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Abstract  

This paper proposes a retailer-supplier queueing-inventory problem (RSQIP) in 

which the imperfect lots are investigated using a single sampling inspection plan. 

We integrate an M/M/m response queueing system for handling and responding to 

customers’ demands with a classical retailer-supplier inventory model considering 

defective items and inspection process for the first time. Customers whose demand 

is met leave the retailer system with exactly one item unless the inventory shortage 

occurs. The retailer places an order once the inventory level reaches an economic 

reorder point. The lead time is assumed exponential, and due to the imperfect 

incoming items, the retailer conducts a destructive acceptance sampling plan. The 

rate of inspection depends on the sample size. Provided that a lot is rejected, the 

supplier is required to provide a defect-free shipment. We present the stationary 

distribution of the number of demands in the response system. Then the joint 

stationary distribution of the order status and inventory level of the retailer are 

derived. Several performance measures and the expected total cost are presented 

steady-state, and a non-linear integer programming model is proposed to minimize 

the expected total cost. The results are numerically illustrated and reveal the 

convexity of the expected total cost. The optimal reorder point, order quantity, and 

the number of servers is computed for some numerical examples. A comprehensive 

sensitivity analysis is conducted to examine the effect of defective items, response 

system, and some important parameters on the entire developed model. Finally, 

useful managerial insights are presented. 
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Introduction and literature review 
 

In the classical inventory models, the incoming demands are satisfied immediately provided 

that there is enough inventory in the system while it may take some time to meet the demands 

or deliver items to the customers [1] . For example, the retailer may need some time to give the 

customers information about a purchased item to learn how to utilize it [2] Also, he may 

prepare, pack and load items and then deliver them to customers [1] . From another perspective, 

the retailer's arrival demands consult with sales experts or inquire them about the availability 

of items, price, brand, dimension, material, etc., before buying. Afterward, if the requested item 

is available, they can receive the one. Therefore, in this case, after processing and handling the 

incoming demands, each of them is met if the inventory level of the retailer isn’t zero, otherwise 
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lost sales occur. In both cases, a queue of customers or demands is formed so that the queueing-

inventory models can be applied to study such systems. However, to the best of our knowledge, 

the latter case never has been discussed in the related literature. 

The queueing-inventory models have been considered by many researchers worldwide in 

recent decades. These models aim to determine the optimal values of the inventory system’s 

parameters so that the inventory costs, i.e., holding cost, ordering cost, etc., are minimized, and 

the quality of customer service is improved. On the one hand, the performance measures of the 

queues of customers (demands), i.e., the average waiting time in the system, the average number 

of customers in the queue, etc., are affected by the inventory systems characteristics. On the 

other hand, these performance measures would affect the inventory systems parameters [3] . 

These factors have motivated researchers to simultaneously study inventory and queueing 

systems to measure the two systems' impact on each other. Moreover, the close relation between 

queueing-inventory and the integrated supply chain models has caused researchers to pay more 

attention to this field [4] . The supply chain's goal is to move products and materials from 

suppliers to customers [5] , in which they buy items from the retailers. Besides inventory 

management can enhance the performance and responsiveness of the supply chain [7] , it is one 

of the practical tools that led to increasing the supply chain’s profit; for example, it specifies 

when and how much should be ordered by the retailers to satisfy demands [8] . Provided the 

queues of demands are considered in an inventory model, the retailer can obtain the optimal 

inventory parameters based on the formed queues. As a result, he can manage the inventory 

system as comprehensively as possible making more profit for the supply chain. Therefore, the 

queueing-inventory models are more practical, and in addition to the characteristics of 

inventory models, they also consider the quality of customer service. 

Gavish and Graves [9] studied an M/G/1 queueing system in an inventory–production 

system in which the arriving demands are customers, and the production facility is server. 

Sigman and Simchi-Levi [10] were pioneers in integrating the service time in the classical 

inventory models and presented a queueing-inventory model for the mobile server location 

problem. Berman et al. [11] proposed a queueing system in a service facility to satisfy Poisson-

distributed demands and obtain optimal inventory policies. Berman and Sapna [12] derived the 

stationary distribution of inventory level and queue length in a service facility and developed a 

cost model for specifying the optimal order quantity. A limited and unlimited M/M/1 queue 

with inventory and lost sales are modeled by Schwarz et al. [3] . They examined the (𝑟, 𝑆) and 

(𝑟, 𝑄) policies and obtained the joint probabilities of queue length and on-hand inventory level 

to derive a cost function. Schwarz and Daduna [13] studied an M/M/1 system with inventory 

regarding (𝑟, 𝑄) policy and backorder. A production system with Poisson demands and two 

types of items is developed as a queueing-inventory model by Chang and Lu [14] . Saffari et 

al. [1] extended a queueing-inventory system with multiple suppliers that each one has an 

exponential lead time. They computed the optimal reorder point and order quantity utilizing 

some performance measures of the model. Zhao and Lian [15] examined a queueing-inventory 

model with two classes of customers and different priorities. Krishnamoorthy and 

Viswanath [16] derived joint stationary distribution of queue length of customers, inventory 

level, and production status for an inventory-production problem under (s, S) policy. Saffari et 

al. [17] developed an attached M/M/1 queueing-inventory model with a supplier replenishing 

items under (𝑟, 𝑄) policy. They assumed the customers are lost when the on-hand inventory 

isn’t available in the system. They extended the long-run average cost concerning r and 𝑄 after 

deriving the item level's limited probability and the number of customers in the system. 

Sivashankari and Panayappan [18] presented a production inventory system with defective 

items incorporating a multi-delivery policy. Baek and Moon [19] developed the prior paper to 

replenish items via an internal production besides an exterior supplier. Also, the lead time was 

assumed to have an exponential distribution. Krishnamoorthy et al. [20] proposed a queueing-



Advances in Industrial Engineering, Autumn 2021, 55(4): 367-401 

 369 

inventory system in which the items are delivered to the customers with a specified probability 

upon completing service. An inventory-production model with a Markovian queuing model is 

discussed by Baek and Moon [21] . This article considered a production facility that produces 

items according to a Poisson process. Manikandan and Nair [22] considered an M/M/1/1 queue 

with inventory where the unmet customers can retry to get service. An M/M/1 queueing system 

with an (s, Q) inventory and lost sales were modeled by Baek et al. [23] . Furthermore, Yue et 

al. [24] studied an M/M/1 queueing model with an attached inventory. Yue and Qin [4] 

examined an inventory-production system when the return of products is possible. They 

presented the stationary distributions of queue length and level of inventory to derive 

performance measures. A queueing-inventory model with contesting suppliers was analyzed by 

Saffari et al. [25] . A retrial queueing-inventory model with an (s, S) inventory policy was 

proposed by Shajin and Krishnamoorthy [26] . In this paper, when the server is idle, the arrival 

customers enter an orbit. Shajin et al. [27] studied a correlated queueing-inventory model where 

customer arrival and lead-time are Markovian and the service time has phase-type distribution. 

A queueing-inventory model with two vendors replenishing inventory has been discussed by 

Chakravarthy and Hayat [28] . They analyzed the model in steady-state utilizing the matrix 

analytical method. Manikandan and Nair [29] developed an M/M/1 queueing system with 

inventory considering lost sales, server working vacation, and vacation interruption. Shajin et 

al. [30] presented the system state probability distribution and cost function for a queueing-

inventory model with necessary and optional inventories. Ozkar and Kocer [31] analyzed a two-

commodity queueing-inventory model with two classes of customers and an individual ordering 

policy. Jeganathan et al. [32] developed a queue-dependent service rate in a queueing-inventory 

model. For more reading, refer to Graves [33] , Manuel et al. [34] , Karthick et al. [35] , 

Albrecher et al. [36] , Chakravarthy et al. [37] , Marand and Thorstenson [38] , Melikov et 

al. [39] , Melikov and Shahmaliyev [40] , Gowsalya et al. [41] , Hanukov et al. [42] , Anilkumar 

and Jose [43] , Keerthana et al. [44] , Krishnamoorthy et al. [45] , Rasmi and Jacob [46] .  

In the above papers, the authors assumed that all items are non-defective while the suppliers' 

production system or internal production may be imperfect. Aghsami et al. [47]  have recently 

studied a queueing-inventory model with an imperfect internal production system and a 100% 

screening process along with inspection errors. Hence, it is more realistic to consider that the 

received lots or batches contain a fraction of defective items. Also, it is rational to apply an 

inspection process to reduce the risk of delivering defective products to the customers if the 

received lots have faulty items. In the literature of inventory and production models, many 

studies have discussed defective items. Salameh and Jaber [48] developed the traditional 

EPQ/EOQ model by considering the fact that the received or produced items are not of perfect 

quality. Khan et al. [49] extended previous work for the case of learning in the inspection. Al-

Salamah [50] studied an economic order quantity (EOQ) model where the buyer places orders 

from a supplier with perfect and imperfect products. Also, an acceptance sampling plan with 

destructive testing and inspection errors was applied in this paper. Moussawi-Haidar et al. [51]  

extended an integrated inventory-quality model where the received orders contain a random 

fraction of defective items; hence an acceptance sampling plan is performed to the lots instead 

of a 100% screening process. They showed that using the acceptance sampling plan remarkably 

increases the profit of the retailer. Hsu and Hsu [52] formulated an EOQ problem with defective 

items and shortage as well as inspection errors. It is presumed that the inspector may incorrectly 

classify a defective item as non-defective or vice-versa. Moussawi-Haidar et al. [53]  considered 

an EOQ model with the deteriorating items. It is assumed the orders may contain defective 

items due to breakage in transportation or imperfect production. Also, the retailer conducts a 

100% screening process to eliminate non-conforming items from the received lots. Priyan and 

Uthayakumar [54] examined a two-level supply chain problem with a vendor and a buyer in 

which the buyer performs a screening process with errors when a lot is received. To obtain an 
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optimal ordering policy, Chang et al. [55] developed an EOQ model with defective items, 

inspection errors, and permissible delays in payments.  Hasanpour and Sharifi [56] studied an 

EOQ model with perishable items and destructive acceptance sampling plan and inspection 

errors. An EOQ model for sampling and sample quality inspection has been proposed by 

Cheikhrouhou et al. [57] . Upon the lot is received, the retailer performs a sampling process. If 

the lot is rejected, it is returned to the supplier. Mokhtari and Asadkhani [8] studied an inventory 

model with defective items, imperfect inspection, and batch replacement. Maleki Vishkaei et 

al. [58] presented a multi-product multi-supplier single-retailer inventory problem where the 

retailer purchases products from diff erent suppliers with different buying costs and defective 

rates. The retailer conducts a destructive testing acceptance-sampling plan in which he returns 

the rejected lots to the suppliers; another lot is sent to the retailer at no cost. Wangsa et al. [59] 

studied a single vendor-buyer inventory model where the buyer has an imperfect production 

system, and the vendor uses a 100% quality check. Safarnezhad et al. [60] focused on a single 

vendor and single buyer supply chain where if the inventory level reaches a reorder point, the 

buyer places an order to the vendor. The authors assumed that each lot might have a proportion 

of defective items that leads to conducting some inspection types, i.e., no inspection, sampling 

inspection, and 100% inspection to assess the quality of receiving lots. Taleizadeh [61] gives a 

comprehensive survey of imperfect inventory systems. Asadkhani et al. [62] have recently 

proposed four EOQ models with various types of imperfect quality items and inspection errors. 

Additional articles such as Wu et al. [63] , Jolai et al. [64] , Datta [65] , Taleizadeh and 

Hasani [66] , Jauhari et al. [67] , Pal and Mahapatra [68] , Amirhosseini et al., [69] , Manna et 

al. [70] , Taheri-Tolgari et al. [71] , Sarkar and Giri [72] , Karakatsoulis and Skouri [73] and 

Adak and Mahapatra [74] studied various aspects of inventory models with defective items and 

inspection process.   

According to the above literature, only one paper [47] has studied a queueing-inventory 

model with defective items, while no one of the other queueing-inventory models has 

considered defective items in the inventory. All of them assumed the internal production system 

is perfect or the suppliers' lots have no defective items, while due to weak process control, 

deterioration, deficient planned maintenance, wear and tear of machinery, operator problems, 

and so on, a production process, whether for the internal productions or suppliers, may produce 

defective items, which is more realistic and practical [68] . Besides, receiving defective items 

by customers decreases loyalty, customer satisfaction, and profitability. Hence, conducting an 

inspection process in such conditions would be rational. Furthermore, the arriving customers to 

the retailer need to talk with sales experts and get information about the availability of items, 

function, price, brand, material, after-sales service, etc. Before buying. Therefore, the customers 

don’t have information about products and the status of the retailer’s inventory, and as a result, 

the retailer’s system is unobservable for them in such situations. In contrast, the customers or 

demands in the previous queueing-inventory or imperfect production/inventory models had 

enough information before entering the system. For example, in [17] [24] , [21] , [47] , etc., it 

has been assumed that the information of inventory level is observable for the arriving 

customers, and they don’t join the system during the stockout period. Consequently, analyzing 

the queueing-inventory model with a response system would be more practical. 

 Table 1 demonstrates some related literature reviews of queueing-inventory and imperfect 

production/inventory models. We implicitly split this table into three parts that have been 

separated with black lines. The first two parts indicate queueing-inventory and imperfect 

production/inventory models, respectively. The third part shows only one article that has 

recently discussed a queueing-inventory model with defective items and the inspection 

process [47] . Based on the first part, no queueing-inventory model has discussed defective 

items except Aghsami et al. [47] ]. Also, the response queueing system hasn’t been considered 

in the models of this part because they have been developed in the observable case. Besides, 
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the customers’ queue and response system, which are more practical, have been ignored in the 

classical inventory models, such as articles in the second part of Table 1. As mentioned, the 

unobservable case in which the arriving customers need to get some information from sellers 

before buying an item hasn’t been studied in the literature of queueing-inventory and imperfect 

production/inventory models to the best of our knowledge. Aghsami et al. [47] studied a 

queueing-inventory model with defective items in the observable case. Hence, they didn’t 

discuss the response queueing system. In addition, they assumed an internal production 

replenishes the inventory while in the retailer-supplier inventory problems, the retailer 

replenishes inventory through placing orders to suppliers.  Moreover, they proposed a 100% 

screening process to detect defective items, whereas it isn’t an appropriate method for 

destructive tests. On top of that, the 100% screening process can be costly and time-consuming 

rather than acceptance sampling plans. Therefore, the mentioned gaps and importance of 

considering the response queueing system and defective items in the retailer-supplier inventory 

models motivated us to analyze a retailer-supplier inventory problem with imperfect quality 

and destructive testing acceptance sampling plan integrating with a Markovian response 

queueing system in order to consider the whole system in the unobservable case. The 

contributions and novelties of this article can be expressed as follows: 

 Integrating a retailer-supplier inventory model with a novel queueing-inventory system. 

 Considering defective items in a retailer-supplier queueing- inventory model. 

 Considering an M/M/m response queueing model for responding and handling arriving 

customers in a retailer system. 

 Developing a queueing-inventory model with defective items and destructive testing 

acceptance sampling plan in the unobservable case. 

 Modeling the retailer's inventory system with defective items and inspection process as 

a continuous-time Markov chain (CTMC). 

Presenting a nonlinear integer programming model for a new retailer-supplier queueing- 

inventory problem considering supplier's risk and retailer’s risk. 

 
Table 1. Summary of the most pertinent studies vs. the article 

 

There are a lot of cases in the real world for such models with a response system. For 

example, consider a pharmacy that the demands (customers) arrive at for receiving requirement 

medicines. The pharmacy assistant takes in a prescription to prepare medicines. It is clear that 

he/she needs time to read the prescription and check whether the requested medicines are 

available in stock or not through a computer system. Hence, a queue of arriving demands may 

be formed. Provided that the requested medicines are available, the demands are satisfied; 

otherwise, lost sales occur. Because the customers have no information about the pharmacy 

inventory level, such systems exactly correspond to mentioned response system. The pharmacy 

would place an order to a supplier when the medicine inventory level reaches a reorder point. 

After delivering the order, an acceptance sampling plan is conducted by pharmaceutical 

inspectors due to possible deterioration, adulteration or counterfeiting, contamination, and so 

forth [77] . Also, there are a lot of products that the customers need to consult with sales experts 

and get some information about price, function, brand, material, guarantee, after-sales service, 

etc., Before purchasing. Unquestionably, the sales experts need time to respond to customers’ 

inquires. Hence, the sales experts are the same as the servers in the retailer’s response system. 

As another example, the customers who arrive at a rebar retailer must consult with him about 

the rebar size, grade, price, type, weight, etc. Besides, after receiving an order from the supplier, 

the retailer does some tests such as the tensile test, bending test, fatigue test, etc. It is well 

known that these tests are destructive engineering and materials science tests, and the retailer 

should apply an acceptance sampling plan. Therefore, such models correspond to a queueing-
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inventory problem integrated with a retailer-supplier inventory model considering defective 

items and the inspection process. 

Therefore, this paper analyzes defective items' effect on a queueing-inventory system of the 

retailer from a new point of view. It contributes to the literature in some directions. First, this 

study proposes a retailer-supplier inventory model with the attached queueing system in which 

the incoming lots are imperfect so that there are no queueing-inventory models with defective 

items and ordering policy in the literature. Second, a response system for responding and 

handling arriving demands has been developed as an M/M/m queueing model that had not ever 

been considered before.  Third, based on the above literature, it is reasonable that the retailer 

applies an inspection process when the incoming lots are imperfect. Moreover, a 100% 

screening process is costly and time-consuming [51] and inappropriate for many products such 

as electrical wires, food, etc. [58] . In such situations, an acceptance sampling plan is conducted. 

If the testing procedure causes destruction or failure of items, the retailer must use the 

destructive testing acceptance sampling plan. Hence, we have considered a destructive 

acceptance-sampling plan in the proposed queueing-inventory system of the retailer. Fourth, 

the level of the retailer’s inventory and its status change over time. Consequently, we look at 

the proposed retailer’s system as a stochastic process for the first time. 

Our paper is looking forward to answering the following questions:   

    
Stock replenishment 

policies 
Type of items Inspection policies 

Information level for arrival 
customers 
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 How do the stationary distributions, performance measures, and expected total cost of 

the retailer-supplier queueing-inventory system with imperfect incoming lots and 

destructive acceptance-sampling plan compute? 

 How do the imperfect incoming lots from the supplier affect the retailer's queueing-

inventory system? 

 How does an acceptance-sampling plan affect the retailer's queueing-inventory system? 

 How does a demand response system that performs as a queueing model affect the 

retailer-supplier queueing-inventory system? 

 How do various parameters of the proposed model affect the optimal reorder point, order 

quantity, expected total cost, and performance measures? 

To answer the questions mentioned above, this paper studies an M/M/m queueing-inventory 

model for a single retailer-single supplier system in which the supplier sends the imperfect lots 

to the retailer. The retailer has several servers to respond to the arrival demands that form a 

queueing system. Also, the retailer conducts a destructive acceptance-sampling plan to inspect 

the receiving lots due to existing defective items. The retailer continuously checks the inventory 

level and orders to the supplier when inventory reaches a reorder point. The paper's main 

objective is to minimize the long-run expected total cost with respect to the reorder point, order 

quantity, number of servers, acceptance number, and sample size using the joint stationary 

distributions and performance measures of the entire system. 

The description of the model is presented in the next section. We analyze the model and 

derive stationary distributions in Section 3. In Section 4, we obtain some important performance 

measures. We develop the cost model and present a nonlinear integer programming model in 

Section 5. Section 6 discusses comprehensive numerical examples and sensitivity analysis. The 

discussion and some managerial insights are expressed in Section 7. Finally, we provide the 

conclusion and give opportunities for future directions in Section 8. 

 

Model description 
 

This paper studies an integrated queueing-inventory model with a single item, a single retailer, 

and a single supplier. The incoming lots may have defective items that lead to performing the 

inspection by the retailer. The retailer faces demands where arrive at according to a Poisson 

process with rate 𝜆. We assume the retailer has been equipped with a response system with 𝑚 

servers to handle and respond to the requests. Each server needs time to respond and consult 

with arrival demands that is distributed exponentially with rate 𝜇. Hence, a classical M/M/m 

queueing model is formed in the response system. We suppose 𝜆 < 𝑚𝜇 to guarantee the 

ergodicity of the response system queue. After processing and departing from the response 

system, the demands leave the system with precisely one item if the retailer's inventory is not 

zero; otherwise, lost sales occur. According to [78] , the departure process of an M/M/m queue 

in steady-state is a Poisson process with the same arrival rate that here is 𝜆. Therefore, if the 

inventory level is not zero, it decreases according to a Poisson process with rate 𝜆. It is clear 

that the number of demands in the response system is independent of the retailer's inventory 

system. The retailer continuously checks the inventory level. Whenever it reaches the reorder 

point 𝑟, he places an order of size 𝑄 to the supplier. It takes an exponential time with parameter 

𝜈1 for delivering an order to the retailer. Due to existing defective items in the received lots, the 

retailer uses a destructive acceptance-sampling plan to inspect them. Upon receiving a lot, the 

retailer takes a random sample of size 𝑛 and screens it. If the number of defective items found 

in the sample is less than or equal to the acceptance number 𝑐, the entire lot is accepted, and the 

inspected items are discarded. As a result, 𝑄 − 𝑛 items are added to inventory. We assume 𝑄 −
𝑛 > 𝑟 to avoid the removal of periods where no order is placed. We assume the inspection time 
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of the sample is exponentially distributed with mean 
1

𝜔
. Because of the sampling inspection 

plan, it is rational that the inspection time is dependent on the sampling size. Accordingly, we 

define parameter 𝜔 as a linear function of 𝑛 as 𝜔 =
𝑎

𝑛
 in which 𝑎 is the screening rate of an 

item. We also assume that the incoming lots contain a constant fraction of defective items 𝑝. In 

other words, we can presume that an in-control process produces all items. Although each 

sample's number of defective items follows a hypergeometric distribution when the lot size is 

finite, for simplicity and similar to [58] and [50] , we compute the acceptance probability of the 

incoming lots using the Binomial distribution with parameters 𝑛 and 𝑝. Let 𝑥 be the number of 

defective items in a sample. Therefore, the acceptance probability of the incoming lots is given 

by: 

 

𝑝𝑎 = 𝑝(𝑥 ≤ 𝑐) = ∑(
𝑛

𝑥
)

𝑐

𝑥=0

𝑝𝑥(1 − 𝑝)𝑛−𝑥 (1) 

 

Provided that the number of defective items found in the sample is greater than the 

acceptance number 𝑐, the entire lot is rejected and returned to the supplier. In this case, the 

retailer asks the supplier for a new lot without defective items [60] . According to [79] , the 

supplier should perform the screening and rework activity on the returned lots, which is the best 

approach to face these situations. Hence, he sends a new lot without defective items. Also, the 

retailer doesn't pay for ordering and the cost of destructed items in this case [58] . The time it 

takes a non-defective lot is sent to the retailer follows an exponential distribution with parameter 

𝜈2. Afterward, 𝑄 items are added to the retailer's inventory without inspection. Moreover, we 

would like to design a sampling plan to protect the supplier and retailer. Therefore, we consider 

the supplier's risk (𝛼), acceptable quality level (AQL), retailer's risk (𝛽), and lot tolerance 

percent defective (LTPD). The AQL is the poorest level of quality for the supplier's lots that 

the retailer rejects with the probability 𝛼, and the LTPD is the poorest level of quality for the 

supplier's lots that the retailer accepts with the probability  [79] .  
 Note that we call pre-inspection and after lot rejection orders as regular and special orders 

in this paper, respectively. Fig. 1 represents a graphical illustration of the model.  It is assumed 

that the inter-arrival times, response times, lead times, and inspection times are mutually 

independent. We characterize the retailer's inventory system with 𝑆(𝑡) and 𝐼(𝑡) that is its state 

at time 𝑡, 𝑡 ≥ 0. The former indicates the order status, and the latter denotes the inventory level 

at time 𝑡. 𝑆(𝑡) takes the values of 0, 1, 2, and 3 if there is no outstanding order, there is a regular 

outstanding order, the regular order has been received, and it is under inspection, and there is a 

special outstanding order, respectively. Therefore, we can model the retailer's inventory system 

as a two-dimensional stochastic process as follows: 

 
𝑍 = {(𝑆(𝑡), 𝐼(𝑡)): 𝑡 ≥ 0} (2) 

 

It is evident that the sojourn time in each state is exponentially distributed, and the process 

𝑍 is a CTMC with state-space and non-zero transition rates as follows: 

 
Ω =  {(𝑠, 𝑖): 𝑠 = 1, 2, 3, 0 ≤ 𝑖 ≤ 𝑟 } ∪ {(𝑠, 𝑖): 𝑠 = 0, 𝑟 + 1 ≤ 𝑖 ≤ 𝑟 + 𝑄} (3) 

 
𝑞(𝑠,𝑖+1)(𝑠,𝑖) =  𝜆                            𝑠 = 1,2, 3       𝑖 = 0,1, … , 𝑟 − 1   

𝑞(0,𝑖+1)(0,𝑖) =  𝜆                            𝑖 = 𝑟 + 1, 𝑟 + 2,… , 𝑟 + 𝑄 − 1   

𝑞(0,𝑟+1)(1,𝑟) =  𝜆  

𝑞(1,𝑖)(2,𝑖) = 𝜈1                              𝑖 = 0, 1, … , 𝑟 

𝑞(2,𝑖)(0,𝑖+𝑄−𝑛) =  𝜔𝑝𝑎                  𝑖 = 0, 1, … , 𝑟 
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𝑞(2,𝑖)(3,𝑖) =  𝜔(1 − 𝑝𝑎)              𝑖 = 0, 1, … , 𝑟 

𝑞(3,𝑖)(0,𝑖+𝑄) = 𝜈2                    𝑖 = 0, 1, … , 𝑟 

 

Note that we have two transition rate diagrams corresponding to the model. One is related 

to case 𝑟 − 𝑛 ≥ 0, which is depicted in Fig. 2. The other is related to 𝑟 − 𝑛 < 0. In this case, 

state (0, 𝑟 + 𝑄 − 𝑛) places before the state (0, 𝑄), And Fig. 2 changes slightly accordingly. 

 

 
Fig. 1. The integrated queuing-inventory system of the retailer with a sampling inspection plan 

 

 
Fig. 2. Transition rate diagram of the model 

 

Analysis of the model 
 

In this section, we first derive the stationary distribution for the demand response queueing 

system. Afterward, the joint stationary distribution of the order status and inventory level of the 

retailer is computed. 
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Stationary distribution of demand response system 

 

As mentioned before, the demand response system is the classical M/M/m queueing system. 

According to [80] , the stationary distribution of the number of demands in the system is given 

by: 

𝜋𝑛
𝑑 =

{
 

 
𝜆𝑛

𝑛! 𝜇𝑛
𝜋0
𝑑      0 ≤ 𝑛 < m

𝜆𝑛

𝑚𝑛−mm!𝜇𝑛
𝜋0
𝑑       𝑛 ≥ m         

 (4) 

 

In which 𝜋0
𝑑  can be obtained from the following equation: 

 

𝜋0
𝑑 = (∑

𝜆𝑛

𝑛! 𝜇𝑛

𝑚−1

𝑛=0

+ ∑
𝜆𝑛

𝑚𝑛−mm!𝜇𝑛

∞

𝑛=𝑚

)

−1

 

 

(5) 

Stationary distribution of the process Z 

 

In this section, we derive the joint stationary distribution 𝜋(𝑠, 𝑖), which 𝑠 and 𝑖 respectively, 

denote the order status and the inventory level of the retailer in stationary. In other words, we 

have: 

 
lim
𝑡→∞

𝜋(𝑆(𝑡), 𝐼(𝑡)) = 𝜋(𝑠, 𝑖) (6) 

 

Recalling the state space Ω expressed by Eq. 3. We can rewrite it as Ω = ⋃ Ψ(𝑠)3
𝑠=0 , in 

which Ψ(𝑠) is called 𝑠th level. We define level 𝑠 as follows:  

 

Ψ(𝑠) = {
{(𝑠, 𝑟 + 1), (𝑠, 𝑟 + 2), … , (𝑠, 𝑟 + 𝑄)}              𝑠 = 0
{(𝑠, 0), (𝑠, 1), … , (𝑠, 𝑟)}                              𝑠 = 1, 2, 3

 (7) 

 

In fact, in level 0, the number of items in the retailer's inventory gets the integer value from 

𝑟 + 1 to 𝑟 + 𝑄, and in other levels, the number of items has the integer value from 0 to 𝑟.  

The infinitesimal generator matrix of the process Z is as follows: 

 

Φ =

[
 
 
 
𝐵00 𝐵01

𝐵11 𝐵12
𝐵20 𝐵22 𝐵23
𝐵30 𝐵33]

 
 
 

 (8) 

 

Where the block matrix 𝐵𝑗𝑘 for 𝑗 and 𝑘 ∈ 𝑠 indicates the transition from level 𝑗 to level 𝑘, and 

the block matrix 𝐵𝑗𝑗 includes transition rates within Ψ(𝑗). Also, the elements of each block 

matrix indicate the transition rates among states. 

Now, we describe the block matrices as follows:  
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𝐵00 =

[
 
 
 
 
 
−𝜆
𝜆 −𝜆

𝜆 −𝜆
⋯ ⋯

𝜆 −𝜆
𝜆 −𝜆]

 
 
 
 
 

 

(9) 

                    0   1     ⋯   𝑟 − 1 𝑟  

𝐵01 =

𝑟 + 1
𝑟 + 2

⋮

𝑟 + 𝑄 [
 
 
 
 
 

𝜆

]
 
 
 
 
 

 

 

(10) 

𝐵11 =

[
 
 
 
 
 
 
−𝜈1
𝜆 −(𝜆 + 𝜈1)

𝜆 −(𝜆 + 𝜈1)

⋯    ⋯   
𝜆 −(𝜆 + 𝜈1)

𝜆 −(𝜆 + 𝜈1)]
 
 
 
 
 
 

 

 

(11) 

𝐵12 =

[
 
 
 
 
 
 
𝜈1

𝜈1
𝜈1

⋯
𝜈1

𝜈1]
 
 
 
 
 
 

 

 

(12) 

                𝑟 + 1   ⋯   𝑄 − 𝑛  𝑄 − 𝑛 + 1        ⋯         𝑟 + 𝑄 − 𝑛 ⋯  𝑟 + 𝑄  

𝐵20 =

0
1

⋮

𝑟 [
 
 
 
 
 

𝜔𝑝𝑎
𝜔𝑝𝑎

⋯

𝜔𝑝𝑎 ]
 
 
 
 
 

 

 

(13) 

𝐵22 =

[
 
 
 
 
 
−𝜔
𝜆 −(𝜆 + 𝜔)

𝜆 −(𝜆 + 𝜔)

⋯    ⋯   
𝜆 −(𝜆 + 𝜔)

𝜆 −(𝜆 + 𝜔)]
 
 
 
 
 

 

 

(14) 

𝐵23 =

[
 
 
 
 
 
 
𝜔(1 − 𝑝𝑎)  

𝜔(1 − 𝑝𝑎)

⋯
𝜔(1 − 𝑝𝑎)

𝜔(1 − 𝑝𝑎)]
 
 
 
 
 
 

 

 

(15) 

                𝑟 + 1    ⋯   𝑄       𝑄 + 1      ⋯       𝑟 + 𝑄  
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𝐵30 =

0
1

⋮

𝑟 [
 
 
 
 
 

𝜈2
𝜈2

⋯

𝜈2]
 
 
 
 
 

 

 

(16) 

𝐵33 =

[
 
 
 
 
 
 
−𝜈2
𝜆 −(𝜆 + 𝜈2)

𝜆 −(𝜆 + 𝜈2)

⋯    ⋯   
𝜆 −(𝜆 + 𝜈2)

𝜆 −(𝜆 + 𝜈2)]
 
 
 
 
 
 

 (17) 

 

Let 𝜋 = [𝜋0, 𝜋1, 𝜋2, 𝜋3] denotes the stationary distribution vector of the process 𝑍 with 

infinitesimal generator matrix Φ where 𝜋𝑠 is defined as: 

 

𝜋𝑠 = {
(𝜋(0, r + 1), 𝜋(0, r + 2), … , 𝜋(0, r + Q))              𝑠 = 0

(𝜋(𝑠, 0), 𝜋(𝑠, 1), … , 𝜋(𝑠, r))                              𝑠 = 1, 2, 3
 (18) 

 

Accordingly, 𝜋 satisfies  

 

(19) 
𝜋Φ = 0 

𝜋𝑒 = 1 

 

In which 𝑒 is a column vector of 1s of order (𝑄 + 3(𝑟 + 1)) × 1. 
Taking Eq. 8 into account, we have the extended form of the above equations as follows:  

 
(20) 𝜋0𝐵00 + 𝜋2𝐵20 + 𝜋3𝐵30 = 0 
(21) 𝜋0𝐵01 + 𝜋1𝐵11 = 0 

(22) 𝜋1𝐵12 + 𝜋2𝐵22 = 0 

(23) 𝜋2𝐵23 + 𝜋3𝐵33 = 0 

(24) 𝜋0𝑒0 + 𝜋1𝑒1 + 𝜋2𝑒2 + 𝜋3𝑒3 = 1 

 

Where 𝑒𝑠 is a column vector of 1s of order 𝑄 × 1 for 𝑠 = 0 and order (𝑟 + 1) × 1 for 𝑠 =
1, 2, 3.  

We compute all stationary probabilities by solving the balance Eqs. 20-24 as follows: 

Taking Eq. 21 into account, we have: 

 
(25) 𝜋1 = −𝜋0𝐵01𝐵11

−1 

 

With the help of Eq. 22, we obtain 

 
(26) 𝜋2 = −𝜋1𝐵12𝐵22

−1 

 

By substituting Eq. 25 into Eq. 26, we will have 

 

(27) 
𝜋2 = 𝜋0𝐵01𝐵11

−1𝐵12𝐵22
−1 

Based on Eq. 23, 𝜋3 is computed as 

(28) 𝜋3 = −𝜋2𝐵23𝐵33
−1 
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By substituting Eq. 27 into Eq. 28, we get 

 
(29) 𝜋3 = −𝜋0𝐵01𝐵11

−1𝐵12𝐵22
−1𝐵23𝐵33

−1 

 

It is clear that the matrices 𝐵11, 𝐵22, and 𝐵33 have non-zero determinant and are invertible. 

By substituting Eqs. 27 and 29 into Eq. 20, we obtain: 

 

(30) 
𝜋0𝐵00 + 𝜋0𝐵01𝐵11

−1𝐵12𝐵22
−1𝐵20 − 𝜋0𝐵01𝐵11

−1𝐵12𝐵22
−1𝐵23𝐵33

−1𝐵30 = 0 

We can rewrite the above equation as follows: 

 

(31) 𝜋0(𝐵00 + 𝐵01𝐵11
−1𝐵12𝐵22

−1𝐵20 − 𝐵01𝐵11
−1𝐵12𝐵22

−1𝐵23𝐵33
−1𝐵30) = 0 

The Eq. 31 is not enough to compute stationary probabilities of Ψ(0) that are 

(𝜋(0, r + 1), 𝜋(0, r + 2), … , 𝜋(0, r + Q)). Hence, we need the normalized Eq. 24. By 

substituting Eqs. 25, 27, and 29 into Eq. 24, we will have: 

(32) 𝜋0𝑒0 − 𝜋0𝐵01𝐵11
−1𝑒1 + 𝜋0𝐵01𝐵11

−1𝐵12𝐵22
−1𝑒2 − 𝜋0𝐵01𝐵11

−1𝐵12𝐵22
−1𝐵23𝐵33

−1𝑒3 = 1 

After factoring 𝜋0We have the following equation: 

(33) 𝜋0(𝑒0 − 𝐵01𝐵11
−1𝑒1 + 𝐵01𝐵11

−1𝐵12𝐵22
−1𝑒2 − 𝐵01𝐵11

−1𝐵12𝐵22
−1𝐵23𝐵33

−1𝑒3) = 1 

Consequently, the system of Eqs. 31 and 33 give the stationary probabilities of Ψ(0). 
Finally, we can obtain 𝜋1, 𝜋2, and 𝜋3 using Eqs. 25, 27, and 29, respectively. 

 

System performance measure 
 

In this section, some entire system's performance measures in the steady-state are presented. 

We'll apply them to develop the cost function in the subsequent section. Note that we derive 

the clauses (I) based on the classical M/M/m queueing system formulas (see [80] and [78] ).  

 

(I) The average time that a demand spends in the response system (𝑊𝑑) is given by 

𝑊𝑑 =
1

𝜇
+ ((

𝜆

𝜇
)
𝑚 1

𝑚! (𝑚𝜇)(1 − 𝜌)2
)𝜋0

𝑑  

(II) The average number of demands in the response system (𝐿𝑑) per unit time is 

computed as  

 

𝐿𝑑 = ∑𝑛𝜋𝑛
𝑑

∞

𝑛=0

=
𝜆

𝜇
+ ((

𝜆

𝜇
)
𝑚 1

𝑚!

𝜌

(1 − 𝜌)2
)𝜋0

𝑑  

 

Where =
𝜆

𝑚𝜇
 . 

(III) The expected on-hand inventory level of the retailers per unit time (𝐿𝑖𝑛𝑣) is obtained 

as  

𝐿𝑖𝑛𝑣 = ∑ 𝑖𝜋(0, 𝑖)

𝑟+𝑄

𝑖=𝑟+1

+∑∑𝑖𝜋(𝑠, 𝑖)

𝑟

𝑖=0

3

𝑠=1

 

(IV) The mean number of regular orders per unit time (𝐿𝑟𝑜) is given by  
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𝐿𝑟𝑜 = 𝜋(1, 𝑟) 
(V) The mean number of regular outstanding orders per unit time (𝐿𝑟𝑜𝑜) is given by 

𝐿𝑟𝑜𝑜 =∑𝜋(1, 𝑖)

𝑟

𝑖=0

 

(VI) The mean number of special outstanding orders per unit time (𝐿𝑠𝑜𝑜) is computed as  

𝐿𝑠𝑜𝑜 =∑𝜋(3, 𝑖)

𝑟

𝑖=0

 

(VII) The average number of lost sales per unit time (𝐿𝑙𝑜𝑠𝑠) is obtained as  

𝐿𝑙𝑜𝑠𝑠 = 𝜆 (∑𝜋(𝑠, 0)

3

𝑠=1

) 

(VIII) The average number of defective items added to the retailer's inventory (𝐿𝑑𝑒𝑓) is 

given by 

𝐿𝑑𝑒𝑓 = (∑𝜋(2, 𝑖)

𝑟

𝑖=0

)𝑝𝑎(𝑄 − 𝑛)𝑝 

(IX) The mean number of inspected items (𝐿𝑖𝑛𝑠) is computed as  

𝐿𝑖𝑛𝑠 = (∑𝜋(2, 𝑖)

𝑟

𝑖=0

)𝑛 

(X) The average outgoing quality (AOQ) is derived as 

𝐴𝑂𝑄 =
(∑ 𝜋(2, 𝑖)𝑟

𝑖=0 )𝑝𝑎(𝑄 − 𝑛)𝑝

(∑ 𝜋(2, 𝑖)𝑟
𝑖=0 )𝑝𝑎(𝑄 − 𝑛) + (∑ 𝜋(3, 𝑖)𝑟

𝑖=0 )𝑄
 

(XI) The probability that there is at least one demand in the response system and the on-

hand inventory level of the retailer is zero (𝑃𝑟𝑜𝑖𝑧) is obtained  

𝑃𝑟𝑜𝑖𝑧 = (1 − 𝜋0
𝑑) (∑𝜋(𝑠, 0)

3

𝑠=1

) 

(XII) The probability that the response system is empty and the on-hand inventory level 

of the retailer isn't zero (𝑃𝑟𝑧𝑖𝑜) is given by 

𝑃𝑟𝑧𝑖𝑜 = 𝜋0
𝑑 (1 −∑𝜋(𝑠, 0)

3

𝑠=1

) 

(XIII) The percentage of time the retailer is doing inspect (𝑃𝑟𝑖𝑖) is computed as 

𝑃𝑟𝑖𝑖 =∑𝜋(2, 𝑖)

𝑟

𝑖=0

 

(XIV) The percentage of time the retailer doesn't have any outstanding order (𝑃𝑟𝑑𝑜) is 

obtained as 

𝑃𝑟𝑑𝑜 = ∑ 𝜋(0, 𝑖)

𝑟+𝑄

𝑖=𝑟+1

 

(XV) The percentage of time the retailer has a regular outstanding order (𝑃𝑟ℎ𝑟𝑜) is given 

by 

𝑃𝑟ℎ𝑟𝑜 =∑𝜋(1, 𝑖)

𝑟

𝑖=0

 

(XVI) The percentage of time the retailer has a special outstanding order (𝑃𝑟ℎ𝑠𝑜) is given 

by 
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𝑃𝑟ℎ𝑠𝑜 =∑𝜋(3, 𝑖)

𝑟

𝑖=0

 

 

Cost model 
 

This section develops the expected total cost of the system per unit time in the steady-state and 

presents a nonlinear integer programming model. We define the following cost factors: 

 
𝐶ℎ: inventory holding cost per item unit per unit time. 

𝐶𝑊: Waiting cost of a demand that leaves the system without receiving the item per unit time. 
𝐶𝑜𝑟: Cost of ordering a regular replenishment 

𝐶𝑙: Cost of losing a demand 

𝐶𝑝: Cost of purchasing an item 

𝐶𝑖𝑛𝑠: Cost of inspecting an item 

𝐶𝑑𝑒𝑠: Cost of destructing an item 

𝐶𝑝𝑑𝑖: Post-sale defective item cost of the retailer per item 

𝐶𝑚𝑠𝑟: Marginal cost of a server in the response system per unit time  

 

Note that when a lot is rejected, the process 𝑍 moves to Ψ(3) and may enter the state (3,0). 
In this case, the system faces lost sales, which is an outcome of rejecting a lot. Therefore, the 

cost of lot rejection has been integrated into lost sale cost. It should be noted that each defective 

item that delivers to the customers causes penalty and charge for the retailer due to decreasing 

customers satisfaction and reputation of one. Therefore, we considered 𝐶𝑝𝑑𝑖 as defective item 

cost after selling for the retailer. 

The long-run average total cost per unit time 𝐸𝑇𝐶(𝑟, 𝑄, 𝑛, 𝑐, 𝑚) using the system 

performance measures derived in Section 4 is as follows: 

 
𝐸𝑇𝐶(𝑟, 𝑄, 𝑛, 𝑐,𝑚) = 𝐼𝑁𝑉𝐶 +𝑊𝐶 + 𝑂𝐶 + 𝐿𝐶 + 𝑃𝐶 + 𝐼𝑁𝑆𝐶 + 𝐷𝐶 + 𝑃𝑆𝐶 + 𝑆𝐶

=  𝐶ℎ𝐿𝑖𝑛𝑣 + 𝐶𝑊𝐿
𝑑𝑊𝑑 (∑𝜋(𝑠, 0)

3

𝑠=1

) + 𝐶𝑜𝑟𝐿𝑟𝑜 + 𝐶𝑙𝐿𝑙𝑜𝑠𝑠 + 𝐶𝑝𝑄𝐿𝑟𝑜  + 𝐶𝑖𝑛𝑠𝐿𝑖𝑛𝑠

+ 𝐶𝑑𝑒𝑠𝐿𝑖𝑛𝑠𝑝𝑎 + 𝐶𝑝𝑑𝑖𝐿𝑑𝑒𝑓 + 𝐶𝑚𝑠𝑟𝑚 

(34) 

 

Taking into account the ergodicity of the response system queue, the condition for avoiding 

the removal of periods where no order is placed, and protecting the supplier and retailer, we 

have a nonlinear integer programming model as: 

 
Minimize 

𝐸𝑇𝐶(𝑟, 𝑄, 𝑛, 𝑐,𝑚)

=  𝐶ℎ𝐿𝑖𝑛𝑣 + 𝐶𝑊𝐿
𝑑𝑊𝑑 (∑𝜋(𝑠, 0)

3

𝑠=1

) + 𝐶𝑜𝑟𝐿𝑟𝑜 + 𝐶𝑙𝐿𝑙𝑜𝑠𝑠 + 𝐶𝑝𝑄𝐿𝑟𝑜  + 𝐶𝑖𝑛𝑠𝐿𝑖𝑛𝑠

+ 𝐶𝑑𝑒𝑠𝐿𝑖𝑛𝑠𝑝𝑎 + 𝐶𝑝𝑑𝑖𝐿𝑑𝑒𝑓 + 𝐶𝑚𝑠𝑟𝑚 

(35) 

 

Subject to  

 

𝜆 < 𝑚𝜇 (36) 

𝑄 − 𝑛 > 𝑟   (37) 

1 − 𝛼 =∑(
𝑛

𝑥
)

𝑐

𝑥=0

𝐴𝑄𝐿𝑥(1 − 𝐴𝑄𝐿)𝑛−𝑥 (38)  
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𝛽 = ∑(
𝑛

𝑥
)

𝑐

𝑥=0

𝐿𝑇𝑃𝐷𝑥(1 − 𝐿𝑇𝑃𝐷)𝑛−𝑥 (39) 

𝑛,𝑚 ∈ 𝑁 (40) 

𝑟, 𝑄, 𝑐 ∈ 𝑍+ (41) 

 

Inequality (36) guarantees the ergodicity of the response system queue. Inequality (37) 

avoids the removal of periods where no order is placed. Eqs. 38 and 39 give a solution to 𝑛 and 

𝑐 considering suppliers' and retailers' risks. The constraint (40) indicates that the variables 𝑛 

and 𝑚 are natural numbers. The constraint (41) indicates that the other variables are natural 

numbers. 

 

Numerical examples and sensitivity analysis 
 

This section presents some numerical examples to reveal the possible convexity of the expected 

total cost developed in the previous section in the feasible region. Due to the complexity of the 

expected total cost, it is extremely hard to demonstrate its convexity analytically. Hence, we 

employ a numerical procedure to show the cost function's convexity corresponds to the 

variables authorizing to change. Also, we compute the (local) optimum values of the variables 

𝑟, 𝑄, and 𝑚 for fixed values of 𝑛 and 𝑐 obtained from solving the system of Eqs. 38 and 39. 

We consider values set for 𝑟, 𝑄 and 𝑚 and fix any one of the variables by these values. 

Afterward, we allow the other two variables to change in an interval to determine their (local) 

optimum values. Therefore, by the procedure, we can study the behavior of the expected total 

cost 𝐸𝑇𝐶(𝑟, 𝑄, 𝑛, 𝑐,𝑚). Moreover, we assess various parameters' effect on the optimal decision 

variables, corresponding expected total cost, and some performance measures. It should be 

noted that our goal in this article is to analyze the behavior of expected total cost and illustrate 

the characteristic of one because this model has been developed for the first time. Regarding 

that we cannot depict a four-dimensional plot of the expected total cost, we fix any of the 

variables 𝑟, 𝑄 and 𝑚 and draw a three-dimensional plot of the expected total cost for the other 

two variables to reveal the characteristics of it. Hence, we don’t focus on obtaining the optimal 

global solutions because it can be done directly by search methods such as grid search in a pre-

determined interval. Moreover, we’re going to perform a comprehensive sensitivity analysis to 

understand better the model's behavior and present valuable managerial insight to managers 

and practitioners.  
We assume that 𝛼 = 0.05, 𝛽 = 0.1, 𝐴𝑄𝐿 = 0.01 and 𝐿𝑇𝑃𝐷 = 0.06. It is possible to use the 

Binomial nomograph instead of solving Eqs. 38 and 39 and construct the sampling plan 𝑛 and 

𝑐. According to [79] , the intersection of the line connecting (𝐴𝑄𝐿, 1 − 𝛼) and (𝐿𝑇𝑃𝐷, 𝛽) on 

the Binomial nomograph locates a region that includes desired sampling plan. Fig. 3 shows the 

Binomial nomograph. Although this procedure may give several sampling plans with Operating 

Characteristics (OC) curves that pass close to the mentioned points, we consider the sampling 

plan 𝑛 = 89 and 𝑐 = 2 that is too close to passing through points (0.01, 0.95) and (0.06, 0.1) 

on the OC curve [79] . Also, We let 𝜆 = 40 customers/hour, 𝜇 = 50 customers/hour, 𝑎 = 50 

items/hour, 𝜈1 = 1.2 orders/hour, 𝜈2 = 0.7 orders/hour, 𝑝 = 0.02, 𝐶ℎ = 8 $/item, 𝐶𝑊 = 60 

$/customer/hour, 𝐶𝑜𝑟 = 200 $/order, 𝐶𝑙 = 100 $/customer, 𝐶𝑝 = 40 $/item, 𝐶𝑖𝑛𝑠 = 0.8 $/item, 

𝐶𝑑𝑒𝑠 = 40 $/item, 𝐶𝑝𝑑𝑖 = 500 $/item and 𝐶𝑚𝑠𝑟 = 2 $/server/hour. We assume the time unit is 

an hour. 

First, we fix 𝑚 = 2, and obtain the expected total cost per hour under the function of 

𝐸𝑇𝐶(𝑟, 𝑄, 89, 2, 2), that its values are shown in Table 2. In this table, bold form and underlined 

values indicate the row and column minimum, respectively. Provided that a value is in the bold 

and underlined form simultaneously, it is the optimal value of the expected total cost 
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correspondence to the table. Also, it may be the minimum value of the expected total cost. Fig. 

4 depicts a three-dimensional plot of the expected total cost 𝐸𝑇𝐶(𝑟, 𝑄, 89, 2, 2) that reveals the 

cost function's convexity for various combinations 𝑟 and 𝑄.  

 
Fig. 3. Binomial nomograph (Montgomery [79]) 

 

Based on Table 2 and Fig. 4, the (local) optimal reorder point and order quantity values are 

𝑟∗ = 81, 𝑄∗ = 318, respectively. Moreover, the (local) minimum expected total cost is 

𝐸𝑇𝐶(𝑟∗, 𝑄∗, 89, 2, 2) = 2703.77839. Table 3 represents the optimal performance measures 

corresponding to this point. The stationary distributions of all levels are shown in Fig. 5. 

 
Table 2. The expected total cost as a function of 𝑟 and 𝑄 

𝑄 

r 
316 317 318 319 320 321 

78 2704.12855 2704.05360 2704.00521 2703.98313 2703.98709 2704.01685 

79 2703.97013 2703.90579 2703.86798 2703.85646 2703.87097 2703.91126 

80 2703.87333 2703.81957 2703.79234 2703.79138 2703.81643 2703.86724 

81 2703.83823 2703.79506 2703.77839 2703.78798 2703.82356 2703.88489 

82 2703.86493 2703.83232 2703.82621 2703.84634 2703.89249 2703.96426 

83 2703.95348 2703.93144 2703.93587 2703.96652 2704.02312 2704.10543 

84 2704.103946 2704.09246 2704.10741 2704.14857 2704.21567 2704.30844 
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Fig. 4. A three-dimensional plot of the expected total cost 𝐸𝑇𝐶(𝑟, 𝑄, 89, 2, 2) 

 

Table 3. The optimal system performance measures corresponding to (𝑟∗ = 81, 𝑄∗ =  318, 89, 2, 2) 
Performance measure Optimal values Performance measure Optimal values 

𝑊𝑑 (hours) 0.02381 𝐿𝑖𝑛𝑠 (Items) 20.77535 

𝐿𝑑 (Customers) 0.95238 𝐴𝑂𝑄 0.01430 

𝐿𝑖𝑛𝑣  (Items) 118.31659 𝑃𝑟𝑜𝑖𝑧  0.09849 

𝐿𝑟𝑜 (Orders) 0.00318 𝑃𝑟𝑧𝑖𝑜 0.35471 

𝐿𝑟𝑜𝑜 (orders) 0.10928 𝑃𝑟𝑖𝑖  0.23343 

𝐿𝑠𝑜𝑜 (orders) 0.04935 𝑃𝑟𝑑𝑜 0.60793 

𝐿𝑙𝑜𝑠𝑠 (Customers) 6.89417 𝑃𝑟ℎ𝑟𝑜 0.10928 

𝐿𝑑𝑒𝑓 (Items) 0.78749 𝑃𝑟ℎ𝑠𝑜 0.04935 

 

 
(b) 

 
(a) 
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(d) 

 
(c) 

Fig. 5. The stationary distributions of levels of the process Z corresponding to (81, 318, 89, 2, 2): (a) 𝜋0 ; (b) 𝜋1 

; (c) 𝜋2 ; (d) 𝜋3 

 

Now, we fix 𝑟 = 81, and study the expected total cost per unit time under the function of 

𝐸𝑇𝐶(81, 𝑄, 89, 2,𝑚), that its values are shown in Table 4. Moreover, Fig. 6 demonstrates a 

three-dimensional plot of the expected total cost 𝐸𝑇𝐶(81, 𝑄, 89, 2,𝑚) that reveals the cost 

function's convexity for various combinations 𝑄 and 𝑚. In a similar manner in the previous 

case and based on Table 4 and Fig. 5, the (local) optimal order quantity and the number of 

servers is 𝑄∗ = 81, 𝑚∗ = 2, respectively. Furthermore, the (local) minimum expected total cost 

is 𝐸𝑇𝐶(81, 𝑄∗, 89, 2,𝑚∗) = 2703.77839. Finally, we fix 𝑄 = 318, and analyze the expected 

total cost per unit time under the function of 𝐸𝑇𝐶(𝑟, 318, 89, 2,𝑚), that its values are shown in 

Table 5. In addition, Fig. 7 represents a three-dimensional plot of the expected total cost 

𝐸𝑇𝐶(𝑟, 318, 89, 2,𝑚) that reveals the cost function's convexity for various combinations 𝑟 and 

𝑚. In a similar manner in the previous cases and based on Table 5 and Fig. 7, the (local) optimal 

reorder point and the number of servers is 𝑟∗ = 81, 𝑚∗ = 2, respectively. Besides, the (local) 

minimum expected total cost is 𝐸𝑇𝐶(𝑟∗, 318 , 89, 2,𝑚∗) = 2703.77839. 

 
Table 4. The expected total cost as a function of 𝑚 and 𝑄 

𝑄 

m 

316 317 318 319 320 321 

1 2705.76599 2705.70990 2705.68040 2705.67724 2705.70015 2705.74889 

2 2703.83823 2703.79506 2703.77839 2703.78798 2703.82356 2703.88488 

3 2705.77671 2705.73374 2705.71728 2705.72706 2705.76284 2705.82436 

4 2707.76974 2707.72679 2707.71035 2707.72016 2707.75596 2707.81750 

5 2709.76886 2709.72591 2709.70947 2709.71928 2709.75509 2709.81664 

 

Table 5. The expected total cost as a function of 𝑚 and 𝑄 

𝑟 

m 

78 79 80 81 82 83 

1 2706.017866 2705.84354 2705.73102 2705.68040 2705.69176 2705.76516 

2 2704.00521 2703.86798 2703.79234 2703.77839 2703.82621 2703.93587 

3 2705.94237 2705.80571 2705.73065 2705.71728 2705.76567 2705.87589 

4 2707.93524 2707.79865 2707.72366 2707.71035 2707.75881 2707.86909 

5 2709.93434 2709.79776 2709.72277 2709.70947 2709.75794 2709.86823 

6 2711.93423 2711.79765 2711.72267 2711.70937 2711.75784 2711.86813 
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Fig. 7: A three-dimensional plot of the expected total cost 

𝐸𝑇𝐶(𝑟, 318, 89, 2,𝑚) 

 
Fig. 6: A three-dimensional plot of the expected total cost 

𝐸𝑇𝐶(81, 𝑄, 89, 2,𝑚) 

Example 1. In this example, we study the impact of the proportion of defective items in each 

lot 𝑝 on the optimal values of the reorder point and order quantity as well as corresponding 

expected total cost and some performance measures. For this purpose, the values of variables 

as 𝑛 = 89, 𝑐 = 2, 𝑚 = 2 and values of parameters as 𝜆 = 40 customers/hour, 𝜇 = 50 

customers/hour, 𝑎 = 50 items/hour, 𝜈1 = 1.2 orders/hour, 𝜈2 = 0.7 orders/hour, 𝑝 = 0.02, 

𝐶ℎ = 8 $/item, 𝐶𝑊 = 60 $/customer/hour, 𝐶𝑜𝑟 = 200 $/order, 𝐶𝑙 = 100 $/customer, 𝐶𝑝 = 40 

$/item, 𝐶𝑖𝑛𝑠 = 0.8 $/item, 𝐶𝑑𝑒𝑠 = 40 $/item, 𝐶𝑝𝑑𝑖 = 500 $/item and 𝐶𝑚𝑠𝑟 = 2 $/server/hour 

are fixed. From Table 5 and Figs. 8 to 13, we observe the following results: 

1. According to Table 6 and Fig. 8, by increasing the fraction of defective items 𝑝, the 

optimal reorder point 𝑟∗ and order quantity 𝑄∗ considerably increases and decreases, 

respectively. It decreases the percentage of time that the process Z is in level 0 (the 

percentage of time that the retailer doesn't have any outstanding order) and increases the 

percentage of time that it is in the other levels. This behavior continues until the 

probability of defective items is 0.04. Because the minimum of the total cost function 

will be in the feasible region if the probability of defective items changes in the interval 

[0  0.04]. When 𝑝 > 0.04, the reorder point and order quantity related to the minimum 

of the total cost function doesn't satisfy the inequality (37), and the model searches the 

optimal values in the feasible region's boundary, and the behavior of the optimal reorder 

point and order quantity will change. For example, the optimal reorder point is 131 when 

𝑝 = 0.045. Based on inequality (37), 𝑄 > 220 is the feasible interval, and the optimal 

order quantity does not decrease like before. Hence, we call point 𝑝 = 0.04 the 

trending change point. After this point, the optimal reorder point 𝑟∗ and order quantity 

𝑄∗ slightly increase. Also, the percentage of time that the retailer doesn't have any 

outstanding order mildly increases while the percentage of time that the retailer is 

waiting for regular orders or doing inspection decreases mildly (see Fig. 13). According 

to Fig. 13, the incoming lots are more rejected, and the percentage of time that the 

retailer is waiting for a special order rises when p increases. 

2. The optimal expected total cost reduces when 𝑝 increases (see Table 6 and Fig. 8) 

because the order quantity decreases, and the inventory cost and cost of destructing 

items reduce. 

3. As shown in Table 6 and Fig. 9, the optimal purchased and destructive testing costs 

decline when the probability of defective items increases. It is because of the decrease 

of order quantity and increase of the reorder point up to the trending change point. 

Afterward, this behavior continues because of the rise in the reorder point. 
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4. Increasing 𝑝 up to the trending change point, the waiting cost of demands that leave 

the system without receiving any item rises (see Table 6). Besides, the lost sale cost has 

a behavior same as waiting cost so that based on Fig. 9 and 12, the number of lost sales 

and associated cost rise until the trending change point due to the increase of stockout 

period. After passing the probability of defective items from the trending change 

point, the waiting and lost sales costs slightly decrease, but their values are still greater 

than values before this point because the average inventory increases somewhat after 

the point (see Fig. 12).  
5. According to Table 6, the ordering cost increases until the trending change point 

because the optimal order quantity declines up to that. Consequently, the average 

number of orders rises that leading to increasing the ordering cost. Afterward, the 

ordering cost mildly decreases because the optimal order quantity mildly rises, and the 

average number of orders decreases after the point. 

6. From Fig. 13, we observe that by increasing 𝑝 up to the trending change point, the 

percentage of time the process Z is in the inspection state increments that lead to 

increasing the average inspected items 𝐿𝑖𝑛𝑠, and the related cost 𝐼𝑁𝑆𝐶. Afterward, their 

values decline at a lower speed (see Fig. 11 and Table 6). 

7. Taking Table 6 and Fig. 12 into account, the average on-hand inventory and its cost 

reduce when p increases to the trending change point, and afterward, the inventory cost 

rises. It is because the reorder point and order quantity increase and decrease, 

respectively up to the trending change point. Then, order quantity mildly increases.  
 

 
Fig. 8. The optimal reorder point 𝑟∗, order quantity 𝑄∗ and the 

expected total cost 𝐸𝑇𝐶(𝑟∗, 𝑄∗, 89, 2, 2) versus 𝑝 

 
Fig. 9. The optimal values of the different components of the 

expected total cost versus 𝑝 

 

Table 6. The optimal values with respect to changes in 𝑝 

𝑝 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05 0.055 0.06 

𝑟∗ 67 71 81 94 109 125 129 131 131 132 133 

𝑄∗ 364 344 318 289 260 232 220 221 221 222 223 

𝐼𝑁𝑉𝐶∗ ($) 1026.35 983.77 946.53 909.38 878.22 853.22 830.57 848.28 851.12 862.00 872.28 

𝑊𝐶∗ ($) 0.211 0.226 0.235 0.241 0.244 0.243 0.252 0.250 0.253 0.252 0.251 

𝑂𝐶∗ ($) 0.585 0.604 0.637 0.682 0.739 0.810 0.820 0.790 0.768 0.751 0.737 

𝐿𝐶∗ ($) 620.72 663.35 689.42 708.13 715.75 714.32 740.7258 736.23 744.93 742.00 737.50 

𝑃𝐶∗ ($) 42.60 41.53 40.49 39.43 38.45 37.57 36.08 34.93 33.96 33.32 32.88 

𝐼𝑁𝑆𝐶∗ ($) 15.28 15.76 16.62 17.81 19.30 21.14 21.41 20.63 20.06 19.59 19.25 

𝐷𝐶∗ ($) 717.71 669.90 612.11 547.91 481.10 416.11 325.61 237.95 172.56 123.97 88.41 

𝑃𝑆𝐶∗ ($) 277.21 359.88 393.74 384.77 346.64 292.51 239.63 198.52 159.96 127.36 99.84 

𝑆𝐶∗ ($) 4 4 4 4 4 4 4 4 4 4 4 

𝐸𝑇𝐶∗ ($) 2704.66 2739.01 2703.78 2612.35 2484.44 2339.93 2199.10 2081.58 1987.61 1913.25 1855.14 
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8. Fig. 10 shows the average outgoing quality (AOQ) vs. 𝑝. As expected, if the probability 

of defective items is very low or high, AOQ will be at a lower level. The maximum on 

the AOQ curve shows the worst possible average quality resulting from the inspection 

process, and this point is called the average outgoing quality limit (AOQL) 

(Montgomery [79]). Based on Fig. 10, The AOQL is 0.01449, which occurs in  

𝑝 = 0.025. 

9. Based on Fig. 11, when 𝑝 rises to 0.02, 𝐿𝑑𝑒𝑓 ascends and then descends. Thus, for 𝑝 =

.02, 𝐿𝑑𝑒𝑓 is maximum. Fig. 9 depicts the post-sale defective cost has the same behavior. 

10. Fig. 13 demonstrates that if p becomes greater than 0.035, the percentage of time the 

retailer is waiting for special order is more than the percentage of time the retailer is 

waiting for regular orders and vice versa. 

11. We fix the number of servers in the response system; hence the server cost remains 

unchanged when 𝑝 rises. 

 

 
Fig. 10. The optimal average outgoing quality AOQ* versus 𝑝; 

𝑟 = 𝑟∗, 𝑄 = 𝑄∗, 𝑛 = 89, 𝑐 = 2, 𝑚 = 2 

 
Fig. 11. The optimal average number of defective items is added 

to the retailer's inventory 𝐿𝑑𝑒𝑓
∗   and the optimal mean number of 

inspected items 𝐿𝑖𝑛𝑠
∗  versus 𝑝; 𝑟 = 𝑟∗, 𝑄 = 𝑄∗, 𝑛 = 89, 𝑐 = 2, 

𝑚 = 2 

 
Fig. 12. The optimal expected on-hand inventory level of the 

retailers per time unit 𝐿𝑖𝑛𝑣
∗   and the optimal average number of 

lost sales per time unit 𝐿𝑙𝑜𝑠𝑠
∗  versus 𝑝; 𝑟 = 𝑟∗, 𝑄 = 𝑄∗, 𝑛 = 89, 

𝑐 = 2, 𝑚 = 2 

 
Fig. 13. The percentage of time that the retailer is in the different 

levels versus 𝑝; 𝑟 = 𝑟∗, 𝑄 = 𝑄∗, 𝑛 = 89, 𝑐 = 2, 𝑚 = 2 

 

 

Example 2. In this example, we reveal the impact of the inventory holding cost 𝐶ℎ, the waiting 

cost of unsatisfied demand 𝐶𝑊, the lost sale cost 𝐶𝑙 and the post-sale defective item cost 𝐶𝑝𝑑𝑖 
on the optimal values of the reorder point and order quantity as well as the corresponding 
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expected total cost. Toward this end, the values of variables as 𝑛 = 89, 𝑐 = 2, 𝑚 = 2 and 

values of parameters as 𝜆 = 40 customers/hour, 𝜇 = 50 customers/hour, 𝑎 = 50 items/hour, 

𝜈1 = 1.2 orders/hour, 𝜈2 = 0.7 orders/hour, 𝑝 = 0.02, 𝐶𝑜𝑟 = 200 $/order, 𝐶𝑝 = 40 $/order, 

𝐶𝑖𝑛𝑠 = 0.8 $/item, 𝐶𝑑𝑒𝑠 = 40 $/item and 𝐶𝑚𝑠𝑟 = 2 $/server/hour are fixed. From Table 7 and 

Figs. 14 to 16, we observe the following results: 

1. As shown in Fig. 14, the optimal reorder point and order quantity decline as the 

inventory cost rises. It leads to a decrease in the inventory level, and increases lost sales 

costs. Finally, the optimal expected total cost will increase sharply. It should be noted 

that when the optimal reorder point decreases, we place an order later that causes 

decreasing the inventory level. 

2. As the waiting cost for unmet demands increases in the response system, the optimal 

order quantity, reorder point, and expected total cost increase to reduce the percentage 

of times that inventory is unavailable. In addition, when the number of servers is less, 

the number of demands in the response system and total waiting time increase, so 

changes in order quantity and reorder point will be more sensitive to changes in waiting 

costs. For example, for m=1, by rising waiting cost, the mentioned variables increase 

more (see Table 7). 

3. Table 7 demonstrates that for constant waiting cost, the optimal order quantity, reorder 

point, and expected total cost decrease when the number of servers in the response 

system rises. The higher the waiting cost, the greater the reduction. Because by 

increasing the number of the server, the waiting time of the demands reduces, and as a 

result, the higher the waiting cost, the more significant cost function saving. 

4. When the lost sale cost increases, the optimal order quantity and reorder point increase; 

consequently, the stockout period and lost sales values decrease, and the total cost is 

minimized. The speed of rising the reorder point is greater than the rate of growing the 

order quantity. Also, the expected total cost has an ascending trend (see Fig. 15). 

5. Fig. 16 shows that the optimal order quantity and reorder point slightly decrease as the 

cost of post-sale defective items increases. It is because by decreasing optimal order 

quantity and reorder point, the inventory level reduces, and accordingly, the number of 

defective items delivered to customers decreases.  Hence, these values are less sensitive 

to the post-sale defective item cost. Also, the expected total cost rises. 
 

Table 7. The optimal reorder point 𝑟∗, order quantity 𝑄∗ and the expected total cost 𝐸𝑇𝐶(𝑟∗, 𝑄∗, 𝑚, 2, 2) with 

respect to changes in 𝐶𝑤 and m; 𝐶ℎ = 8, 𝐶𝑙 = 100, 𝐶𝑝𝑑𝑖 = 500 

CW 

𝑚 
60 800 1540 2280 3020 3760 

 𝑟∗ 81 88 94 100 105 110 

1 𝑄∗ 319 322 325 327 329 331 

 𝐸𝑇𝐶∗ 2705.67724 2754.61421 2800.14795 2842.72115 2882.70387 2920.38625 

 𝑟∗ 81 81 81 82 82 83 

2 𝑄∗ 318 318 319 319 319 319 

 𝐸𝑇𝐶∗ 2703.77839 2706.67051 2709.55330 2712.41345 2715.26916 2718.12486 
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Fig. 14. The optimal reorder point 𝑟∗, order quantity 𝑄∗ and the expected total cost 𝐸𝑇𝐶(𝑟∗, 𝑄∗, 89, 2, 2) versus 

𝐶ℎ ; 𝐶𝑊 = 60, 𝐶𝑙 = 100, 𝐶𝑝𝑑𝑖 = 500 

 

 
Fig. 15. The optimal reorder point 𝑟∗, order quantity 𝑄∗ and the 

expected total cost 𝐸𝑇𝐶(𝑟∗, 𝑄∗, 89, 2, 2) versus 𝐶𝑙 ;𝐶ℎ = 8, 𝐶𝑊 =
60, 𝐶𝑝𝑑𝑖 = 500 

 
Fig. 16. The optimal reorder point 𝑟∗, order quantity 𝑄∗ and the 

expected total cost 𝐸𝑇𝐶(𝑟∗, 𝑄∗, 89, 2, 2) versus 𝐶𝑝𝑑𝑖 ;𝐶ℎ = 8, 

𝐶𝑊 = 60, 𝐶𝑙 = 100 
 

Example 3. In this example, we investigate the impact of the demand arrival rate 𝜆, the response 

system service rate 𝜇, the regular order lead time rate 𝜈1, the special order lead time rate 𝜈2 and 

the screening rate of an item 𝑎 on the optimal values of the reorder point and order quantity, as 

well as the corresponding expected total cost. For this purpose, the values of variables as 𝑛 =
89, 𝑐 = 2, 𝑚 = 2 and values of parameters as 𝑝 = 0.02, 𝐶𝑜𝑟 = 200 $/order, 𝐶𝑝 = 40 $/item, 

𝐶𝑖𝑛𝑠 = 0.8 $/item, 𝐶𝑑𝑒𝑠 = 40 $/item and 𝐶𝑚𝑠𝑟 = 2 $/server/hour are fixed. From Figs. 17 to 

20, we observe the following results: 

1. According to Fig. 17, increasing the arrival rate of demand to system, the optimal 

reorder point, order quantity, and expected total cost rise. By increasing the reorder 

point, the retailer orders sooner, which causes to increase the inventory level and meets 

more demands. Moreover, clearly, the higher order quantity, the higher satisfied 

demands.  

2. As shown in Fig. 18, whenever the response system's service rate increases up to 30, the 

optimal reorder point and order quantity decrease very little. After 𝜇 = 30, these values 
almost remain constant. By increasing 𝜇, the average waiting time of demands reduces, 

leading to a reduction in the expected total cost; consequently, the retailer can reduce 

the reorder point and order quantity mildly. But after 𝜇 = 30, increasing service rate 

does not affect waiting time due to the fixed arrival rate, and the reorder point and the 

order quantity remain unchanged. Furthermore, when the service rate is low, increasing 
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it affects the optimal values considerably because it causes the waiting time to be 

significantly reduced, but the effect is gradually reduced. Therefore, with the increase 

of service rate, first, the optimal expected total cost decreases significantly, and the slope 

of reduction decreases and reaches a fixed value. 

3. By increasing the regular order lead time rate 𝜈1, the optimal order quantity almost 

doesn't change, but the optimal reorder point declines, and the optimal expected total 

cost decreases (see Fig. 19). In fact, if the retailer receives the orders sooner, he can 

order later, which causes to decrease in the inventory level and expected total cost.     

4. By increasing the special order lead time rate 𝜈2, we observe that the optimal order 

quantity declines, and the reorder point first ascends and then descends. Also, the 

expected total cost has a descending trend. It is because the orders are delivered sooner, 

and the lost sales are reduced (see Fig. 20). 

5. Considering Fig. 21, if the inspection rate increases, the optimal order quantity 

decreases, and reorder point increases. Moreover, the expected total cost has a 

descending behavior. Rising the inspection rate will allow the inventory replenishment 

process to be sooner, and the stockout period will decrease. Overall, the waiting time of 

items before entering the retailer inventory system decrease that causes the total cost. 

 

 
Fig. 17. The optimal reorder point 𝑟∗, order quantity 𝑄∗ and the expected total cost 𝐸𝑇𝐶(𝑟∗, 𝑄∗, 89, 2, 2) versus 

𝜆 ; 𝜇 = 50, 𝑎 = 50, 𝜈1 = 1.2, 𝜈2 = 0.7 

 

 
Fig. 18. The optimal reorder point 𝑟∗, order quantity 𝑄∗ and the 

expected total cost 𝐸𝑇𝐶(𝑟∗, 𝑄∗, 89, 2, 2) versus 𝜇 ; 𝜆 = 40, 𝑎 =
50, 𝜈1 = 1.2, 𝜈2 = 0.7 

 
Fig. 19. The optimal reorder point 𝑟∗, order quantity 𝑄∗ and the 

expected total cost 𝐸𝑇𝐶(𝑟∗, 𝑄∗, 89, 2, 2) versus 𝜈1 ; 𝜆 = 40, 𝜇 =
50, 𝑎 = 50 , 𝜈2 = 0.7 
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Fig. 20. The optimal reorder point 𝑟∗, order quantity 𝑄∗ and the 

expected total cost 𝐸𝑇𝐶(𝑟∗, 𝑄∗, 89, 2, 2) versus 𝜈2 ; 𝜆 = 40, 𝜇 =
50, 𝑎 = 50 , 𝜈1 = 1.2 

 
Fig. 21. The optimal reorder point 𝑟∗, order quantity 𝑄∗ and the 

expected total cost 𝐸𝑇𝐶(𝑟∗, 𝑄∗, 89, 2, 2) versus 𝑎 ; 𝜆 = 40, 𝜇 =
50, 𝜈1 = 1.2, 𝜈2 = 0.7 

 

Example 4. In this example, we examine the impact of the demand arrival rate 𝜆, the regular 

order lead time rate 𝜈1, the special order lead time rate 𝜈2 and the screening rate 𝑎 on the optimal 

values of the reorder point and order quantity, as well as the corresponding, expected total cost. 

For this purpose, the values of variables as 𝑛 = 89, 𝑐 = 2, 𝑚 = 2 and values of parameters as 

𝑝 = 0.02, 𝐶𝑜𝑟 = 200 $/order, 𝐶𝑝 = 40 $/order, 𝐶𝑖𝑛𝑠 = 0.8 $/item, 𝐶𝑑𝑒𝑠 = 40 $/item and 

𝐶𝑚𝑠𝑟 = 2 $/server/hour are fixed. From Tables 8 to 10 and Figs. 17 to 20, we observe the 

following results: 

1. According to Table 8, the optimal average on-hand inventory, the number of lost sales, 

the number of defective items added to the retailer's inventory, and the number of 

inspected items increase when the arrival demand rises. Because based on Fig. 17, the 

optimal reorder point and order quantity rise. Fig. 22 demonstrates that the percentage 

of time that the retailer doesn't have any outstanding order reduces by increasing the 

arrival rate of demand because he orders sooner. As a result, the sojourn time in the 

other levels increases. As shown in Fig. 22, the percentage of time the retailer process 

is in the inspection mode is more sensitive to the demand rate than the waiting states for 

the order to arrive. In addition, lost sales increase as demand increases. 

2. We observe in Table 9 that by increasing the delivery rate of regular orders, the optimal 

inventory level and the number of lost sales decreases slightly, and the optimal expected 

number of defective items added to the retailer's inventory and the number of inspected 

items slightly rises. Moreover, the percentage of time that the retailer doesn't have any 

outstanding order rises, and the percentage of time that the retailer has a regular 

outstanding order reduces. Besides, the sojourn time in the other levels mildly increases 

(see Fig. 23). 
3. We observe in Table 10 that by increasing the delivery rate of special orders, the optimal 

inventory level, the number of inspected items, and the number of defective items added 

to the retailer's inventory rise, and the number of lost sales declines. According to Fig. 

24, as expected, the percentage of time that the retailer has a special outstanding order 

reduces, and the sojourn time in the other levels increases. 

4. Based on Table 11, as the inspection rate of items increases, the average inventory 

increases, and lost sales decrease. Also, the average defective items added to the 

inventory and the inspected items decrease because, according to Fig. 25, the percentage 

of time the retailer is inspecting reduces significantly. The percentage of time the system 

is in other states increases slightly. 
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Table 8. Some optimal performance measures with respect to changes in λ; 𝑟 = 𝑟∗, 𝑄 = 𝑄∗, 𝜇 = 50, 𝑎 = 50, 

𝜈1 = 1.2, 𝜈2 = 0.7 

𝜆 (customers/hour) 20 30 40 50 60 70 

𝐿𝑖𝑛𝑣
∗  (items) 73.90268 96.1659 118.3166 139.8944 161.8818 183.5445 

𝐿𝑙𝑜𝑠𝑠
∗  (customers) 3.639022 5.262993 6.894172 8.608867 10.27031 11.97983 

𝐿𝑑𝑒𝑓
∗  (items) 0.36859 0.576736 0.787485 0.998055 1.210938 1.423542 

𝐿𝑖𝑛𝑠
∗  (items) 15.57219 18.53363 20.77535 22.4989 23.98632 25.22072 

 

Table 9. Some optimal performance measures with respect to changes in ν1; 𝑟 = 𝑟∗, 𝑄 = 𝑄∗, 𝜆 = 40, 𝜇 = 50, 

𝑎 = 50, 𝜈2 = 0.7 

𝜈1 (orders/hour) 1 1.2 1.4 1.6 1.8 2 

𝐿𝑖𝑛𝑣
∗  (items) 118.385 118.3166 118.4093 118.01 117.7206 117.7196 

𝐿𝑙𝑜𝑠𝑠
∗  (customers) 7.10832 6.894172 6.75788 6.681852 6.651982 6.604202 

𝐿𝑑𝑒𝑓
∗  (items) 0.782707 0.787485 0.790727 0.792213 0.792923 0.794059 

𝐿𝑖𝑛𝑠
∗  (items) 20.55952 20.77535 20.86088 20.99175 21.01057 21.04067 

 

Table 10. Some optimal performance measures with respect to changes in ν1; 𝑟 = 𝑟∗, 𝑄 = 𝑄∗, 𝜆 = 40, 𝜇 = 50, 

𝑎 = 50, 𝜈1 = 1.2 

𝜈2 (orders/hour) 0.1 0.3 0.5 0.7 0.9 1.1 

𝐿𝑖𝑛𝑣
∗  (items) 104.7063 115.3782 117.8038 118.3166 118.2018 118.6237 

𝐿𝑙𝑜𝑠𝑠
∗  (customers) 13.44092 8.572536 7.366611 6.894172 6.710434 6.565109 

𝐿𝑑𝑒𝑓
∗  (items) 0.64022 0.750197 0.777181 0.787485 0.791533 0.794989 

𝐿𝑖𝑛𝑠
∗  (items) 14.48638 19.04319 20.23837 20.77535 20.97374 21.0653 

 

Table 11. Some optimal performance measures with respect to changes in  
𝑎; 𝑟 = 𝑟∗, 𝑄 = 𝑄∗, 𝜆 = 40, 𝜇 = 50, 𝜈1 = 1.2, 𝜈1 = 0.7 

𝑎 (items/hour) 20 30 40 50 60 70 

𝐿𝑖𝑛𝑣
∗  (items) 101.9876 118.6316 120.0355 118.3166 115.627 113.0521 

𝐿𝑙𝑜𝑠𝑠
∗  (customers) 16.07516 10.468 8.182998 6.894172 6.090088 5.536525 

𝐿𝑑𝑒𝑓
∗  (items) 1.458785 1.19159 0.954122 0.787485 0.666893 0.576855 

𝐿𝑖𝑛𝑠
∗  (items) 28.24738 25.52814 22.87415 20.77535 19.0948 17.69056 

 

 
Fig. 22. The percentage of time that the retailer is in the different 

levels versus 𝜆; 𝑟 = 𝑟∗, 𝑄 = 𝑄∗, 𝜇 = 50, 𝑎 = 50, 𝜈1 = 1.2, 𝜈2 =
0.7 

 
Fig. 23. The percentage of time that the retailer is in the different 

levels versus ν1; 𝑟 = 𝑟∗, 𝑄 = 𝑄∗, 𝜆 = 40, 𝜇 = 50, 𝑎 = 50, 𝜈2 =
0.7 
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Fig. 24. The percentage of time that the retailer is in the different 

levels versus ν1; 𝑟 = 𝑟∗, 𝑄 = 𝑄∗, 𝜆 = 40, 𝜇 = 50, 𝑎 = 50, 𝜈1 =
1.2 

 
Fig. 25. The percentage of time that the retailer is in the different 

levels versus 𝑎; 𝑟 = 𝑟∗, 𝑄 = 𝑄∗, 𝜆 = 40, 𝜇 = 50, 𝜈1 = 1.2, 𝜈2 =
0.7 

 

Discussion and managerial insights 
 

This paper studies an M/M/m queueing-inventory model for a retailer-supplier system with 

defective items and destructive testing acceptance sampling. Considering defective items in the 

queueing-inventory model is more practical and realistic, which has not been included in the 

previous researches in this area, such as [17] , [19] , [22] , etc., except to [47] , but they proposed 

an M/M/1 queueing-inventory model with defective items in the observable case and not for a 

retailer-supplier problem. Hence, in such circumstances, conducting an inspection process for 

incoming items to discover defective items is rational. The 100% screening process can be 

costly and time-consuming rather than acceptance sampling plans and isn’t an appropriate 

method for destructive tests. So, we considered a destructive testing acceptance sampling plan 

while Aghsami et al. [47] applied a 100% inspection process to detect defective items. 

Moreover, it is more realistic to assume the retailer's demands first arrive at a response system 

for inquiring, processing, etc. Hence, we proposed a response system for the retailer equipped 

with multiple servers. It works as a queueing system that has not been considered in previous 

studies related to retailer-supplier problems.  Also, such a system with this new point of view 

isn’t addressed in the queueing-inventory literature. 

On the other hand, although numerous researches have discussed defective items in the 

literature of retailer-supplier inventory models, no one integrates these models with the arrival 

demands queueing system. Considering that the retailer's order status and inventory level can 

be in each possible state at any point in time, it is more practical to look at the retailer's inventory 

system as a stochastic process. Accordingly, this paper modeled a retailer-supplier system with 

the properties mentioned above, considering destructive testing acceptance-sampling as CTMC 

model, which has not been addressed in [50] , [51] , [58] , etc. Therefore, our model has been 

presented to fulfill these research gaps.  

The impact of different parameters on the optimal reorder point, order quantity, expected 

total cost, and performance measures was assessed to achieve a thorough perception of the 

proposed model behavior in the previous section. Consequently, based on the result of the 

numerical examples and sensitive analysis, some managerial implications can be presented as 

follows: 

 

1. According to Table 5 and Fig. 8, if the percentage of defective items in the incoming 

lots from the supplier increases up to the trending change point, the retailer should 
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decrease order quantity and increase reorder point to minimize the expected total cost. 

After that, he should slightly raise both of them. 

2. Considering Table 5, when the probability of defective items rises, the waiting time of 

demands grows, leading to increase demands dissatisfaction level and lost sales. Also, 

the purchased and destructive testing costs reduce. Hence, the retailer can spend this 

savings on advertising and even supplying items from other sources. 

3. Taking Fig. 13 into account, the percentage of time that the retailer is doing inspection 

reduces mildly after the trending change point. So, in this case, the retailer can employ 

several laborers from the other departments' inspection section. 

4. Based on Table 6, by increasing the probability of defective items, the lost sale has an 

Incremental trend to reach a high level; therefore, our model suggests that the retailer 

should supply some demands from other suppliers. 

5. Based on Figs. 10 and 11, the retailer should focus on the inspection system for 0.02 ≤
𝑝 ≤ 0.025 and even use a tightened inspection in this case. 

6. According to Fig. 13, in case 0.035 ≤ 𝑝 ≤ 0.04, The percentage of times the process is 

in the inspection level is at a maximum. The retailer is advised to allocate as much 

manpower as possible to the inspection department. 

7. If the holding inventory cost increases, the retailer should order later with less quantity 

to minimize the expected total cost (see Fig. 14). 
8. According to Table 7, if the waiting cost of unsatisfied demand increases, the retailer 

should increase the reorder point and order quantity. This increase must be based on the 

number of servers in the response system. For example, if the number of servers is low 

so that the formed queue is long in the response system, the retailer should increase the 

order quantity and reorder point further when the waiting cost rises. 

9. According to Table 7, the retailer can reduce the expected total cost by increasing the 

number of servers to a sufficient extent. The higher the waiting cost, the more influential 

the number of servers in reducing the total cost. Provided that the retailer has limited 

storage space or the holding cost is high, he can decrease the reorder point and order 

quantity by increasing the number of servers if possible. 

10. If the lost sales cost increases, the retailer should increase the reorder point and the order 

quantity. According to Fig. 15, it is better to increase the reorder point more than the 

order quantity. 

11. Based on Fig. 16, our model suggests that the retailer should mildly decline the reorder 

point and order quantity whenever the post-sale defective item cost rises. 

12. According to Fig. 17, the retailer should order sooner and more by increasing the 

system's demand. 

13. According to Fig. 18, The retailer is advised to keep the service rate optimal to minimize 

the expected total cost. If he increases the service rate more than a certain level, it will 

not significantly affect his cost. Hence, the retailer can decrease laborers in the response 

system until the service rate reaches an optimal level and employ them in the other 

section. On the other hand, if it is not possible to increase the service rate, he can 

compensate for the lack of laborers in the response system by increasing the reorder 

point and order quantity. 

14. Provided the regular order lead time rate increases, based on Fig. 19, our model 

recommends that the retailer decline the reorder point to minimize the total cost. 

Furthermore, he can reduce a bit the order quantity. 

15. According to Fig. 20, it is recommended to the retailer that if the delivery time of a 

special order is reduced, he should order later in a smaller quantity, reducing the cost of 

inventory and purchase. 
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16. If the retailer can increase the inspection speed, it can reduce the order amount, but he 

must raise the re-order point, which reduces the average total cost. Therefore, if he wants 

to reduce the order quantity, he must employ more laborers in the inspection system, 

ultimately reducing the average total cost (see Fig. 21). 

17. Our model recommends to the retailer that if the arrival rate of demand increases, he 

should concentrate on the inspection system more and allocate more storage space for 

holding inventories (see Table 8). 

18. Table 9 and Fig. 23 show that if the retailer chooses a supplier with less lead time, he 

can order later. The percentage of time that doesn't have any outstanding order increases. 

Consequently, he stores less inventory. 

19. If the retailer selects a supplier with less lead time, he can have fewer lost sales (see 

Table 10). 

20. According to Table 11, one-way retailers can increase average inventory and reduce lost 

sales is to increase inspection speed. 

 

Conclusion and future direct 
 

This article studied the RSQIP where the supplier sends the imperfect lots to the retailer. He 

continually checks the inventory and places an order 𝑄 when the inventory level reaches the 

reorder point 𝑟. The order delivers to the retailer after an exponential time that we called regular 

order. Also, he uses a destructive testing acceptance sampling to accept or reject the lots that 

the inspection time follows an exponential distribution and is dependent on sampling size. If a 

lot is rejected, the retailer asks the supplier to send a lot without defective items. This order 

delivers to the retailer after an exponential time that we called special order. The demands arrive 

at the retailer’s response system according to a Poisson process. There are several servers in the 

response system to handle the arrival demands, and each one needs an exponential time to 

respond to them. Hence, a queue of requests is formed in the response system that acts as an 

M/M/m queueing system. After completing service in the response system, the demands leave 

the system with precisely one item provided the inventory is available; otherwise, lost sales 

occur. We derived the stationary distributions of the number of demands in the response system 

and the joint stationary distribution of the order status and the retailer's inventory level. 

Afterward, some key performance measures have been presented, and a cost model has been 

developed in steady-state. We proposed a non-linear integer programming model to minimize 

the long-run expected total cost concerning the reorder point, order quantity, number of servers, 

acceptance number, and sampling size. We have presented comprehensive numerical examples 

to demonstrate the expected total cost behavior and the impact of various key parameters on 

optimal order quantity, reorder point, and the expected total cost. Finally, based on the 

sensitivity analysis, we recommended some practical managerial insights. To the best of our 

knowledge, this is the first time a retailer-supplier inventory system considering defective items 

and destructive testing acceptance sampling is integrated with a queueing system and modeled 

as CTMC, which is more practical and realistic.  

As future researches, the presented model can be extended for other ordering policies, e.g., 

(𝑅, 𝑇) policy. Studying an imperfect internal production besides the imperfect supplier could 

be an interesting issue for future researches. Moreover, developing the model to multi-retailer 

and multi-supplier is another suggestion for the future. In addition, this model could be extended 

for general arrival, service rate, or lead time. Also, the 100% screening process can be 

performed in the inspection system instead of the acceptance sampling plan. Moreover, in this 

paper, we assumed the servers are reliable in the retailer’s system while they may fail at any 

point in time, which may cease the service entirely or lead to the service continuing at a slower 
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rate [81] . Therefore, studying the server breakdowns in the response system would be an 

interesting problem for future research. 
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