- ثابتی، ح. (1355). جنگلها، درختان و درختچههای ایران، تهران: سازمان تحقیقات کشاورزی و منابع طبیعی.
- حسامی، س. م. و دوازدهامامی، س. (1395). بررسی فنولوژی گونة بلوط ایرانی (Quercus brantii Lindl) در سه رویشگاه مختلف در استان فارس، مجلة تحقیقات جنگلهای زاگرس، دورة 3، شمارة 1، صص 33-46.
- زارعزاده مهریزی، ط.؛ خوشبخت، ک.؛ مهدوی دامغانی، ع. و کامبوزیا، ج. (1390). مطالعة اثرات کاهش جریانات جزر و مدی بر ساختار رویشی جنگلهای حرا مطالعة موردی: پارک ملی- ساحلی نایبند، علوم محیطی، دورة 8، شمارة 4، صص 43-58.
- کوهپایه، ن.؛ ناصرزاده، م. و حجازیزاده بیگم، ز. (1397). طبقهبندی و ارتباطسنجی الگوهای فشار با مراحل فنولوژی خرما (مناطق سراوان و آبادان)، جغرافیای طبیعی، 12 (43): 89-105.
- یوسفی، ب. (1392). جمعآوری، شناسایی، و ارزیابی مورفولوژیک و فنولوژیک بیدهای استان کردستان، تحقیقات جنگل و صنوبر ایران، 21(1): 184-202.
- Amalisana, B. and Hernina, R. (2017). Land cover analysis by using pixel-based and object-based image classification method in Bogor. In IOP Conference Series: Earth and Environmental Science (Vol. 98, No. 1, p. 012005).
- Bazzi, H.; Baghdadi, N.; El Hajj, M.l Zribi, M.; Minh, D. H. T.; Ndikumana, E.; ... and Belhouchette, H. (2019). Mapping paddy rice using Sentinel-1 SAR time series in Camargue, France. Remote Sensing, 11(7):
- Bequette, B. W. (2010). Continuous glucose monitoring: real-time algorithms for calibration, filtering, and alarms. Journal of diabetes science and technology, 4(2): 404-418.
- Buitenwerf, R.; Rose, L. and Higgins, S. I. (2015). Three decades of multi-dimensional change in global leaf phenology. Nature Climate Change, 5(4): 364-368.
- Burrows, M. T.; Schoeman, D. S.; Buckley, L. B.; Moore, P.; Poloczanska, E. S.; Brander, K. M.; ... and Richardson, A. J. (2011). The pace of shifting climate in marine and terrestrial ecosystems. Science, 334(6056): 652-655.
- Cai, Y.; Lin, H. and Zhang, M. (2019). Mapping paddy rice by the object-based random forest method using time series Sentinel-1/Sentinel-2 data. Advances in Space Research, 64(11): 2233-2244.
- Cai, Y.; Li, X.; Zhang, M. and Lin, H. (2020). Mapping wetland using the object-based stacked generalization method based on multi-temporal optical and SAR data. International Journal of Applied Earth Observation and Geoinformation, 92:
- Chambers, J. Q.; Asner, G. P.; Morton, D. C.; Anderson, L. O.; Saatchi, S. S.; Espírito-Santo, F. D.; ... and Souza Jr, C. (2007). Regional ecosystem structure and function: ecological insights from remote sensing of tropical forests. Trends in Ecology & Evolution, 22(8): 414-423.
- Chen, X.; Vierling, L.; Deering, D. and Conley, A. (2005). Monitoring boreal forest leaf area index across a Siberian burn chronosequence: a MODIS validation study. International Journal of Remote Sensing, 26(24): 5433-5451.
- Christian, B.; Joshi, N.; Saini, M.; Mehta, N.; Goroshi, S.; Nidamanuri, R. R. and Krishnayya, N. S. R. (2015). Seasonal variations in phenology and productivity of a tropical dry deciduous forest from MODIS and Hyperion. Agricultural and Forest Meteorology, 214-215: 91-
- Clark, R. N.; Kokaly, R. F.; Swayze, G. A.; Livo, K. E.; Hoefen, T. M.; Pearson, N. C.; …and Klein, A. J. (2017). USGS Spectral Library Version 7: Data Series 1035. 61.
- Cohen, W. B.; Yang, Z. G. and Kennedy, R. )2010(. Detecting trends in forest disturbance and recovery using yearly Landsat time series: 2. TimeSync - Tools for calibration and validation. Remote Sensing of Environment, 114: 2911-
- Drusch, M.; Del Bello, U., Carlier, S., Colin, O., Fernandez, V., Gascon, F., Bargellini, P. (2012). Sentinel-2: ESA’s Optical High-Resolution Mission for GMES Operational Services. Remote Sensing of Environment, 120: 25-
- Duke, N. C.; Meynecke, J. O.; Dittmann, S.; Ellison, A. M.; Anger, K.; Berger, U.; ... and Dahdouh-Guebas, F. (2007). A world without mangroves?. Science, 317(5834): 41-42.
- Ellison, J.C. and Simmonds, S. (2003). Structure and Productivity of inland mangrove stands at Lake MacLeod, Western Journal of the Royal Society of Western Australia, 86: 25-30.
- ESA (2017). Sentinels Scientific Data Hub. Retrieved from. https://scihub.copernicus.eu/ Dhus/#/home.
- Field, C. B.; Gamon, J. A. and Peñuelas, J. (1995). Remote sensing of terrestrial photosynthesis. In Ecophysiology of photosynthesis (pp. 511-527). Springer, Berlin, Heidelberg.
- Fisher, J. I.; Mustard, J. F. and Vadeboncoeur, M. A. (2006). Green leaf phenology at Landsat resolution: Scaling from the field to the satellite. Remote sensing of environment, 100(2): 265-279.
- Flores-Anderson, A. I.; Herndon, K. E.; Thapa, R. B. and Cherrington, E. (2019). Sampling Designs for SAR-Assisted Forest Biomass Surveys. THE SAR HANDBOOK Comprehensive Methodologies for Forest Monitoring and Biomass Estimation, 1-
- Frankie, G.W.; Baker, H.G. and Opler, P.A., (1974). Comparative phenological studies of trees in tropical wet and dry forests in the lowlands of Costa Rica. Ecol., 881-919.
- Frison, P. L.; Fruneau, B.; Kmiha, S.; Soudani, K.; Dufrene, E.; Le Toan, T.; ... and Rudant, J. P. (2018). Potential of Sentinel-1 data for monitoring temperate mixed forest phenology. Remote Sensing, 10(12):
- Hansen, M. C.; Potapov, P. V.; Goetz, S. J.; Turubanova, S.; Tyukavina, A.; Krylov, A. and Egorov, A. (2016). Mapping tree height distributions in Sub-Saharan Africa using Landsat 7 and 8 data. Remote Sensing of Environment, 185: 221-
- Helman, (2018).Land surface phenology: What do we really 'see' from space?. Sci Total Environ. 618: 665-673.
- Hesami, M. and Davazdahemami, (2016).Phenology of Persian Oak (Quercus brantii Lindl.) in Three Different Sites in Fars Province, Iran. 3. 3 (1) :33-46. URL: http://yujs.yu.ac.ir/jzfr/article-1-79-fa.html. (in Persian).
- Hu, L.; Xu, N.; Liang, J.; Li, Z.; Chen, L.; and Zhao, F. (2020). Advancing the Mapping of Mangrove Forests at National-Scale Using Sentinel-1 and Sentinel-2 Time-Series Data with Google Earth Engine: A Case Study in China. Remote Sensing, Vol. 12.
- Huang, N.; Wang, L.; Song, X.-P.; Black, T. A.; Jassal, R. S.; Myneni, R. B.; …and Ji, D. (2020). Spatial and temporal variations in global soil respiration and their relationships with climate and land cover. Science Advances, 6(41):
- Huete, A. R. (1988); A soil adjusted vegetation index (SAVI), Remote Sensing of Environment. 25: 295 309.
- Huete, A. R.; Liu, H. Q.; Batchily, K. and van Leeuwen, W. J. D. (1997). A comparison of vegetation indices over a global set of TM images for EOS-MODIS. Remote Sensing of Environment, 59: 440-
- Huete, A.; Didan, K.; Miura, T.; Rodriguez, E. P.; Gao, X. and Ferreira, L. G. (2002). Overview of the radiometric and biophysical performance of the MODIS vegetation indices. Remote Sensing of Environment, 83(1-2): 195-
- Jensen, J. R. (1996). Introductory Digital Image Processing: A Remote Sensing Perspective. New Jersey: Prentice Hall, Inc.
- Jiang, Y.; Zhang, L.; Yan, M.; Qi, J.; Fu, T.; Fan, S. and Chen, B. (2021). High-Resolution Mangrove Forests Classification with Machine Learning Using Worldview and UAV Hyperspectral Data. Remote Sensing, Vol. 13.
- Jiao, X.; McNairn, H.; Shang, J. and Liu, J. (2010, July). The sensitivity of multi-frequency (X, C and L-band) radar backscatter signatures to bio-physical variables (LAI) over corn and soybean fields. In ISPRS TC VII Symposium—100 Years ISPRS (pp. 317-325).
- Jin, H., Eklundh, L.,. (2014). A physically based vegetation index for improved monitoring of plant phenology. Remote Sens. Environ. 152, 512–
- Kang, J.; Hou, X.; Niu, Z.; Gao, S. and Jia, K. (2014). Decision tree classification based on fitted phenology parameters from remotely sensed vegetation data. Transactions of the Chinese Society of Agricultural Engineering, 30(9): 148-156.
- Khouly, A.A. and Khedr, A. (2007). Zonation pattern of Avicennia marina and Rhizophora mucronata along the Red Sea Coast, Egypt. World applied sciences Journal, 2(4): 283-288.
- Knipling, E. B. (1970). Physical and Physiological Basis for the Reflectance of Visible and Near-Infrared Radiation from 1:155-159.
- Knyazikhin, Y.; Schull, M. A.; Stenberg, P.; Mottus, M.; Rautiainen, M.; Yang, Y.; … Myneni, R. B. (2013). Hyperspectral remote sensing of foliar nitrogen content. Proceedings of the National Academy of Sciences, 110(3): E185–E192.
- Koohpaye, N.; Naserzade, M. and Hejazizade Bigom, Z. (2019). Classification and measurement of pressure patterns with date phenological stages (Saravan and Abadan regions). Physical Geography Quarterly, 12(43), 89-104. (in Persian).
- Li, J., Pei, Y., Zhao, S., Xiao, R., Sang, X. and Zhang, C. (2020). A Review of Remote Sensing for Environmental Monitoring in China. Remote Sensing, 12(7):
- Liao, C.; Wang, J.; Dong, T.; Shang, J., Liu, J. and Song, Y. (2019). Using spatio-temporal fusion of Landsat-8 and MODIS data to derive phenology, biomass and yield estimates for corn and soybean. Science of the total environment, 650: 1707-1721.
- Louis, J.; Debaecker, V.; Pflug, B.; Main-Knorn, M.; Bieniarz, J.; Mueller-Wilm, U.; ... and Gascon, F. (2016). Sentinel-2 sen2cor: L2a processor for users. In Proceedings Living Planet Symposium (pp. 1-8). Spacebooks Online.
- Lovelock, C. E.; Feller, I. C.; Ellis, J.; Schwarz, A. M.; Hancock, N.; Nichols, P. and Sorrell, B. (2007). Mangrove growth in New Zealand estuaries: the role of nutrient enrichment at sites with contrasting rates of sedimentation. Oecologia, 153(3), 633-641.
- Lu, X., Cheng, X., Li, X., Chen, J., Sun, M., Ji, M., ... & Tang, J. (2018). Seasonal patterns of canopy photosynthesis captured by remotely sensed sun-induced fluorescence and vegetation indexes in mid-to-high latitude forests: A cross-platform comparison. Science of the total environment, 644, 439-451.
- Macelloni, G.; Paloscia, S.; Pampaloni, P.; Marliani, F. and Gai, M. (2001). The relationship between the backscattering coefficient and the biomass of narrow and broad leaf crops. IEEE Transactions on Geoscience and Remote Sensing, 39(4): 873-884.
- Miao, N.; Jiao, P.; Tao, W.; Li, M.; Li, Z.; Hu, B. and Moermond, T. C. (2020). Structural dynamics of Populus euphratica forests in different stages in the upper reaches of the Tarim River in China. Scientific Reports, 10(1):
- Montesano, P. M.; Nelson, R.; Sun, G.; Margolis, H.; Kerber, A. and Ranson, K. J. )2009(. MODIS tree cover validation for the circumpolar taiga-tundra transition zone. Remote Sensing of Environment, 113(10): 2130-
- Moran, M. S.; Vidal, A.; Troufleau, D.; Qi, J.; Clarke, T. R.; Pinter Jr, P. J.; ... and Neale, C. M. U. (1997). Combining multifrequency microwave and optical data for crop management. Remote Sensing of Environment, 61(1): 96-109.
- Moran, M. S., Alonso, L., Moreno, J. F., Mateo, M. P. C., De La Cruz, D. F., & Montoro, A. (2011). A RADARSAT-2 quad-polarized time series for monitoring crop and soil conditions in Barrax, Spain. IEEE Transactions on Geoscience and Remote Sensing, 50(4), 1057-1070.
- Murphy, P. G. and Lugo, A. E. (1986). Ecology of tropical dry forest. Annual review of ecology and systematics, 17(1): 67-88.
- Naidoo, G. (2010). Ecophysiological differences between fringe and dwarf Avicennia marina mangroves. Trees, 24: 667-673.
- Niphadkar, M.; Nagendra, H.; Tarantino, C.; Adamo, M. and Glenn, N. F. (2017). Comparing Pixel and Object-Based Approaches to Map an Understorey Invasive Shrub in Tropical Mixed Forests. 8(May), 1-
- Pastor-Guzman, J.; Dash, J. and Atkinson, P. M. (2018). Remote sensing of mangrove forest phenology and its environmental drivers. Remote sensing of environment, 205: 71-84.
- Piao, S.; Wang, X.; Park, T.; Chen, C.; Lian, X. U.; He, Y.; ... and Myneni, R. B. (2020). Characteristics, drivers and feedbacks of global greening. Nature Reviews Earth & Environment, 1(1); 14-27.
- Potere, D. (2008). Horizontal positional accuracy of Google Earth's high-resolution imagery archive. Sensors, 8: 7973-
- Potter, C. S.; Klooster, S. A. and Brooks, V. (1999). Interannual variability in terrestrial net primary production: exploration of trends and controls on regional to global scales. Ecosystems, 2: 36-
- Proisy, C.; Mougin, E.; Dufrêne, E.; Dantec, V.L. (2000). Monitoring seasonal changes of a mixed temperate forest using ERS SAR observations. IEEE Trans. Geosci. Remote Sens. 38, 540–552.
- Qiao, K.; Zhu, W.; Xie, Z. and Li, P. (2019). Estimating the seasonal dynamics of the leaf area index using piecewise LAI-VI relationships based on phenophases. Remote Sensing, 11(6):
- Reich, P. B. and Borchert, R. (1984). Water stress and tree phenology in a tropical dry forest in the lowlands of Costa Rica. The Journal of Ecology, 61-74.
- Richards, J.A. (2009). Remote sensing with imaging radar. New York, Springer.
- Rocha, A. V. and Shaver, G. R. (2009). Advantages of a two band EVI calculated from solar and photosynthetically active radiation fluxes. Agricultural and Forest Meteorology, 149(9): 1560-
- Rüetschi, M.; Schaepman, M. E. and Small, D. (2018). Using multitemporal sentinel-1 c-band backscatter to monitor phenology and classify deciduous and coniferous forests in northern switzerland. Remote Sensing, 10(1):
- Saadat, M.; Hasanlou, M. and Homayouni, S. (2019). Rice Crop Mapping Using SENTINEL-1 Time Series Images (case Study: Mazandaran, Iran). The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 42: 897-904.
- Sabeti, H. (1355). Forests, trees and shrubs of Iran. Agricultural and Natural Resources Research Organization, p 810. (in Persian).
- Savoy, P. and Mackay, D. S. (2015). Modeling the seasonal dynamics of leaf area index based on environmental constraints to canopy development. Agricultural and Forest Meteorology, 200: 46-56.
- Schlund, M. and Erasmi, S. (2020). Remote Sensing of Environment Sentinel-1 time series data for monitoring the phenology of winter wheat. Remote Sensing of Environment, 246(March), 111814.
- Song, C. and Woodcock, C. E. (2003). Monitoring forest succession with multitemporal Landsat images: Factors of uncertainty. IEEE Transactions on Geoscience and Remote Sensing, 41(11): 2557-2567.
- Shimada, Masanobu; Takuya Itoh; Takeshi Motooka; Manabu Watanabe; Tomohiro Shiraishi; Rajesh Thapa; and Richard Lucas (2014). New Global Forest/Non-Forest Maps from ALOS PALSAR Data (2007-2010). Remote Sensing of Environment, 155: 13-
- Stendardi, L.; Karlsen, S. R.; Niedrist, G.; Gerdol, R.; Zebisch, M.; Rossi, M. and Notarnicola, C. (2019). Exploiting time series of Sentinel-1 and Sentinel-2 imagery to detect meadow phenology in mountain regions. Remote Sensing, 11(5):
- Thevs, Niels; Stefan Zerbe; Jan Peper; and Michael Succow(2008). Vegetation and Vegetation Dynamics in the Tarim River Floodplain of Continental-Arid Xinjiang, NW China. Phytocoenologia, 38(1-2): 65-
- Tian, H.- Huang, N.- Niu, Z., Qin, Y.- Pei, J. and Wang, J. (2019). Mapping winter crops in China with multi-source satellite imagery and phenology-based algorithm. Remote sensing, 11(7):
- Torres, R.; Snoeij, P.; Geudtner, D.; Bibby, D.; Davidson, M.; Attema, E.; ... and Rostan, F. (2012). GMES Sentinel-1 mission. Remote Sensing of Environment, 120: 9-24.
- Treshkin, S. Y. (2012). The Tugai Forests of Floodplain of the Amudarya River: Ecology, Dynamics and Their. Springer, 95.
- Vavlas, N. C.; Waine, T. W.; Meersmans, J.; Burgess, P. J.; Fontanelli, G. and Richter, G. M. (2020). Deriving Wheat Crop Productivity Indicators Using Sentinel-1 Time Series. Remote Sensing, 12(15):
- Venter, O.; Brodeur, N. N.; Nemiroff, L.; Belland, B.; Dolinsek, I. J. and Grant, J. W. (2006). Threats to endangered species in Canada. Bioscience, 56(11): 903-910.
- Verbesselt, J., Hyndman, R., Newnham, G., & Culvenor, D. (2010). Remote Sensing of Environment Detecting trend and seasonal changes in satellite image time series. Remote Sensing of Environment, 114(1), 106–115.
- Wang, J.; Xiao, X.; Bajgain, R.; Starks, P.; Steiner, J.; Doughty, R. B. and Chang, Q. (2019). Estimating leaf area index and aboveground biomass of grazing pastures using Sentinel-1, Sentinel-2 and Landsat images. ISPRS Journal of Photogrammetry and Remote Sensing, 154: 189-201.
- Wang, C., Chen, J., Wu, J., Tang, Y., Shi, P., Black, T.A., Zhu, K. (2017). A snow-free vegetation index for improved monitoring of vegetation spring green-up date in deciduous ecosystems. Remote Sens. Environ. 196, 1–12.
- Yang, W.; Kobayashi, H.; Wang, C.; Shen, M.; Chen, J.; Matsushita, B.; ... and Kondoh, A. (2019). A semi-analytical snow-free vegetation index for improving estimation of plant phenology in tundra and grassland ecosystems. Remote Sensing of Environment, 228: 31-44.
- Yousefi, B. (2013). Collection, identification and morphological - phonological evaluation of Willows accessions at Kurdistan province of Iran. Iranian Journal of Forest and Poplar Research, 21(1): 184- (in Persian).
- Zare Zadeh Mehrizi, T.; Khoshbakht, K.; Mahdavi Damghani, A. and Kambouzia, J. (2011). Studying Effects of Reduction in Tidal Flooding on the Structure of Mangrove Forests, A Case Study From Nayband Coastal National Park. Environmental Sciences, 8(4): 43- Retrieved from. (in Persian).
- Zhang, M.; Lin, H.; Wang, G.; Sun, H. and Fu, J. (2018). Mapping paddy rice using a convolutional neural network (CNN) with Landsat 8 datasets in the Dongting Lake Area, China. Remote Sensing, 10(11):
- Zheng, G.; Chen, J. M.; Tian, Q. J.; Ju, W. M. and Xia, X. Q. (2007). Combining remote sensing imagery and forest age inventory for biomass mapping. Journal of Environmental Management, 85(3): 616-623.
|