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A B S T R A C T 

 

Inverse modeling is one of the useful solutions to create a logical model with relationships between observed and measured values. In 
geophysical and subsurface investigations such as cavities or mineral explorations, solving inverse problems using problem physics in a partial 
differential equation (PDE) system is very important. In this research, COMSOL multiphysics’ optimization interface, combined with a PDE 
or physics interface, was used to solve inverse-modeling problems. Also, a framework is presented to solve undetermined inverse problems 
using COMSOL multiphysics’ optimization. COMSOL multiphysics does not include a gravity calculation module. However, since Poisson’s 
equation governs gravity and electrostatics, a gravity model can be created in the electrostatics module by changing the electrical permittivity 
value. We present a general adjoint state formulation that may be used in this framework and allows for faster calculation of sensitivity 
matrices in a variety of commonly encountered underdetermined problems. First of all, 2D inversion of gravity data has been run and validated 
in COMSOL multiphysics software using one synthetic model and synthetic data in a forward modeling process. Afterward, using real gravity 
data surveyed along a cross-section of the sinkholes in the NW of Abarkuh, the lateral structure and subsurface cavities were estimated. The 
inverted gravitational acceleration values, then cross-correlated with observed gravity data and available surface pieces of evidence such as 
sinkholes and circular structures. The results indicated that our COMSOL-based routines for the solution of PDE-based inverse problems 
using adjoint states, while high in computational speed, can be used in modeling a wide range of physical systems governed by the partial 
differential equation laws and also can accurately discriminate between low-density contrast regions and background 
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 Introduction 

Inverse modeling is useful in understanding the physical phenomena 
on Earth and applies to various fields of earth science, including 
geophysical exploration, groundwater hydrology, and seismology. In 
forward modeling, we assume that all physical parameters are known, 
and various models can be simulated through physical laws and 
scientific relationships. Despite the direct measuring of unknown 
parameters in inverse modeling, we would like to know their spatial 
distribution. In this paper, gravity forward modeling will be 
implemented by solving Poisson’s equations with the appropriate 
boundary conditions, and then a methodology is presented for solving 
gravity inversion problems using COMSOL Multiphysics. Previously, 
Zhang et al. (2004) and Farquharson and Mosher (2009) used the 
numerical solution of Poisson’s equation to determine the gravitational 
acceleration. COMSOL Multiphysics (COMSOL Multiphysics User's 
Guide, 2009) is a general finite-element modeling environment capable 
of numerical solving the governing equations in various physics systems 
[1, 2]. The COMSOL Multiphysics [3] determines many parameters 
such as electrical resistivity, density, induced polarization (IP), magnetic 
and hydraulic conductivity [4-10]. 

The gravity method measures the vertical component of the 
acceleration at the Earth’s surface. The Earth’s gravity field is affected 
by the density of different rocks and structures. Therefore, this method 
can be used in mineral exploration or studying the subsurface cavities 
and structures such as bedrocks, channels, and dikes. COMSOL does not 
include a built-in gravity calculation module, but since gravity and 

electrostatics are governed by Poisson’s equation, Butler and Sinha, 2012 
created a gravity model by changing the electrical permittivity value. 
Cardiff and Kitanidis, 2008, presented a framework for solving the 
underdetermined inverse problems using COMSOL Multiphysics [4]. 
They used the adjoint operator to reduce the computational burden of 
inverse problems. Despite the most inversion codes designed for a 
particular application, this method applies to a broad range of physical 
systems governed by PDEs [5]. The mathematical formulation of most 
problems involving rates of change with respect to two or more 
independent variables, usually representing time, length, or angle, leads 
either to a partial differential equation (PDE) or to a system of such 
equations. Partial differential equations can be significantly more 
challenging than ordinary differential equations, since we may not be 
able to split the computation into discrete (time-)steps and have to 
approximate the entire solution at once. Special cases of the two-
dimensional second-order partial differential equation: 
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where A, B, C, D, E, F, and G may be functions of independent 
variables x and y and a dependent variable φ, occur more frequently 
than any others, because they are often the mathematical form of one of 
the conservation principles of physics. 

The main benefit of COMSOL for solving inverse problems is that, 
once a user is comfortable with the software, it can solve a wide range 
of physical problems. Additionally, COMSOL’s ‘‘Multiphysics’’ 
capabilities allow coupling intrinsically to several physical equations.  

This paper presents the forward and inverse modeling theories, 
followed by running and validating a 2D inversion of gravity synthetic 
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data forward-modeled in COMSOL software. Afterward, subsurface 
cavities were estimated using real gravity data surveyed along cross-
sections in a part of sinkhole areas in Abarkuh plain. Finally, the inverted 
density values were cross-correlated with existing surface pieces of 
evidence.  

 Methods and theory 

COMSOL multiphysics does not include a gravity calculation 
module. However, since Poisson’s equation governs gravity and 
electrostatics, a gravity model can be created in the electrostatics 
module by changing the electrical permittivity value. Poisson’s equation 
of gravitational potential is: 

𝛻2𝑈 = −4𝜋𝐺𝜌         (2) 
Where U is gravitational potential in J kg-1, ρ is mass density 

distribution in kg m-3, and G = 6.67×10-11 J m kg-2 is the universal 
gravitational constant (e.g., [11]). 

Poisson’s equation of electrical potential (V) in V is 
𝛻2𝑉 =

−𝜌𝑐

𝜀
       (3) 

Where ρc is the charge density distribution in C m-3, and ε is the 
electrical permittivity [12]. 

By substituting ε = 1/4 π G, ρc = ρ, and V = U, a gravitational 
potential energy model can be easily created [4]. 

In order to test the model in 3D, Butler, and Sinha, 2012 used a 
cylinder with radius, a = 1000 m, and density contrast with the 
surrounding ∆ρ = 100 kg m-3 previously (Fig. 1.a). For comparison, we 
used a 2D model the same 3D model with similar specifications (Fig 1. 
b). In this model, a circle with radius, a = 1000 m, and density contrast 

with the surrounding material, ∆ρ = 100 kg m-3, in a square solution domain 

that is 10 km on a side was used. The outer rectangular prisms of thickness 

2 km are “infinite elements” that place the outer boundary virtually at 

infinity. 

 

 
Fig. 1. Geometry solution: the central cylinder (a) and circle (b) has anomalous 
density ∆ρ. The outer rectangular prisms of thickness 2 km are “infinite elements” 
that place the outer boundary virtually at infinity. c) and d) Profiles of gz at heights 
2 and 4 km above the cylinder and circle along the x-axis over the cylinder and 
circle’s centers. Solid and dotted lines indicate numerical solutions and analytical 
solutions, respectively. 

 

Profiles of the gravitational acceleration vertical component, 
perpendicular to the cylinder’s long axis, above the cylinder and circle’s 
centers in the x-direction at 2 and 4 km height, are plotted in Fig1.c and 
Fig 1.d, respectively. The red and green solid lines are numerical 
solutions, and the black dotted lines are the analytical solution. As can 
be seen, the numerical solution with infinite elements agrees very well 
with the analytical solution at both z = 2 and 4 km. The numerical 

solution with infinite elements agrees very well with the analytical 
solution at both z = 2 and 4 km. The numerical solutions of both models 
(2 and 3 space dimensions) are quite similar. 

In inverse problems, if the number of unknown parameters is more 
than that of measurement values, the inverse problem is 
underdetermined. The objective function for an underground inverse 
problem is the sum of a fitness and penalty term [5]: 

 

𝐿(𝑦, 𝑠) = 𝐿𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑦, 𝑠) + 𝐿𝑃𝑒𝑛𝑎𝑙𝑡𝑦(𝑆)    (4) 
 

The first term in (4) is equivalent to a weighted data-fitting criterion, 
and the second term measures the smoothness of the field relative to the 
given variogram. 

𝐿𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑦, 𝑠) = (𝑦 − ℎ(𝑠))𝑇𝑅−1(𝑦 − ℎ(𝑠))   (5) 
 

Where y is an m-dimensional row vector of measurement values; s is 
an n-dimensional row vector of parameter values; h : Rn → Rm is the 
forward model, and R is an m-by-m covariance matrix of the 
measurement errors. Assuming that the measurement errors are 
independent and identically distributed with variance σR

2, it that R =σR 
2I, where I denotes the m-by-m identity matrix [5]. 

In the gravity method, the density values are calculated from 
measurements of the vertical component of the acceleration at the 
Earth’s surface. Therefore, y in equation (5) is an m-dimensional row 
vector of the vertical component of the acceleration, and also, s is an n-
dimensional row vector of density values. 

The vertical component of the acceleration measurements are 
assumed to be independent and have accuracy on the order of ΔH = 0.01 
mG, resulting in the fitness term (Equation 5): 

 

𝐿𝑓𝑖𝑡𝑛𝑒𝑠𝑠(𝑦, 𝑠) =
‖𝑦−ℎ(𝑠)‖2

𝛥𝐻2
,     (6) 

 

To make use of the experimental data, we must reduce the infinite 
number of degrees of freedom in the density field to a finite number of 
unknown parameters. To this end, decompose the quadratic domain 
into an A-by-B grid of rectangle (or square), assuming that the density 
takes a constant value in each rectangle. The number of parameters 
characterizing the aquifer is then A×B, which gives a well-defined 
underdetermined inverse model that can be solved quickly. 

To calculate the penalty term or covariance matrix, the spatially 
distributed parameters follow a geostatistical distribution defined by 
some parametrized variogram that is a common assumption in the 
geological sciences, was used. This COMSOL model uses an exponential 

variogram of the form 𝛾 = 𝜕2(1 − 𝑒
−ℎ

𝑟 ) with variance 𝜕2 = 1 (the sill 
parameter) and correlation length r (the range). Since the covariance 
must approach zero as the distance between samples increases, this 

implies a simple covariance function 𝑞( |𝑋𝑖 − 𝑋𝑗| ) = 𝑞(ℎ) = 𝑒
−ℎ

𝑟 . Thus, 
for the penalty term, the elements of the covariance matrix Q are easy 
to evaluate. 

The penalty term distinguishes between solutions with comparable 
fitness values in problems where the number of parameters, n, exceeds 
the number of measurement values, m. Through geostatistical 
reasoning, Kitanidis ([13]) arrived at the penalty term 

 

𝐿𝑃𝑒𝑛𝑎𝑙𝑡𝑦 = (𝑠 − 𝑋𝛽)𝑇𝑄−1(𝑠 − 𝑋𝛽)    (7) 
 

where Q is covariance matrix by the following formula: 
 

𝑄 = 𝐸[(𝑠 − 𝑋𝛽)(𝑠 − 𝑋𝛽)𝑇]     (8) 
 

X is an n-dimensional row vector with every element equal to one, 
and β denotes the scalar constant mean of the parameter field. The 
covariance matrix elements are only a function of the distance between 
the corresponding points in space: 

 

 𝑄𝑖,𝑗 = 𝑞(| 𝑋𝑖 − 𝑋𝑗  |)      (9) 
 

The dependence of q is expressed by the following variogram that can 
be fitted on the data. 

 

𝛾(𝑋𝑖 − 𝑋𝑗) = 𝑞(0) − 𝑞( | 𝑋𝑖 − 𝑋𝑗 | )                (10) 
 

Therefore, for the penalty term, the covariance matrix elements of Q 
are easily calculated using variography of input data and determining 

a) b) 

https://en.wikipedia.org/wiki/Matrix_of_ones
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the spatial geostatistical data indices. Despite calculating the Q-1 matrix, 
which will increase the computation time and expense, the penalty term 
can be split into two distinct parts.  

 

     𝐿𝑃𝑒𝑛𝑎𝑙𝑡𝑦 = (𝑠 − 𝑋𝛽)𝑇𝑢 
𝑢 = 𝑄−1(𝑠 − 𝑋𝛽)                  (11) 
 

Solving the linear equation Qu=s-Xβ is cheaper than inverting the Q 
matrix [5]. The Levenberg– Marquardt method was used for solving and 
optimizing the nonlinear least-squares problem. The Levenberg-
Marquardt algorithm as implemented in the Optimization Module 
relies on two fundamental ideas: evaluation of an approximate Hessian 
and regularization of the Hessian approximation. The special structure 
of least-squares objective functions allows cheap evaluation of an 
approximate Hessian (matrix of second derivatives), which can in 
principle be used directly in a Newton iteration. However, least-squares 
problems are also often ill-conditioned, making the full Newton process 
unstable. Therefore, the Hessian is modified using a regularization 
parameter to guarantee its positive definiteness. This parameter is 
updated between iterations, based on the success or failure of the 
previous step [14]. For a better understanding of the forward and 
inverse modeling, see Fig 2. 

 

 
Fig. 2. Process flow diagram of Forward and inverse mod. 

 Creating the synthetic model and implementation in 
COMSOL 

Previously, Cardiff and Kitanidis 2008, developed an adjoint state 
formulation for the general ‘‘coefficient form’’ PDE in COMSOL and 
presented an example of an inverse problem in the field of aquifer 
characterization and present results from the COMSOL as a forward 
model and an adjoint state solver [5]. In this section, we will apply this 
technique to a 2D synthetic gravity model using the AC/DC module of 
COMSOL. In the gravity field, a common inverse problem is estimating 
the density of subsurface structure given measurements from the 
vertical component of gravitational acceleration.  

A synthetic model to generate the ‘‘field’’ data was created with two 
rectangles 60×40 m and 40×20 m and density contrast, ∆ρ = 100 kg m-3, 
(Fig.3). The synthetic model confines domains with infinite boundaries. 
Also, a constant potential, U = 0, was imposed as a boundary condition 
on all the outer boundaries. The model mesh consists of 6840 domain 

elements and 516 boundary elements. The synthetic data using forward 
modeling relations (equation (2) and (3)), was generated and the 
vertical component of gravitational acceleration in mGal was calculated 
on the surface (black point with ten meters apart in Fig. 3). Forward-
calculating the solution used 859 Mbytes of physical memory, 1004 
Mbytes of virtual memory, and took 1 s. Table 1 shows the properties of 
the numerical model. 

The forwarded data ±5% noise were used as observation in inverse 
modeling. 

 
Fig. 3. Synthetic model for creating synthetic gravity data. 

 
Table 1. Relevant synthetic forward model information. 

Dimensions 2D 

Geometry 

Two rectangles anomalous 60×40 m and 
40×20 m in a rectangle background 
500×50 m surrounded by 50 m buffer 
(minimizes effects of boundary 
conditions on gravitational acceleration) 

Density contrast ∆ρ = 100 kg m-3 

Outer boundary conditions 
(BCs) 

Dirichlet 
 

Out-of-plane thickness 10m 
Total # of Gravity stations 51 
Station intervals 10 m 
Measurements gravitational acceleration 
Time solution 1 s 

Mesh elements 
6892 domain elements 
568 boundary elements 

Memory 
Physical memory: 0.859 GB 
Virtual memory: 1.004 GB 

 

All calculations were done for 10×10 m pixels in the red area of Fig. 3 
(Inverse domain), and bulk densities (kg/m^3) were detected for all 
pixels. The least-squares nonlinear method using Levenberg-Marquardt 
optimization was applied to solve the inverse equations. Resulted of 
inverse modeling is shown in Fig. 4. The lateral and vertical separation 
is acceptable (Fig. 4. up), as well as the agreement between the observed 
and measured values (dashed black and solid red lines, respectively, in 
Fig. 4. down). As can be seen in Fig.4, the black dashed line is the values 
obtained from the forward modeling. These data with the addition of ± 
5% noise that were used as observation in inverse modeling, denoted by 
the black dotted line and calculated values in inverse modeling are 
shown with the solid red line. 

 
Fig. 4. Detected density for 10×10 pixel using inverse modeling (up) and comparing 
between observed and measured values ) dashed black and solid red lines, 
respectivFly(. 
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 Case study (Sinkholes area in Abarkuh plain) 

The study area is located in Abarkuh plain at SW Yazd province. In 
this area, subsidence has occurred due to groundwater over-pumping 
during the last two decades. Also, some big sinkholes have occurred in 
the land-subsided area that could have a devastating collapse effect on 
urban settings because of their proximity to the Abarkuh city. Deep 
cracks, cavities, and circular structures on the ground (Fig. 5) near 
Abarkuh city are some pieces of evidence of sinkholes or land 
subsidence occurrences.  

 

 
 

 
Fig. 5. Creating deep cracks, cavities, and circular structures on the ground around 
Abarkuh as pieces of evidence of sinkhole occurrence. 

 

The study area is about 7km to the NW Abarkuh (Fig 6). There are 
three big sinkholes, and two circular structures close together in the 
region. Fig. 7 shows some of these sinkholes. 

The dissolution of clay in alluvium deposits is the main reason for 
sinkhole occurrence in this region. These types of sinkholes tend to 
occur in clay because clay holds the soil together like glue, and by 
leaching the soil into an underground cave, because of the rainwater, a 
large cave is created, and then, all of a sudden, it cannot support 
the overburden weight and collapses.  

The circular structures might be related to sinkholes around the 
subsurface cavities. For estimation of subsurface cavities, 51 gravity 
stations were surveyed ten meters apart along a cross-section across the 
sinkholes and circular structure occurrences. Gravity data were collected 
using a CG5 gravimeter with a standard resolution of one microGal. 
After applying the topography, latitude, and Bouguer corrections, the 
residual gravity data were implemented as observation value input to 
COMSOL multiphysics. The resulted in subsurface estimated density 
values for 10×10 pixels and comparing the correlation between observed 
and measured values are shown in Fig. 8 (The solid red line illustrates 
the calculated gravity from the inverse modeling and the dashed black 

line shows the measured surface data). 

 
Fig. 6. The study area and some big sinkholes occurred around Abarkuh. 

 

 
 

 
 

Fig. 7. Some sinkholes with about 10m radius and 17m depth in the study area. 

https://en.wikipedia.org/wiki/Groundwater
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The maximum and minimum difference between estimated density 
changes from -164 kg/m^3 for soil containing empty spaces to 116 
kg/m^3 for compact soil and clay. Sinkholes and circular structures are 
projected on the gravity cross-section in Fig. 8. The results of inverse 
modeling indicate that the estimated subsurface cavity (the solid 
circular shape in Fig.8 up) can be related to sinkholes and circular 
structures.  

 Conclusions 

Undetermined inverse problems in which the unknown parameters 
are more than the measured values can be solved using problem physics 
in the partial differential equation (PDE) system. This research 
presented a template to solve undetermined inverse problems of 2D 
gravity data using COMSOL multiphysics’ optimization applying in 2D 

or 3D modeling of a wide range of different underdetermined inverse 
geophysical problems. Also, we present a general adjoint state 
formulation that may be used in this framework and allows for faster 
calculation of sensitivity matrices in a variety of commonly encountered 
underdetermined problems. First of all, 2D inversion of gravity data has 
been run and validated in COMSOL multiphysics software using one 
synthetic model and synthetic data in a forward modeling process. 
Afterward, using real gravity and geoelectric data surveyed along a cross-
section of the sinkholes in the NW of Abarkuh, the lateral structure and 
subsurface cavities were estimated. Finally, the inverted density values 
were cross-correlated with existing surface pieces of evidence. 

The results indicated that this method, while high in computational 
speed, can accurately discriminate between low-density contrast regions 
and the background. Flexible and fast processing is an advantage of this 
method.

 

 
Fig. 8. Gravity value estimated using inverse modeling in Comsol in kg/m^3 (up) and comparing the correlation between observed and measured values (down). 
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