تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,504 |
تعداد مشاهده مقاله | 124,121,690 |
تعداد دریافت فایل اصل مقاله | 97,228,997 |
برآورد تغییرات مکانی رطوبت خاک با بهرهگیری از روش جنگل تصادفی و ویژگیهای محیطی حاصل از تصاویر ماهوارهای در حوضه مرغاب خوزستان | ||
تحقیقات آب و خاک ایران | ||
دوره 52، شماره 11، بهمن 1400، صفحه 2859-2874 اصل مقاله (2.22 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/ijswr.2021.331962.669094 | ||
نویسندگان | ||
پدیده جوادی1؛ حسین اسدی* 2؛ مجید وظیفه دوست3 | ||
1گروه علوم خاک، دانشکده مهندسی و فناوری کشاورزی، دانشگاه تهران | ||
2گروه علوم و مهندسی خاک، دانشکده مهندسی و فناوری کشاورزی، دانشگاه تهران | ||
3گروه مهندسی آب، دانشکده کشاورزی، دانشگاه گیلان | ||
چکیده | ||
در مدیریت اراضی، تهیه نقشه یکپارچه تغییرات رطوبت خاک با وضوح مکانی بالا و کیفیت مناسب از اهمیت بالایی برخوردار است. با توجه به کمبود ایستگاههای هواشناسی و هیدرومتری در حوزههای آبخیز، بهویژه در مناطق کوهستانی، مطالعات میدانی بررسی تغییرات رطوبت خاک فرآیندی زمانبر، پرهزینه و با خطا است. جهت دستیابی به مدلی مناسب برای پیشبینی مکانی رطوبت خاک در فصل کم بارش در حوضه مرغاب استان خوزستان با مساحت 683 کیلومترمربع، نمونهبرداری میدانی به تعداد 174 نقطه در چهار عمق استاندارد با پروژه جهانی نقشهبرداری رقومی خاک (5-0، 15-5، 30-15 و 60-30 سانتیمتری) صورت گرفت. نقشههای تغییرات مکانی رطوبت خاک با استفاده از اجرای مدل یادگیری ماشین جنگل تصادفی (RF) و دو مجموعه دادهی فضاپایه شامل ویژگیهای بیوفیزیکی سطح حاصل از تصاویر ماهواره لندست-8 و سنتینل-2 و ویژگیهای توپوگرافی مستخرج از مدل رقومی ارتفاع تولید گردید. مناسبترین ویژگیهای کمکی پیشبینی کننده رطوبت خاک با روش حذف ویژگی برگشتی انتخاب گردیدند. نتایج میانگین تغییرات رطوبت خاک از لایه اول تا لایه چهارم بهترتیب 2/2، 24/3، 41/3 و 6/4 درصد مشاهده گردید. در عمق سطحی (5-0 سانتیمتر)، ویژگیهای بیوفیزیک ارتباط بیشتری با تغییرات مکانی رطوبت خاک از خود نشان دادند و در اعماق پایینتر، ویژگیهای توپوگرافی اهمیت بالاتری را نشان دادند. بررسی کارایی مدل RF در ارتباط با نوع تصویر مورد استفاده برای تولید ویژگیهای بیوفیزیکی بیانگر آن است که بر مبنای ضریب تطابق همبستگی مدل، استفاده از تصاویر سنتینل-2 در تلفیق با فاکتورهای توپوگرافی در عمقهای استاندارد بین 28/1 تا 66/3 درصد از دقّت بالاتری نسبت به تصاویر لندست-8 برخوردار است. بهطورکلی الگوریتم جنگل تصادفی به همراه ویژگیهای بیوفیزیکی مستخرج از سنتینل دو و دادههای توپوگرافی در سطح حوضه آبخیز قادر است نقشههای رطوبت خاک را با دقّت بالایی فراهم نماید. | ||
کلیدواژهها | ||
شاخص های سنجش از دور؛ فاکتورهای توپوگرافیکی؛ مدل جنگل تصادفی | ||
مراجع | ||
Abedi, F., AmirianChakan, A., Faraji, M., TaghizadehMehrjardi, R., Kerry, R., Razmjoue, D., & Scholten, T. (2021). Salt dome related soil salinity in southern Iran: Prediction and mapping with averaging machine learning models. Land Degradation & Development, 32(3), 1540-1554. Berk, A., Conforti, P., Kennett, R., Perkins, T., Hawes, F., & Van Den Bosch, J. (2014, June). MODTRAN® a major upgrade of the MODTRAN® radiative transfer code. In 2014 6th Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing (WHISPERS) (pp. 1-4). IEEE. Breiman, L., & Cutler, A. (2004). Random Forests, URL: http://www. Stat. Berkeley. Edu/users/breiman. RandomForests/cc_papers. Htm. Brevik, E. C., Cerdà, A., Mataix-Solera, J., Pereg, L., Quinton, J. N., Six, J., & Van Oost, K. (2015). The interdisciplinary nature of SOIL. Soil, 1(1), 117-129. Cooley, T., Anderson, G. P., Felde, G. W., Hoke, M. L., Ratkowski, A. J., Chetwynd, J. H., & Lewis, P. (2002, June). FLAASH, a MODTRAN4-based atmospheric correction algorithm, its application and validation. In IEEE International Geoscience and Remote Sensing Symposium (Vol. 3, pp. 1414-1418). IEEE. Dharumarajan, S., Hegde, R., & Singh, S. K. (2017). Spatial prediction of major soil properties using Random Forest techniques-A case study in semi-arid tropics of South India. Geoderma Regional, 10, 154-162. Diek, S., Chabrillat, S., Nocita, M., Schaepman, M. E., & de Jong, R. (2019). Minimizing soil moisture variations in multi-temporal airborne imaging spectrometer data for digital soil mapping. Geoderma, 337, 607-621. Fabre, S., Briottet, X., & Lesaignoux, A. (2015). Estimation of soil moisture content from the spectral reflectance of bare soils in the 0.4–2.5 µm domain. Sensors, 15(2), 3262-3281. Fathololoumi, S., Vaezi, A. R., Alavipanah, S. K., Ghorbani, A., & Biswas, A. (2020). Comparison of spectral and spatial-based approaches for mapping the local variation of soil moisture in a semi-arid mountainous area. Science of the Total Environment, 724, 138319. Fathololoumi, S., Vaezi, A. R., Alavipanah, S. K., Ghorbani, A., Saurette, D., & Biswas, A. (2021). Effect of multi-temporal satellite images on soil moisture prediction using a digital soil mapping approach. Geoderma, 385, 114901. Firozjaei, M. K., Alavipanah, S. K., Liu, H., Sedighi, A., Mijani, N., Kiavarz, M., & Weng, Q. (2019). A PCA–OLS model for assessing the impact of surface biophysical parameters on land surface temperature variations. Remote Sensing, 11(18), 2094. Firozjaei, M. K., Fathololoumi, S., Alavipanah, S. K., Kiavarz, M., Vaezi, A. R., & Biswas, A. (2020). A new approach for modeling near surface temperature lapse rate based on normalized land surface temperature data. Remote Sensing of Environment, 242, 111746. Firozjaei, M. K., Fathololuomi, S., Alavipanah, S. K., Kiavarz, M., Vaezi, A., Biswas, A., & Ghorbani, A. (2019). Modeling the impact of surface characteristics on the near surface temperature lapse rate. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 42, 395-399. Forkuor, G., Hounkpatin, O. K., Welp, G., & Thiel, M. (2017). High resolution mapping of soil properties using remote sensing variables in south-western Burkina Faso: a comparison of machine learning and multiple linear regression models. PloS one, 12(1), e0170478. Gao, B. C. (1996). NDWI, A normalized difference water index for remote sensing of vegetation liquid water from space. Remote sensing of environment, 58(3), 257-266. GU, Y., Hunt, E., Wardlow, B., Basara, J. B., Brown, J. F., & Verdin, J. P. (2008). Evaluation of MODIS NDVI and NDWI for vegetation drought monitoring using Oklahoma Mesonet soil moisture data. Geophysical Research Letters, 35(22) Holtgrave, A. K., Förster, M., Greifeneder, F., Notarnicola, C., & Kleinschmit, B. (2018). Estimation of soil moisture in vegetation-covered floodplains with Sentinel-1 SAR data using support vector regression. PFG–Journal of Photogrammetry, Remote Sensing and Geoinformation Science, 86(2), 85-101. Huete, A. R. (1988). A soil-adjusted vegetation index (SAVI). Remote sensing of environment, 25(3), 295-309. Iran Meteorological Organization. (2018). Climate Information, Khuzestan synoptic station: Khuzestan, Iran. Kato, C., & Nishimura, T. (2017). Predicting soil moisture condition in arbitrary agricultural lands using the digital soil map and soil physical properties database. Paddy and water environment, 15(1), 159-169. Katuwal, S., Knadel, M., Moldrup, P., Norgaard, T., Greve, M. H., & de Jonge, L. W. (2018). Visible–Near-infrared spectroscopy can predict mass transport of dissolved chemicals through intact soil. Scientific reports, 8(1), 1-9 Ke, Y., Im, J., Lee, J., Gong, H., & Ryu, Y. (2015). Characteristics of Landsat 8 OLI-derived NDVI by comparison with multiple satellite sensors and in-situ observations. Remote Sensing of Environment, 164, 298-313. Keshavarz, M. R., Vazifedoust, M., & Alizadeh, A. (2014). Drought monitoring using a Soil Wetness Deficit Index (SWDI) derived from MODIS satellite data. Agricultural Water Management, 132, 37-45. Khaki, M., & Awange, J. (2019). The application of multi-mission satellite data assimilation for studying water storage changes over South America. Science of the Total Environment, 647, 1557-1572. Khan, N. M., Rastoskuev, V. V., Sato, Y., & Shiozawa, S. (2005). Assessment of hydrosaline land degradation by using a simple approach of remote sensing indicators. Agricultural Water Management, 77(1-3), 96-109. Khellouk, R., Barakat, A., Boudhar, A., Hadria, R., Lionboui, H., El Jazouli, A., & Benabdelouahab, T. (2020). Spatiotemporal monitoring of surface soil moisture using optical remote sensing data: a case study in a semi-arid area. Journal of Spatial Science, 65(3), 481-499. Kuhn, M., & Quinlan, R. (2017). Rule-And Instance-Based Regression Modeling. Comprehensive R Archiv, Net. 1-14. Lehnert, M. (2014). Factors affecting soil temperature as limits of spatial interpretation and simulation of soil temperature. Acta Universitatis Palackianae Olomucensis–Geographica, 45(1), 5-21. Li, H. D., Guan, D. X., Yuan, F. H., Ren, Y., Wang, A. Z., Jin, C. J., & Wu, J. B. (2014). Diurnal and seasonal variations of energy balance over Horqin meadow. Ying yong sheng tai xue bao= The journal of applied ecology, 25(1), 69-76. Li, H., Wang, A., Yuan, F., Guan, D., Jin, C., Wu, J., & Zhao, T. (2016). Evapotranspiration dynamics over a temperate meadow ecosystem in eastern Inner Mongolia, China. Environmental Earth Sciences, 75(11), 1-11. Luo, W., Xu, X., Liu, W., Liu, M., Li, Z., Peng, T., & Zhang, R. (2019). UAV based soil moisture remote sensing in a karst mountainous catchment. Catena, 174, 478-489 Ma, H., Zeng, J., Chen, N., Zhang, X., Cosh, M. H., & Wang, W. (2019). Satellite surface soil moisture from SMAP, SMOS, AMSR2 and ESA CCI: A comprehensive assessment using global ground-based observations. Remote Sensing of Environment, 231, 111215. Ma, Y., Minasny, B., Malone, B. P., & Mcbratney, A. B. (2019). Pedology and digital soil mapping (DSM). European Journal of Soil Science, 70(2), 216-235. Mahmoudabadi, E., Karimi, A., Haghnia, G. H., & Sepehr, A. (2017). Digital soil mapping using remote sensing indices, terrain attributes, and vegetation features in the rangelands of northeastern Iran. Environmental monitoring and assessment, 189(10), 1-20. McBratney, A. B., Santos, M. M., & Minasny, B. (2003). On digital soil mapping. Geoderma, 117(1-2), 3-52. Mijani, N., Alavipanah, S. K., Hamzeh, S., Firozjaei, M. K., & Arsanjani, J. J. (2019). Modeling thermal comfort in different condition of mind using satellite images: An Ordered Weighted Averaging approach and a case study. Ecological Indicators, 104, 1-12. Mishra, N., Haque, M. O., Leigh, L., Aaron, D., Helder, D., & Markham, B. (2014). Radiometric cross calibration of Landsat 8 operational land imager (OLI) and Landsat 7 enhanced thematic mapper plus (ETM+). Remote sensing, 6(12), 12619-12638. Mosleh, Z., Salehi, M. H., Jafari, A., Borujeni, I. E., & Mehnatkesh, A. (2016). The effectiveness of digital soil mapping to predict soil properties over low-relief areas. Environmental monitoring and assessment, 188(3), 195. Mousavi, S. R., Sarmadian, F., & Rahmani, A. (2020). Modeling and Prediction of Soil Classes Using Boosting Regression Tree and Random Forests Machine Learning Algorithms in Some Part of Qazvin Plain. Iranian Journal of Soil and Water Research, 50(10), 2525-2538. (In Farsi). Mousavi, S., Sarmadian, F., Alijani, Z., & Taati, A. (2017). Land suitability evaluation for irrigating wheat by geopedological approach and geographic information system: Mousavi, S., Sarmadian, F., Omid, M., & Bogaert, P. (2021). Digital modeling of three-dimensional soil salinity variation using machine learning algorithms in arid and semi-arid land of Qazvin plain. Iranian Journal of Soil and Water Research, (), Doi: 10.22059/ijswr.2021.323030.668957 Mousavi, S., Sarmadian, F., Omid, M., & Bogaert, P. (2021). The Vertical Modeling of Soil Calcium Carbonate Equivalent Variation by Machine Learning Algorithms in Qazvin Plain. Water and Soil, Doi: 10.22067/jsw.2021.71748.1076 Nasta, P., Penna, D., Brocca, L., Zuecco, G., & Romano, N. (2018). Downscaling near-surface soil moisture from field to plot scale: A comparative analysis under different environmental conditions. Journal of Hydrology, 557, 97-108. Nourouzi, A. E., Behbahani, S., Rahimi, K. A., & Aghighi, H. (2009). Surface Soil Moisture Model with NDVI (case study: Rangeland of Khorasan Razavi Province). Parsaie, F., Firouzi, A. F., Mousavi, S. R., Rahmani, A., Sedri, M. H., & Homaee, M. (2021). Large-scale digital mapping of topsoil total nitrogen using machine learning models and associated uncertainty map. Environmental Monitoring and Assessment, 193(4), 1-15. Rahmani, A., Sarmadian, F., Mousavi, S. R., & Khamoshi, S. E. (2020). Application of Geomorphometric attributes in digital soil mapping by using of machine learning and fuzzy logic approaches. Journal of Range and Watershed Managment, 73(1), 105-124. Rossel, R. V., & McBratney, A. B. (2008). Diffuse reflectance spectroscopy as a tool for digital soil mapping. In Digital soil mapping with limited data (pp. 165-172). Springer, Dordrecht. Sahu, A. S. (2014). Identification and mapping of the water-logged areas in Purba Medinipur part of Keleghai river basin, India: RS and GIS methods. International Journal of Advanced Geosciences, 2(2), 59-65. Sayão, V. M., Demattê, J. A., Bedin, L. G., Nanni, M. R., & Rizzo, R. (2018). Satellite land surface temperature and reflectance related with soil attributes. Geoderma, 325, 125-140 Segarra, J., Buchaillot, M. L., Araus, J. L., & Kefauver, S. C. (2020). Remote sensing for precision agriculture: Sentinel-2 improved features and applications. Agronomy, 10(5), 641. Seneviratne, S. I., Corti, T., Davin, E. L., Hirschi, M., Jaeger, E. B., Lehner, I., & Teuling, A. J. (2010). Investigating soil moisture–climate interactions in a changing climate: A review. Earth-Science Reviews, 99(3-4), 125-161. Sinoga, J. R., Diaz, A. R., Bueno, E. F., & Murillo, J. M. (2010). The role of soil surface conditions in regulating runoff and erosion processes on a metamorphic hillslope (Southern Spain): Soil surface conditions, runoff and erosion in Southern Spain. Catena, 80(2), 131-139. Soil Survey Manual, (2018). Soil Science Division Staff. United States Department of Agriculture Handbook No. 18. Suleymanov, A., Abakumov, E., Suleymanov, R., Gabbasova, I., & Komissarov, M. (2021). The Soil Nutrient Digital Mapping for Precision Agriculture Cases in the Trans-Ural Steppe Zone of Russia Using Topographic Attributes. ISPRS International Journal of Geo-Information, 10(4), 243. Szabó, B., Szatmári, G., Takács, K., Laborczi, A., Makó, A., Rajkai, K., & Pásztor, L. (2019). Mapping soil hydraulic properties using random-forest-based pedotransfer functions and geostatistics. Hydrology and Earth System Sciences, 23(6), 2615-2635 Taghizadeh-Mehrjardi, R., Minasny, B., Sarmadian, F., & Malone, B. P., (2014). Digital mapping of soil salinity in Ardakan region, central Iran. Geoderma, 213, 15-28. Taghizadeh-Mehrjardi, R., Schmidt, K., Toomanian, N., Heung, B., Behrens, T., Mosavi, A& Scholten, T. (2021). Improving the spatial prediction of soil salinity in arid regions using wavelet transformation and support vector regression models. Geoderma, 383, 114793. Tang, X., Xia, M., Pérez-Cruzado, C., Guan, F., & Fan, S. (2017). Spatial distribution of soil organic carbon stock in Moso bamboo forests in subtropical China. Scientific Reports, 7(1), 1-13. Ullah, S., Schlerf, M., Skidmore, A. K., & Hecker, C. (2012). Identifying plant species using mid-wave infrared (2.5–6 μm) and thermal infrared (8–14 μm) emissivity spectra. Remote Sensing of Environment, 118, 95-102. Verrelst, J., Rivera, J. P., Veroustraete, F., Muñoz-Marí, J., Clevers, J. G., Camps-Valls, G., & Moreno, J. (2015). Experimental Sentinel-2 LAI estimation using parametric, non-parametric and physical retrieval methods–A comparison. ISPRS Journal of Photogrammetry and Remote Sensing, 108, 260-272. Vorpahl, P., Elsenbeer, H., Märker, M., & Schröder, B. (2012). How can statistical models help to determine driving factors of landslides Ecological Modelling, 239, 27-39? Wagner, W., Scipal, K., Pathe, C., Gerten, D., Lucht, W., & Rudolf, B., (2003) Evaluation of the agreement between the first global remotely sensed soil moisture data with model and precipitation data. J Geophys Res. https: //doi.org/10.1029/2003J D0036 63 118) Wang, J., Ding, J., Yu, D., Teng, D., He, B., Chen, X., & Su, F. (2020). Machine learning-based detection of soil salinity in an arid desert region, Northwest China: A comparison between Landsat-8 OLI and Sentinel-2 MSI. Science of the Total Environment, 707, 136092. Wilding, L. P. (1985). Spatial variability: its documentation, accomodation and implication to soil surveys. In Soil spatial variability, Las Vegas NV, 30 November-1 December 1984 (pp. 166-194). Zhang, R., Kim, S., & Sharma, A. (2019). A comprehensive validation of the SMAP Enhanced Level-3 Soil Moisture product using ground measurements over varied climates and landscapes. Remote sensing of environment, 223, 82-94. Zinck, J. A., Metternicht, G., Bocco, G., & Del Valle, H. F. (2016). Geopedology an Integration of Geomorphology and Pedology for Soil and Landscape Studies. Berlin: Springer. https://doi.org/10.1007/978-3-319-19159-1.
| ||
آمار تعداد مشاهده مقاله: 464 تعداد دریافت فایل اصل مقاله: 388 |