cell. Now, with the defined velocity components, the location of the particle at each time step is determined. More 

detailed of the numerical procedure has been presented in the previous work [12].  

Details of solving the particle temperature 

Using the fully implicit method to discretize the Eq. (20), leads to, 

(25) 

(𝑇𝑖
𝑛 − 𝑇𝑖

𝑛−1)

∆𝑡∗
=

𝛼𝑝

𝛼𝑓

𝑆𝑡𝑒

𝑃𝑒

1

𝑟𝑖
∗2

1

∆𝑟∗
[(

𝑟𝑖+1
∗ + 𝑟𝑖

∗

2
)

2
𝑇𝑖+1

𝑛 − 𝑇𝑖
𝑛

∆𝑟∗
− (

𝑟𝑖
∗ + 𝑟𝑖−1

∗

2
)

2
𝑇𝑖

𝑛 − 𝑇𝑖−1
𝑛

∆𝑟∗
], 

where up scripts “n” refers to the present time and “n-1” refers to the last step time. 

 
Fig. 2. One dimensional grid in a particle. 

As shown in Fig. 2, four nodes are used in the particles. Then ∆𝑟∗ =
𝑑𝑖

6
, where 𝑑𝑖 is the internal diameter of a particle. 

By defining 𝜆 as, 

(26) 
𝜆 = 0.25

𝛼𝑝

𝛼𝑓

𝑆𝑡𝑒

𝑃𝑒

∆𝑡∗

∆𝑟∗2
= 9

𝛼𝑝

𝛼𝑓

𝑆𝑡𝑒

𝑃𝑒

∆𝑡∗

𝑑𝑖
2 , 

It can be rearranged as, 

(27) 

−𝜆 (
𝑟𝑖−1

∗

𝑟𝑖
∗ + 1)

2

𝑇𝑖−1
𝑛 + [1 + 𝜆 (

𝑟𝑖+1
∗

𝑟𝑖
∗ + 1)

2

+ 𝜆 (
𝑟𝑖−1

∗

𝑟𝑖
∗ + 1)

2

] 𝑇𝑖
𝑛 − 𝜆 (

𝑟𝑖+1
∗

𝑟𝑖
∗ + 1)

2

𝑇𝑖+1
𝑛 = 𝑇𝑖

𝑛−1. 

 

and for nodes 2 and 3, 

(28) 

𝑖 = 2: −𝜆 (
𝑟1

∗

𝑟2
∗ + 1)

2

𝑇1
𝑛 + [1 + 𝜆 (

𝑟3
∗

𝑟2
∗ + 1)

2

+ 𝜆 (
𝑟1

∗

𝑟2
∗ + 1)

2

] 𝑇2
𝑛 − 𝜆 (

𝑟3
∗

𝑟2
∗ + 1)

2

𝑇3
𝑛 = 𝑇2

𝑛−1, 

 

(29) 
𝑖 = 3: −𝜆 (

𝑟2
∗

𝑟3
∗ + 1)

2

𝑇2
𝑛 + [1 + 𝜆 (

𝑟4
∗

𝑟3
∗ + 1)

2

+ 𝜆 (
𝑟2

∗

𝑟3
∗ + 1)

2

] 𝑇3
𝑛 − 𝜆 (

𝑟4
∗

𝑟3
∗ + 1)

2

𝑇4
𝑛 = 𝑇3

𝑛−1. 

 

Due to the uniform grid in the particle 𝑟𝑖
∗ = (𝑖 − 1)∆𝑟∗, then, 

(30) 

𝑖 = 2: −𝜆(1)2𝑇1
𝑛 + [1 + 𝜆(3)2 + 𝜆(1)2]𝑇2

𝑛 − 𝜆(3)2𝑇3
𝑛 = 𝑇2

𝑛−1, 

 

(31) 𝑖 = 3: −𝜆(1.5)2𝑇2
𝑛 + [1 + 𝜆(2.5)2 + 𝜆(1.5)2]𝑇3

𝑛 − 𝜆(2.5)2𝑇4
𝑛 = 𝑇3

𝑛−1. 

Finally, 

(32) 𝑖 = 2: −𝜆𝑇1
𝑛 + (1 + 10𝜆)𝑇2

𝑛 − 9𝜆𝑇3
𝑛 = 𝑇2

𝑛−1, 
 

(33) 𝑖 = 3: −2.25𝜆𝑇2
𝑛 + (1 + 8.5𝜆)𝑇3

𝑛 − 6.25𝜆𝑇4
𝑛 = 𝑇3

𝑛−1. 

 

Due to symmetry,  

. . . .
1 2 3 4

PCM

Cover
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(34) 𝑇1
𝑛 = 𝑇2

𝑛 . 

Because the Biot number for shell (thin metal) is less than 0.1, the temperature of the shell of the particles, assumed 

to be lumped. Then the energy conservation in the cover, �̇�𝑠𝑡𝑜𝑟𝑒 = �̇�𝑖𝑛 − �̇�𝑜𝑢𝑡 leads to, 

 
 

(35) 
𝑚𝐶𝐶𝑝𝐶

𝜕𝜃

𝜕𝑡
= −𝑘𝐶𝜋𝐷𝑖

2 𝜕𝜃

𝜕𝑟
|

𝑟=0.5𝐷𝑖

− ℎ𝜋𝐷𝑝
2(𝜃𝑓 − 𝜃). 

First term of the right hand side is �̇�𝑖𝑛, which inlet the cover by conduction mechanism from the PCM and the 

second term is �̇�𝑜𝑢𝑡 which leaves the cover and inlet the surrounding fluid by convection mechanism. Also, “h” is 
obtained from [16] as bellow, 

 

(36) 
𝑁𝑢 =

ℎ.𝐷𝑝

𝑘𝑓
= 2 + 0.6𝑅𝑒𝑝

0.5𝑃𝑟
1

3. 

Then, in the dimensionless form, 

(37) 
𝜌𝐶(𝑑𝑝

3 − 𝑑𝑖
3)𝐶𝑝𝐶𝑈𝑏

𝜕𝑇

𝜕𝑡∗
= −6𝑘𝐶𝑑𝑖

2
𝜕𝑇

𝐻𝜕𝑟∗
|

𝑟∗=0.5𝑑𝑖

− 6ℎ𝑑𝑝
2(𝑇𝑓 − 𝑇). 

Discretizing this equation leads to, 

(38) 

𝜌𝐶(𝑑𝑝
3 − 𝑑𝑖

3)𝐶𝑝𝐶𝑈𝑏

𝑇4
𝑛 − 𝑇4

𝑛−1

∆𝑡∗
= −6𝑘𝐶𝑑𝑖

2
𝑇4

𝑛 − 𝑇3
𝑛

𝐻∆𝑟∗
|

𝑟∗=0.5𝑑𝑖

− 6ℎ𝑑𝑝
2(𝑇𝑓 − 𝑇4

𝑛). 

 

By defining, 

(39) 

𝐴 =
𝜌𝑓

𝜌𝐶

𝐶𝑝𝑓

𝐶𝑝𝐶

6∆𝑡∗

(𝑑𝑝
3 − 𝑑𝑖

3)𝑃𝑒
 

 

(40) 
𝐵 = 6𝐴𝑑𝑖

𝑘𝐶

𝑘𝑓

 

we have 

(41) 
𝑇4

𝑛 =
𝑇4

𝑛−1 + 𝐵𝑇3
𝑛 + 𝐴. 𝑁𝑢. 𝑑𝑝 . 𝑇𝑓

1 + 𝐵 + 𝐴. 𝑁𝑢. 𝑑𝑝

, 

 

then the set of the equations for a particle is as follows, 

(42) 𝑇1
𝑛 = 𝑇2

𝑛  
 

(43) −𝜆𝑇1
𝑛 + (1 + 10𝜆)𝑇2

𝑛 − 9𝜆𝑇3
𝑛 = 𝑇2

𝑛−1 

 

(44) −2.25𝜆𝑇2
𝑛 + (1 + 8.5𝜆)𝑇3

𝑛 − 6.25𝜆𝑇4
𝑛 = 𝑇3

𝑛−1 

 

(45) −𝐵𝑇3
𝑛 + (1 + 𝐵 + 𝐴. 𝑁𝑢. 𝑑𝑝)𝑇4

𝑛 = 𝑇4
𝑛−1 + 𝐴. 𝑁𝑢. 𝑑𝑝 . 𝑇𝑓 

 

Substituting Eq. (42) in Eq. (43) concise it to, 

(46) (1 + 9𝜆)𝑇2
𝑛 − 9𝜆𝑇3

𝑛 = 𝑇2
𝑛−1. 

 

By replace 𝑇4
𝑛 from Eq. (41) in (44), we have, 

(47) 
−2.25𝜆𝑇2

𝑛 + (1 + 8.5𝜆)𝑇3
𝑛 − 6.25𝜆

𝑇4
𝑛−1+𝐵𝑇3

𝑛+𝐴.𝑁𝑢.𝑑𝑝.𝑇𝑓

1+𝐵+𝐴.𝑁𝑢.𝑑𝑝
= 𝑇3

𝑛−1, 

 

or 
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(48) −2.25𝜆(1 + 𝐵 + 𝐴. 𝑁𝑢. 𝑑𝑝)𝑇2

𝑛 + [(1 + 8.5𝜆)(1 + 𝐵 + 𝐴. 𝑁𝑢. 𝑑𝑝) − 6.25𝜆𝐵]𝑇3
𝑛 = 

 

𝑇3
𝑛−1 + 6.25𝜆(𝑇4

𝑛−1 + 𝐴. 𝑁𝑢. 𝑑𝑝. 𝑇𝑓). 

Now, the unknown temperature have been reduced to 𝑇2
𝑛 and 𝑇3

𝑛 in Eqs. (46, 48). By introduce the following variables, 

(49) 𝐶 = 1 + 9𝜆, 𝐷 = −9𝜆𝐸 = 𝑇2
𝑛−1 

 

(50) 𝐹 = −2.25𝜆(1 + 𝐵 + 𝐴. 𝑁𝑢. 𝑑𝑝) 

 

(51) 𝐺 = [(1 + 8.5𝜆)(1 + 𝐵 + 𝐴. 𝑁𝑢. 𝑑𝑝) − 6.25𝜆𝐵] 

 

(52) 𝐻 = (1 + 𝐵 + 𝐴. 𝑁𝑢. 𝑑𝑝)𝑇3
𝑛−1 + 6.25𝜆(𝑇4

𝑛−1 + 𝐴. 𝑁𝑢. 𝑑𝑝 . 𝑇𝑓), 

 

these Eqs. (46, 48) can be showed by, 

(53) 
[
𝐶 𝐷
𝐹 𝐺

] [
𝑇2

𝑛

𝑇3
𝑛] = [

𝐸
𝐻

]. 

By solving this set, 

(54) 
[
𝑇2

𝑛

𝑇3
𝑛] =

1

𝐶𝐺−𝐷𝐹
[ 𝐺 −𝐷
−𝐹 𝐶

] [𝐸
𝐻

], 

and, placement them in Eqs. (42, 45), all the unknown temperatures in the particle will be obtained as follows, 

(55) 
𝑇2

𝑛 =
𝐺𝐸 − 𝐷𝐻

𝐶𝐺 − 𝐷𝐹
, 

 

(56) 𝑇1
𝑛 = 𝑇2

𝑛 , 
(57) 

𝑇3
𝑛 =

−𝐹𝐸 + 𝐶𝐻

𝐶𝐺 − 𝐷𝐹
, 

 

(58) 
𝑇4

𝑛 =
𝑇4

𝑛−1 + 𝐵𝑇3
𝑛 + 𝐴. 𝑁𝑢. 𝑑𝑝 . 𝑇𝑓

1 + 𝐵 + 𝐴. 𝑁𝑢. 𝑑𝑝

. 

 

Then, the temperatures of all nodes of a particle in the present time can be calculated using their temperatures from 

the last step time and the temperature of the surrounding fluid. 

The local Nusselt number is calculated as follow, 

(59) 

𝑁𝑢𝑥 =
ℎ𝐷ℎ

𝑘𝑏

=
𝑞"𝐷ℎ

𝑘𝑏(𝜃𝑤 − 𝜃𝑏)
=

− (𝑘𝑚
𝜕𝜃
𝜕𝑟

|
𝑟=𝑅1

+ 𝑘𝑚
𝜕𝜃
𝜕𝑟

|
𝑟=𝑅2

) 𝐷ℎ

𝑘𝑀(𝜃𝑤 − 𝜃𝑏)

= −
1

(1 − 𝑇𝑏)

𝑘𝑚

𝑘𝑀

(
𝜕𝑇

𝜕𝑟∗
|

𝑟∗=02.5
+

𝜕𝑇

𝜕𝑟∗
|

𝑟∗=0.75

), 

where 𝑘𝑚 is the local thermal conductivity in a cell and 𝑘𝑀 is the average thermal conductivity [17] and is obtained 

by, 

(60) 𝑘𝑀 = (1 − 𝜙)𝑘𝑓 + 𝜙𝑘𝑃 , 

where 𝜙 is the average volume concentration. This relation is also used for calculating 𝑘𝑚 using local 𝜙. The mean 

Nusselt number is calculated by, 

(61) 𝑁𝑢 =
1

0.9𝐿
∫ 𝑁𝑢𝑥

𝑋=0.9𝐿

𝑋=0
𝑑𝑋 =

1

0.9𝐿∗ ∫ 𝑁𝑢𝑥
𝑥=0.9𝐿∗

𝑥=0
𝑑𝑥. 

In the slurry fluid, the bulk temperature is calculated as follow, 

(62) 
𝑇𝑏 =

6(𝜌𝐶𝑝)𝑓 ∫ 𝜙𝑓𝑢𝑓𝑇𝑓 𝑑𝑉∗ + (𝜌𝐶𝑝)𝑝𝜋𝑑𝑝
3 ∑ 𝑢𝑝𝑇𝑝𝑛𝑝0

(𝜌𝐶𝑝)𝑀(6𝜙𝑓𝑉0
∗ + 𝑛𝑝0𝜋𝑑𝑝

3)
, 
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where 𝑛𝑝0 is the number of the particles in each section and 𝑉0 is obtained by cells volume summation in each section, 

and, (𝜌𝐶𝑝)𝑀 is the heat capacity of the working fluid and is calculated by the following relation, 

(63) 
(𝜌𝐶𝑝)𝑀 = (1 − 𝜙)(𝜌𝐶𝑝)𝑓 + 𝜙(𝜌𝐶𝑝)𝑃. 

In Eq. (62), 𝑇𝑝 is particle mean temperature and is obtained by the following relation, 

(64) 

(𝜌𝐶𝑝)𝑝

𝜋

6
𝐷𝑝

3𝑇𝑝 = 

(𝜌𝐶𝑝)𝑃𝐶𝑀

𝜋

6
∆𝑟3𝑇𝑝(1) + (𝜌𝐶𝑝)𝑃𝐶𝑀

𝜋

6
[(3∆𝑟)3 − ∆𝑟3]𝑇𝑝(2) + 

(𝜌𝐶𝑝)𝑃𝐶𝑀

𝜋

6
[(5∆𝑟)3 − (3∆𝑟)3]𝑇𝑝(3) + (𝜌𝐶𝑝)𝑃𝐶𝑀

𝜋

6
[(6∆𝑟)3 − (5∆𝑟)3]𝑇𝑝(4) + 

(𝜌𝐶𝑝)𝐶
𝜋

6
(𝑑𝑝

3 − 𝑑𝑖
3)𝑇𝑝(4). 

By simplifying and placement 𝑇𝑝(1) = 𝑇𝑝(2), finally, 

(65) 

216(𝜌𝐶𝑝)𝑝

𝑑𝑝
3

𝑑𝑖
3 𝑇𝑝 = 

27(𝜌𝐶𝑝)𝑃𝐶𝑀𝑇𝑝(2) + 98(𝜌𝐶𝑝)𝑃𝐶𝑀𝑇𝑝(3) + 91(𝜌𝐶𝑝)𝑃𝐶𝑀𝑇𝑝(4) + 216(𝜌𝐶𝑝)𝐶(
𝑑𝑝

3

𝑑𝑖
3 − 1)𝑇𝑝(4) 

4. Results and Discussions 

Properties of water and paraffin wax have been presented in the previous work [12]. The validation of the results 

for ReCf and Nusselt numbers is shown in a tube with a constant temperature boundary condition without the presence 

of particles in Fig. 3, for Re=120 and Pr=1. It is observed that the ReCf starts from a large value at the inlet of the pipe 

and tends to a constant value of 16 [18-20] in the developed region. The Nusselt number also starts with a certain 

value and tends to 3.66 [18-20] in the developed region. Also, the velocity profile in the developed region, has been 

compared with analytical solution (Eq. 66) and the results are in a good agreement.  

(66) 

𝑢(𝑟) =
2

𝑅2
2 + 𝑅1

2

𝑅2
2 − 𝑅1

2 −
1

ln (
𝑅2
𝑅1

)

[
ln (

𝑟
𝑅1

)

ln (
𝑅2
𝑅1

)
−

𝑟2 − 𝑅1
2

𝑅2
2 − 𝑅1

2] 

 

 
 

Fig. 3. Code validity for Re=120 and Pr=1. 

According to the author’s knowledge, there were no experimental results for microencapsulate PCM slurry flow 

heat transfer. However, the results of the Eulerian-Lagrangian method in the previous work of the author [6] have 

been compared with experimental work [21] for metal nanoparticles and the results were adapted well. 
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The grid independency has also been investigated and the code has been run for different grid points. The 

difference in the obtained Nusselt number for 100 × 20 and 120 × 24 points was so close together, and, the different 

in the Nusselt number is less than 2%. Then, the 100 × 20 points used for calculations. 

 
Table 1: Grid independency 

Nx-Ny Nu Error% 

60 × 12 11.54 8.99 

80 × 16 12.10 4.57 

100 × 20 12.44 1.85 

120 × 24 12.68 - 

 

 
Fig. 4. Grid independency study for pure water at Re=500. 

Fig. 5, shows the particle distribution. Fig. 5(a) shows the particles location at the final time. It is observed that the 

particles are distributed far from the walls. Fig. 5(b) shows the volume fraction of particles in the middle section of 

the pipe. It is clear that, the volume fraction of particles in a layer slightly far from the wall (after the particle-free 

space) is higher than the average volume fraction. In other words, particles spaced from the wall accumulate in this 

space. This has also been confirmed by [8]. Furthermore, the local volume fraction near the inner wall is more than 

that near the outer wall. It has happened due to the vertical velocity component, which sends the particles toward the 

inner wall.  

 
 

(a) (b) 
Fig. 5. (a) particle distribution (b) local particle concentration profile at Re=500, 𝝓 = 𝟎. 𝟎𝟒. 
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This figure shows that the particle distribution in the solution area is not uniform and the results of one phase 

homogeneous method is far from the experimental results as shown in [6,8]. This is due to the vertical component of 

the fluid velocity in the entrance length region, which causes drag force to carry particles and place them at a distance 

from the wall. 

The path of the particles is also shown in Fig. 6. The path of the particles and their movement away from the wall is 

confirmed. It can be seen, that, the path of the particles is closer to the inner wall in compare with the outer wall. The 

non-dimensional distance of the particles from the inner wall is 0.034 and is 0.051 for the outer wall, i.e. the distance 

of particles from outer wall is 1.5 times more than the distance of the particles from the inner wall. 

 
Fig. 6. The trace of the random selected particles. 

The fluid bulk temperature is shown in Fig. 7. It is observed that, due to the presence of the particles as distributed 

heat sinks, by volume fraction increasing, the fluid bulk temperature decreases. This cools the base fluid and able it 

to absorb more heat flux from the wall. 

 
Fig. 7. Working fluid bulk temperature for Re=350 at different volume concentration. 

The presence of PCM particles reduces the thickness of the thermal boundary layer and thus reduces the fluid 

thermal resistance as shown in Fig. 8. This will increase the temperature gradient near the body and thus increase the 

absorbed heat flux from walls. The received heat flux from the wall is also shown in Fig. 9. It is observed that at each 

section the heat flux is greater for the higher volume fraction. 
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Fig. 8. the temperature profile in the middle of the pipe length for Re=200. 

 

 

Fig. 9. Wall heat flux for Re=500 at different volume concentration. 

The local Nusselt number for Re=500 is calculated based on Eq. (59), and shown in Fig. 10. It is clear that, the 

local Nusselt number increases with increasing the volume fraction at each section. The mean Nusselt number is also 

plotted by integrating the local Nusselt number according to Eq. (61) in Fig. 11, for different Reynolds numbers at 
different concentrations. 
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Fig. 10. Local Nusselt number for Re=500 at different volume concentration. 

It is observed that the mean Nusselt number increases linearly with the volume fraction. This increase in the Nusselt 

number with the volume fraction is expressed by the following equation with maximum error less than 1%. 

 (67) 
𝑁𝑢 = 𝑁𝑢0 + 2.3937𝑅𝑒0.441𝜙, 0 ≤ 𝜙 ≤ 0.05, 200 ≤ 𝑅𝑒 ≤ 500, 

where subscript “0” refers to the Nusselt number for pure fluid. 

 

Fig. 11. Mean Nusselt number for different Reynolds number vs. volume concentration. 

In convective heat transfer problems, both the heat transfer coefficient and the rate of pressure drop are important. 

Presence of microencapsulated PCMs increases the pressure drop slightly, it is due to the equality of the density of 

the base and slurry fluid, but, it increases the Nusselt number more sensitive. 

The friction factor is obtained by the following equation, 

 (68) 
𝑓 = 2

Δ𝑝

Δ𝑥
. 

The increase of friction factor is presented in Fig. 12 for different Reynolds numbers. It is clear that, as the particle 

concentration increases, the friction factor increases linearly. The maximum increase in the friction factor is just 5% 

and is occurred for Re=500. For other states, the increasing in friction factor is less than 5%. 
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Fig. 12. Friction factor for different Reynolds number vs. particle concentration. 

Another criterion to judge about increasing in the heat transfer rate and in the friction factor is present them in the 

following formulas, 

 (69) 

𝑁𝑢𝐼 =
𝑁𝑢 − 𝑁𝑢0

𝑁𝑢0

, 

 (70) 

𝑓𝐼 =
𝑓 − 𝑓0

𝑓0

. 

Both of these new parameters are shown in Fig. 13. It is clear that the maximum increase in the Nusselt number and 

the friction factor is occurred for Re=500 and 𝜙 = 0.05. It can be concluded that the increase in the heat transfer rate 
is more than the increase in the friction factor and it is a good news. Because the researchers in the convective heat 

transfer are searching for situations having high heat transfer coefficient and low pressure drop penalty. 

 
Fig. 13. Friction factor and mean Nusselt number increment for different Reynolds number vs. particle concentration. 

As mentioned, in the convective heat transfer problems, the Nusselt number and the pressure drop coefficient must 

be considered together. As a result, based on the Reynolds analogy [20], the performance coefficient (PC), which is 

defined as the ratio of the Nusselt number to the friction factor for the slurry fluid to the pure fluid is introduced in 

Eq. (71). Then the PC is an important parameter for judging the use of the slurry fluid or not. Having PC >1 in a 
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convective heat transfer problem means that the heat transfer characteristics are more dominant in compare with the 

pressure drop characteristics. Then, having PC >1 is a favorable character. 

 (71) 

𝑃𝐶 =
(

𝑁𝑢
𝑓

)

(
𝑁𝑢
𝑓

)
0

 

This can also be deduced from Fig. 13, which shows that the use of these microparticles does not increase the 

pressure drop so much, due to having a density almost equal to the density of the base fluid. The effect of the volume 

concentration on the PC is shown in Fig. 14 for different Reynolds number. It can be seen that, the PC for lower 

Reynolds number is more. Then, it’s up to the designers to decide whether only heat transfer is important or whether 

pressure drop is important to them. But, it is clear that when this slurry is used as a working fluid in the convective 

heat transfer, for all states, the PC is more than one, and, it means that, convective heat transfer characteristics are 

more dominant in compare with the pressure drop characteristic.  

 

Fig. 14. Performance coefficient for different Reynolds number vs. particle concentration. 

 

5. Conclusions 

The use of microencapsulated PCMs in a base fluid, increases the convective heat transfer rate. These particles 

will not have a high temperature change during the phase change, and this is equivalent to having a high heat capacity. 

In this paper, the effect of the presence of microencapsulated paraffin with iron oxide coating in water on the heat 

transfer rate in the combined entrance length (hydrodynamic and thermal) in a mini-annular pipe has been investigated. 

The problem is solved in two phase model using the Eulerian-Lagrangian method. In this method, the fluid phase is 

studied by the Eulerian perspective and the particle phase is studied in the Lagrangian view. The fluid phase is also 

solved by a control volume method, and the SIMPLE method is used to solve the velocity and pressure fields. Due to 

the high Biot number for the particles, the lumped temperature assumption is not valid. Then solving energy equation 

in the particles is needed. In this paper, details of the energy equation solving inside each particle has been presented. 

The results show that the presence of particles reduces the fluid bulk temperature and increases the heat flux entering 
the fluid from the wall. Then, the mean Nusselt number increases, while the pressure drop doesn’t increase 

significantly. The results show for 𝜙 = 0.05 and Re=200, 500, the Nusselt number increases by 10 and 12.5%, while 

the pressure loss increases by 2 and 5.5% respectively. The maximum performance coefficient is 1.078 and occurs for 

Re=200 at 𝜙 = 0.05. 
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