- Al-Ghaithi, A.G., Hanif, M.A., Al-Busaidi, W.M. & Al-Sadi, A.M. (2016). Increased sodium and fluctuations in minerals in acid limes expressing witches’ broom symptoms. SpringerPlus, 5, 1-8.
- Bertamini, M., Nedunchezhian, N., Tomasi, F. & Grando, S. (2002). Phytoplasma [Stolbur subgroup (Bois Noir-BN)] infection inhibits photosynthetic pigments, ribulose-1, 5-biphosphate carboxylase and photosynthetic activities in field grown grapevine (Vitis vinifera cv. Chardonnay) leaves. Physiological and Molecular Plant Pathology, 61, 357-366.
- Broadley, M., Brown, P., Cakmak, I., Rengel, Z. & Zhao, F. (2012). Function of nutrients: micronutrients. In: P. Marschner (Ed), Mineral Nutrition of Higher Plants. (pp.191–248). Academic Press, London.
- Christensen, M.N., Axelsen, K.B., Nicolaisen, M. & Schulz, A. (2005). Phytoplasmas and their interactions with hosts. Trends in Plant Science, 10, 526-535.
- Chung, K. R., Khan, I. A. & Brlansky, R. H. (2006). Citrus diseases exotic to Florida: Witches' Broom Disease of Lime (WBDL): PP-228/PP150, 4/2006.
- Del Rio, L.A. (1983). Metalloenzymes as biological markers for the appraisal of micronutrient imbalances in higher plants. Life Chemistry Reports, 2, 1-34
- Deng, S.J. & Hiruki, C. (1991). Amplification of 16S ribosomal-RNA genes from culturable and nonculturable mollicutes. Journal of Microbiological Methods, 14, 53-61.
- Foyer, C.H., Lelandais, M. & Kunert, K.J. (1994). Photooxidative stress in plants. Plant Physiology, 92, 696-717.
- Garnier, M., Zreik, L. & Bov, J.M. (1991). Witches' broom disease of lime trees in Oman: Transmission of a mycoplasma-like organism (MLO) to periwinkle and citrus and the production of monoclonal antibodies against the MLO. In: Proceedings of 11th conference of the International Organization of Citrus Virologists, 6-10 Nov., c/o Department of Plant Pathology, Riverside, California, pp. 448-453.
- Giorno, F., Guerriero, G., Biagetti, M., Ciccotti, A.M. & Baric, S. (2013). Gene expression and biochemical changes of carbohydrate metabolism in vitro micro-propagated apple plantlets infected by ‘Candidatus Phytoplasma mali’. Plant Physiology and Biochemistry, 70, 311-317.
- Gundersen, D.E. & Lee, I.M. (1996). Ultrasensitive detection of phytoplasmas by nested-PCR assays using two universal primer pairs. Phytopathologia Mediterranea, 35, 144-151.
- Himeno, M., Kitazawa, Y., Yoshida, T., Maejima, K., Yamaji, Y., Oshima, K. & Namba, S. (2014). Purple top symptoms are associated with reduction of leaf cell death in phytoplasma-infected plants. Scientific Reports, 4, 1-7.
- Huber, D., Römheld, V. & Weinmann, M. (2012). Relationship between Nutrition, plant diseases and pests. In: P. Marschner (Ed), Mineral Nutrition of Higher Plants. (pp. 283-298). Academic Press, London.
- Kalra, Y.P. (1998). Handbook of reference methods for plant analysis, CRC, London.
- Lastra, O., Gomez, M., Lopez-Gorge, J. & Del Rio, L.A. (1982). Catalase activity and isozyme pattern of the metalloenzyme system superoxide dismutase, as a function of leaf development during growth of Pisum sativum plants. Physiologia Plantarum, 55, 209-213.
- Lepka, P., Stitt, M., Moll, E. & Seemüller, E. (1999). Effect of phytoplasmal infection on concentration and translocation of carbohydrates and amino acids in periwinkle and tobacco. Physiological and Molecular Plant Pathology, 55, 59-68.
- Mollayi, S., Zadali, R., Farzaneh, M. & Ghassempour, A. (2015). Metabolite profiling of Mexican lime (Citrus aurantifolia) leaves during the progression of witches’ broom disease. Phytochemistry Letters, 13, 290-296.
- Murray, M.G. & Thomson, W.F. (1980). Rapid isolation of high molecular weight plant DNA. Nucleic Acids Research, 8, 4321-4325.
- Poschenrieder, Ch., Tolra, R. & Barcelo, J. (2006). Can metals defend plants against biotic stress? Trends in Plant Science, 11, 288-295.
- Raiesi, T. & Golmohammadi, M. (2020). Changes in nutrient concentrations and biochemical characteristics of Mexican lime (Citrus aurantifolia) infected by phytoplasma. Journal of General Plant Pathology, 86(6), 486-493.
- Raiesi, T., Hashempour, A. & Golmohammadi, M. (2019). Monitoring of the leaf biochemical compositions in Mexican lime (Citrus aurantifolia Swingle) during the progression of Witches’ Broom Disease of Lime (WBDL). Iranian Journal of Horticultural Science, 50, 733-743. (In Farsi).
- Raheb, S., Ghasemnezhad, M., Golain, B., Golmohammadi, M., Sabori, A. (2019). Investigation of polymorphism in different acid lime (Citrus aurantifolia Swingle) genotypes with free witch’s broom disease by molecular markers of SSR and ISSR. Iranian Journal of Horticultural Science, 50(1), 1-11. (In Farsi)
- Salehi, M., Izadpanah, K. & Rahimian, H. (1997). Witches’ broom disease of lime in Sistan, Baluchistan. Iranian Journal of Plant Pathology, 33, 76. (In Farsi)
- Schneider, B., Seemuller, E., Smart, C.D. & Kirkpatrick, B.C. (1995). Phylogenetic classification of plant pathogenic mycoplasmalike organisms or phytoplasmas. In: S. Razin (Ed), Molecular and Diagnostic Procedures in Mycoplasmology. (pp. 369-380). Academic Press, San Diego.
- Sevilla, F., Del Rio, L. A., & Hellin, E. (1984). Superoxide dismutases from a citrus plant: presence of two iron-containing isoenzymes in leaves of lemon trees (Citrus limonum). Journal of Plant Physiology, 116(5), 381-387.
- Srivastava, A.K. (2013). Nutrient deficiency symptomology in citrus: An effective diagnostic tool or just an aid for post –mortem analysis. Agricultural Advances, 2, 177-194
- Tan, Y., Wei, H.R., Wang, J.W., Zong, X.J., Zhu, D.Z. & Liu, Q.Z. (2015). Phytoplasmas change the source-sink relationship of field-grown sweet cherry by disturbing leaf function. Physiological and Molecular Plant Pathology, 92, 22-27.
- Zafari, S., Niknam, V., Musetti, R. & Noorbakhsh, S.N. (2012). Effect of phytoplasma infection on metabolite content and antioxidant enzyme activity in lime (Citrus aurantifolia). Acta Physiologiae Plantarum, 34, 561–568.
- Zimmermann, M.R., Schneider, B., Mithofer, A., Reichelt, M., Seemuller, E. & Furch, A. (2015). Implications of "Candidatus Phytoplasma mali" infection on phloem function of apple trees. Journal of Endocytobiosis and Cell Research, 26, 67-75.
|