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Abstract  

Soil salinity and alkalinity are believed to be among the most important soil degradation processes, 

specifically in arid and semi-arid regions. Identification and monitoring of salinity is also necessary for land 

and environmental management. Continuous salinity monitoring is traditionally costly and time-consuming 

while using satellite data and combining them with magnetic induction data could be an alternative to the 

traditional method. The present study aimed to evaluate spectral indicators and identify saline soils and 

spatial changes via the data of the 2EM38. The study area was conducted in Ghahavand plain located in 

Hamedan Province. In this study, Landsat 8 satellite data were used. The image was georeferenced with the 

image-to-map method with more than 12 control points and accuracy of fewer than 0.4 pixels. Atmospheric 

correction was performed through the black body method. Soil sampling of 37 points was performed and 

86 points were read using an electromagnetic induction device. The soil samples were transferred to the 

laboratory and passed through a 2-mm sieve. The sample analysis was performed according to standard 

methods. Using protomorphic units based on visual interpretation of OLI 543 false-color composite image 

and field observations, a total of nine homogeneous units were identified in the region using these units as 

training regions for supervised classification. The results revealed that the detection of soil salinity in the 

visible spectrum (blue, green, and red bands) is feasible. Bands 5, 6, and 7 could be useful for differentiating 

salty white crust lands from salty gray crust lands. In the reflective bands, the white and smooth crust lands 

exhibited the highest reflectance. The results of classification accuracy showed that the highest total 

accuracy was 90.0 and the kappa coefficient was 80.45 when bands  2, 3, 4, 5, 6, 7, 10, and 11 were used 

and shallow and abandoned plowed lands had the lowest accuracy. Furthermore, the final model of salinity 

estimation implied that SI6 and SI11 indicators and electromagnetic induction vertical measurements (EMv) 

were the most suitable variables for estimating salinity spatial changes. 
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Introduction 

 

Soil salinity and alkalinity are among the most important soil destructive processes, especially in 

arid and semi-arid regions (El Harti, 2016; Ibrahim, 2016; Kumar, 2018). The regions affected by 

salinity are highly susceptible to temporal and spatial changes in climate and hydrology. Soil 

salinity, like other natural hazards, such as earthquakes and landslides, cannot be damaged quickly, 

but is considered a serious environmental hazard (Yu et al., 2010). About 2 mega hectares of 
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agricultural lands become salty every year in the world (Abbas et al., 2013). According to the 

estimations, 7% of the world's lands are salty and 3% are very salty or alkaline (Alavi-Panah, 2006). 

In Iran, about 15% of the country's lands are salty soils with varying degrees of salinity. The speed 

of salinization of land is high in some countries, such as Iran, Egypt, and Argentina. Therefore, the 

identification and monitoring of salty regions are necessary for controlling land degradation 

behavior and its sustainable management, particularly in semi-arid regions with poor climate 

conditions and increased population.  

     Traditional methods for collecting data and studying soil are time-consuming and costly. Today, 

with the advancement of science, the use of new technologies, such as receiving and processing 

satellite data, through the use of software and information processing systems, such as geostatistic, 

plays an important role in the management of water and soil resources. Salty and alkaline soils in 

the visible and infrared regions of the spectrum of electromagnetic waves have a certain spectral 

reflectance that can be used to determine soil salinity. In addition, a high correlation was found 

between soil reflectance and soil characteristics, including mineralogy, organic matter, moisture 

content, and salinity (Rao et al., 1995). In a similar study conducted by Mougenot et al. (1993), the 

results indicated that salinity is one of the factors affecting the reflectance of soil in remote sensing 

studies. Farifteh et al. (2006) also conducted studies on the correlation between spectral indicators 

calculated by satellite images and field data in the country. The remote sensing methods have been 

used in several studies for estimating soil salinity in arid and semi-arid regions (AzabDaftari et al., 

2016; Matinfar et al., 2011; Nawar et al., 2014). Hafyani et al. (2019) modeled regional soil salinity 

in Morocco with Landsat 8 satellite imagery and compared it with field data through linear 

regression. They showed that remote sensing was good for soil salinity modeling and providing 

soil salinity mapping with good correlation coefficients ranged from 0.53 to 0.75. The basis of the 

application of salinity indicators is the variability of spectral properties based on the variability of 

soil characteristics, vegetation, and other environmental factors. Allbed et al. (2014) isolated three 

sites according to the visual interpretation of the false-color images and field data in an area 

affected by salinity. In their study, vegetation index and 12 salinity indicators were examined for 

salinity evaluation. They found that salty and dry soils and soft soils with a thin salt crust had a 

higher spectral reflectance than wet cracked salty soils with dark crust in the visible and near-

infrared spectral spectrum. They also reported that SAVI3, NDSI4, and SI-T indicators derived from 

IKONOS images were conducive to evaluating and analyzing salty lands with vegetation. 

     In general, it has been found that NDSI and SI-T indicators were highly useful for evaluating 

salty lands in arid regions with low vegetation. In the same study, it was reported that vegetation 

indicators, such as SAVI, can be useful in regions with bulk vegetation. AbdelRahman et al. (2019), 

using drilled 90 soil profiles and 30 underground water samples, prepared maps of surface soil 

salinity changes as well as land use in 2002 and 2017. They showed that the use of spectral 

indicators could be effective in evaluating the status of groundwater using salinity. Abuelgasim 

and Ammad (2019) utilized Landsat 8 OLI sensor images and adjusted salinity indicators in near-

infrared wavelengths and short wavelengths in a dry and semi-arid climate. It was concluded that 

the newly adjusted indicators had an overall accuracy of 60%. This is true if the old indicators’ 

accuracy was 50%. Therefore, the model derived from the new indicators with six salinity classes 

was more efficient in estimating salinity levels. The application of band combinations for 

calculating indicators will increase the accuracy of salinity estimation in remote sensing studies. In 
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this regard, Allbed et al. (2013), in a study on soil salinity modeling in a region of Saudi Arabia, 

showed that the combination of IKONOS red band and salinity indicators is highly conducive to 

providing a soil salinity map. 

     The use of thermal data could have a significant effect on the study of ground phenomena, 

including determining soil salinity reflectance. Additionally, El Harti (2016) showed a high 

correlation between soil salinity and SI using a combination of TM5 and OLI6 sensors of Landsat 

satellite and thermal bands. In other previous studies, green and red and near-infrared TM bands 

have indicated a high correlation with soil salinity map in Saudi Arabia (Asfaw et al. 2016). 

Rahmati and Hamzehpour (2017) examined soil salinity with information from satellite images and 

ground samples. They sampled 188 points in an area of 5000 hectares in the west of Lake Uremia. 

The results of the multivariate regression showed a high correlation coefficient (0.875) between 

salinity indicators and ground data. Another method for measuring soil salinity via new techniques 

is the electromagnetic induction device. Being easily carried, no need for sampling, and being time-

effective are among the advantages of the device. In a study conducted in Australia, researchers 

could measure the EC (electrical conductivity) of 40 points per day using this device (Williams et 

al., 1982). Various models of this device are marketed. 

    Numerous studies have been conducted on the use of electromagnetic induction device EM38 to 

evaluate and determine soil salinity (Barbiero et al., 2001; Song et al., 2002). The results are 

developed as equations that relate readings of the device to the electrical conductivity of water-soil 

ratios, saturation paste, and EC of soil mass at different depths. Johnston (1996) used the EM38 

device in Africa to monitor salinity. In this study, EM38 was found to be a good tool for providing 

salinity map. However, it requires the simultaneous use of GPS (global positioning system). In 

India, similar efforts have also been made and it has been argued that by calibrating and applying 

the proper equations, EM38 can be an efficient tool for rapid identification surveys across the 

country (Sharma and Gupta, 2000). According to their results, it seems as though the use of this 

device is cost-effective by emphasizing the mapping of salt-bearing soils in India. The present 

study aimed to evaluate spectral indicators for the identification of saline soils and determine the 

relationship between these indicators and electromagnetic induction data. In addition, Provide an 

integrated model of indicators and magnetic induction data to prepare soil salinity map. 

 

Materials and Methods 
 
Study area 

 

The study area is located in Hamedan Province. The Ghare Chai River Basin is 5845 square kilometers and 

the major part is located outside Hamedan Province and in Markazi and Qom Provinces. Ghahavand plain 

is located on the northern slope of Alvand Mountain and East longitude of 9' 49 °-48° 58' and north latitude 

of 57' 34°-25' 34°; from the north, it is limited to Razan-Famenin plain, from the east to Daqdaq, Enjili, and 

Sefid mountains, from the west to Ghezeldaq and Qardash mountains, and from the south to the vast Shara 

Plain in Markazi Province (Figure 1). This area is physiographically one of flood plains and lowlands with 

the mean elevation of 1650 m above the sea level, the mean annual rainfall of 260 mm, the mean annual 

temperature of 11.79 °C, and the mean annual evaporation rate of the surface of the pan evaporation of 2020 

mm. The region's climate is semi-arid according to De Matron Method and cold arid according to Amberge 
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method. According to the field studies, about 50% of the lands are under cultivation and the rest of the lands 

had no agricultural and horticultural uses. The dominant cultivation is rain-fed wheat and barley and alfalfa. 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 1. Location of the study area 

 

Data  

 

In this study, satellite images, ground data, and electromagnetic induction device data were used. 

EM38 is specifically designed for salinity examination in terms of agriculture and could be utilized 

at high speeds. This device is very light (2.5 kilograms in weight) and small (1 meter in length) and 

has acceptable durability. EM38 employs the principles of electromagnetic induction and can 

measure the electrical conductivity of the soil mass in milliseconds per meter on the horizontal and 

vertical surfaces. (Figure 2). 

     To select the satellite image, we attempted to select the hottest month of the year in order to 

have the maximum evaporation and as a result, the maximum accumulation of salts on the surface 

of the soil. In the present study,in order to evaluate the satellite data capability of the identification 

and separation of salty soils, nine Landsat 8 bands digital data were used collected in August 2013. 

In several studies, researchers have used Landsat 8 satellite images for estimating soil salinity 

(Forkuor, 2017; Abuelqasim et al., 2017). The geometric corrections with less than half-pixel 

RMSE (Root Mean Square Error) and atmospheric corrections of images were performed via 

minimal histogram method.  

     Using the band combination of Landsat 8 images of the studied area as well as the field 

observations, the area was divided into nine homogeneous units, in each of which, some points 

were randomly selected for sampling. Totally, 86 points were selected for the whole region. 

Subsequently, the coordinates of the points were entered into GPS. The soil samples were taken 

from a depth of 0-30 in July. Each sample consisted of four sub-samples: one sub-sample in the 

center and three in three directions, with an angle of 120 degrees (compound sampling) from each 

other and at a distance of 100 meters from the central sub-sample. This type of sampling is intended 
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to cover at least nine pixels of the image and minimize the effects of geometric errors. The samples 

were then transferred to the laboratory (Figure 3). 

 

 

Figure 2.  EM38 device 

 

 

  

 

  

  

 

 
Figure 3.  Compound sampling method 

 

     In order to determine soil salinity (salinity of saturated paste and apparent electrical conductivity 

of soil mass) in the study area at the first stage, 86 soil sampling points were taken and at the second 

stage, using an electromagnetic induction device (EM38), 86 points were read. The number of the 

readings of each point consisted of two repetitions, in one of which the device had a difference of 

90 degrees from the second repetition. Thus, for each point, two readings were made in the 

horizontal state and two readings were made in the vertical state. By averaging the repetitions of 

each state, the vertical EMV, and horizontal EMh readings at each point, the electrical conductivity 

of soil mass (ECa) was determined. It should be noted that no rainfall was reported from the 

sampling time until the data recording using EM38. Calibration of EM38 is related to the 

development of appropriate equations for estimating soil salinity by readings of the device. At this 

stage, several methods have been recommended by various researchers, but the proper method is 

to calibrate the development of regression equations under local and individual conditions for each 

unit of work in each region, which was used herein (Rahimian et al., 2010, Huang J. et al., 2014). 

After being transferred to the laboratory, the soil samples were dried under the laboratory 

conditions and passed through a 2-mm sieve. Afterwards, some physical and chemical properties 

were measured using standard methods. The texture was measured via the hydrometric method 

(Day 1965) and soil acidity was measured in a saturated paste using a fully automatic pH meter 

(Thomas, 1997). EC was measured in a saturated paste with a conductivity meter in dS / m and 

apparent electrical conductivity of soil mass (ECa) was measured using EM38 (Li et al., 2006). 

Calcium carbonate was measured by return titration, neutralization of chloride-neutralized 

A B 
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neutralizing matter, and extra titration with soda (Lagacherie et al., 2008). Soluble calcium and 

magnesium were measured in saturated paste using complex titration (EDTA) method.  Soluble 

sodium and potassium were measured with photometric measurements employing a photometric 

method (Lagacherie et al., 2008). Carbonate and Bicarbonate were measured via titration of sulfuric 

acid and equivalent carbonate and bicarbonate were calculated. Bulk density was measured by the 

clod and paraffin method. Organic carbon was measured through Walky and Black (1934) method. 

The spectral indices studied herein were calculated utilizing spectral bands of OLI and TIRS 

(Thermal Infrared Sensor) sensors, as presented in Table 1. 

 
    Table 1. Summary of some widely used vegetation and soil salinity indices 

Reference Formulation Index 

Rouse J. et al. (1974) 𝐵5 − 𝐵4

B5 + B4
 

NDVI (Normalized Difference 

Vegetation Index) 

Khan N. M. et al. (2005) 2 *B3– 5 * (B4 + B5) VSSI (Vegetation Soil Salinity Index) 

Fernandez-Buces N. et al. (2006) [
𝐵2+𝐵3

𝐵4+𝐵5
] ∗ 𝑁𝐷𝑉𝐼 COSRI (Combined Spectral 

Response Index) 

Tripathi N.K. et al. (1997) √(𝐵4)2 + (𝐵5)2 BI (Brightness Index) 

Abbas A. and Khan S. (2007) 𝐵2

𝐵4
 

SI1 

Abbas A. and  S. (2007)  𝐵2 − 𝐵4

𝐵2 + 𝐵4
 

SI2 

Abbas A. et al. (2007) 𝐵3 ∗ 𝐵4

𝐵2
 

SI3 

Khan S. et al. (2005) √𝐵2 ∗ 𝐵4 SI4 

Douaoui A. E. K. et al. (2006) √𝐵3 ∗ 𝐵4 SI5 

Douaoui A. E. K. et al. (2006) √(𝐵3)2 + (𝐵4)2 + (𝐵5)2 SI6 

Douaoui A. E. K. et al. (2006) √(𝐵3)2 + (𝐵4)2 SI7 

Abbas A. and Khan S. (2007) 𝐵2 + 𝐵4

𝐵3
 

SI8 

Abbas A. and Khan S. (2007) 𝐵4 + 𝐵5

𝐵3
 

SI9 

Abdel Rahman M.A.E (2019) √𝐵4 ∗ 𝐵5 SI10 

Allbed A. et al. (2014) √(𝐵4)2 + (𝐵5)2 SI11 

Khan S. et al. (2005) (𝐵4 − 𝐵5)

(𝐵4 + 𝐵5)
 

NDSI (Normalized Differential Salinity 

Index) 

Abdel Rahman M.A.E (2019) (𝐵4 − 𝐵5)

(𝐵3 + 𝐵5)
 

SR (Salinity Ratio) 

 

Results and Discussion 

 

Table 2 depicts the summary of statistical data. Table 2 represents the significance level of 

Kolmogorov-Smirnov and Shapiro-Wilk tests to determine the normality of the data. High standard 

deviation of salinity values and sodium absorption ratio indicated that the changes in salinity and 

alkalinity in the region were high. All the data are right-skewed and according to the significance 

https://www.sciencedirect.com/science/article/abs/pii/S003442570700291X#!
https://www.sciencedirect.com/science/article/abs/pii/S003442570700291X#!
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level (less than 5%) for all the data, the data had no normal distribution. Usually, if the significance 

level is more than 5%, the data can be assumed to have high normal confidence. As shown in 

Figures 4 and 6, the variables Vertical EM and salinity have no normal distribution. 
Table 2. Statistical summary of the salinity values measured and read via EM38  

 n Min. Max Mean 

Standard 

Deviation Skewness 

Significance level 

Kolmogorov-

Smirnov 

Shapiro-

Wilk 

EMV 86 6 269 56.27 49.30 2.05 0 0 

EMH 86 3.5 235 43.06 39.57 2.45 0 0 

ECe 86 0.51 68.10 11.88 19.70 1.89 0 0 

SAR 86 0.70 124.50 24.66 34.82 1.76 0 0 

 

 
Figure 4. Frequency distribution of EMv data before normalizing 
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Figure 5. Frequency distribution of EMv data after normalization 

 
 

Figure 6. Distribution of ECe data before normalization 
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Figure 7. Distribution of ECe data after normalization 

 

     Logarithmic transformation was used to normalize the data. Table 3 exhibits the statistical 

summary of the data after normalization. Accordingly, the data skewness after the normalization 

reduced and the significance level of both tests of all the data was over 0.05, which indicated the 

normalization of the data. Figures 5 and 7 illustrate the normal distribution of vertical EMv and 

salinity data. 

 

 

 

 
Table 3. Statistical summary of the salinity data and EM38 readings after normalization 

 n Minimum Maximum Mean 

Standard 

Deviation Skewness 

Significance level 

Kolmogorov-Smirnov Shapiro-Wilk 

EMv 86 1.79 5.77 3.73 0.80 0.33 0.20 0.36 

EMh 86 1.25 5.46 3.45 0.77 0.23 0.18 0.20 

ECe 86 -0.67 4.22 1.25 1.53 0.74 0.08 0.08 

SAR 86 -0.35 4.82 2.26 1.43 0.22 0.20 0.12 

 

     A multivariate linear regression method was used to determine soil salinity via various EM38 

readings. Table 4 demonstrates regression coefficients between the readings of the electromagnetic 

conductivity device and soil salinity. The results revealed that the highest coefficient of 

determination (R²) belonged to the third equation (0.78). Moreover, the lowest coefficient of 

determination was observed in the fourth equation (0.68). Table 4 shows that all the equations had 

high regression coefficients. As could be seen, the coefficient of determination is slightly different 

with the corrected coefficient of determination R2adj, indicating the reliability of the equations. 

Table 4 also represents the best regression equations obtained from the calibration stage of the 

electromagnetic induction device to estimate soil salinity. Determining the most efficient equations 

for determination of salinity at the sampling points (37 soil samples) and the accuracy of each of 

these equations with generalizing to other points without sampling (49 points where only EM38 

readings were made), it was possible to estimate salinity (ECe) for the 86 points. According to 
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Table 4,in order to estimate ECe and SAR, Equations (3) and (6) were used, respectively (the 

highest coefficient of determination). 

 
        Table 4.  Regression equations between salinity and the horizontal (EMh) and vertical (EMv) readings 

No. Equation R 𝑅2 𝑅2 Corrected 

1 5.015- EMh 0.351  =ECe 0.86 0.75 0.74 

2 4.779 - EMv 0.284  =ECe 0.88 0.77 0.77 

3 4.530 – (EMv 0.212 )– (EMh 0.617 = )ECe 0.87 0.75 0.74 

4 4.955 - EMh 0.616  =SAR 0.85 0.73 0.73 

5 4.640 - EMv  0.490 =SAR 0.82 0.68 0.67 

6 3.231 – (EMv 0.788 )– (EMh 1.560 = )SAR 0.87 0.77 0.75 

 

     Determining the significant regression relations between EM38 readings and salinity of soil 

saturation paste, it was also possible to estimation of salinity at unsampled points.Therefore, using 

these equations, the salinity of soil saturation paste and sodium absorption ratio were predicted for 

86 points; the results are summarized in Table 5. The findings  revealed that given the significance 

level of the two relevant tests (less than 0.05) and skewness of above 2 (right- skewness), the data 

did not have a normal distribution. Figure 7 shows the normalized estimated ECe data. Thus, using 

logarithmic transformation, the data became close to normal. Normalizing the data, the significance 

level of the Shapiro-Wilk test for ECe and SAR increased to 0.068 and 0.303, respectively, and the 

data distribution became close to normal.  

 
Table 5. Statistical summary of ECe and SAR estimated values using horizontal (EMh) and vertical (EMv) 

readings 
Parameter n Minimum Maximum Mean Standard 

Deviation 

Skewness Significance level 

Kolmogorov-

Smirnov 

Shapiro

-Wilk 

ECe 86 0.02 68.1 10.65 15.14 2.44 0 0 

SAR 86 0.21 124.5 20.11 26.37 2.50 0 0 

     The results obtained herein indicated that ECe had a high correlation (0.928) with SAR and the 

indices with a high correlation with ECe were SI6, SI11, BI, SI10, and VSSI (Table 6); they are 

consistent with the results of Khan et al. (2001). They also showed that BI and SI indices are closely 

correlated with the salinity levels in salt-affected soils. The indices with no significant correlations 

included COSRI, IR, NDSI, NDVI, SI7, SI8, SI9, SIT, and SR. Furthermore, SI3, SI4, SI5, and 

SI7 indices had an acceptable correlation. In a study by Ezhirabi et al. (2015) on soil salinity 

zonation using satellite images in Gorgan, BI and NDSI revealed a high correlation with soil 

salinity. 

     After normalizing ECe and the data of all the indices, regression equations were determined 

using stepwise regression. To this end, ECe was introduced as a dependent variable and indices 

and measured induced values were introduced as independent variables. Finally, SI6 and SI11 

salinity indices and EMv values were included in the regression model. As shown in Table 7, 

Equation (1) has a relatively high R² and R² is slightly different with R2
adj. This indicates that all 

the independent variables are included in the estimation of dependent variables. Using this model, 

soil salinity map was calculated and the verification results are exhibited in Table 7. 

     The classified salinity map, resulted from Equation (1), was assessed with experimental samples 

(ground truth map). The classification error matrix was calculated and subsequently, the user 

accuracy, producer accuracy, the total accuracy, and Kappa coefficient were calculated and 

evaluated with diagonal and non-diagonal pixels of the corresponding Tables (Table 8). Based on 



261                                                                                                                                          Matinfar et al. 

 

the results, the overall accuracy and kappa coefficient was high, which suggested the high accuracy 

of the model in estimating salinity and producing a salinity map. Salinity map showed that the 

central and northern regions had the highest salinity values (S4 ,S3), which corresponded to areas 

with light crusts, puffy crusts, and sparse vegetation. 

 
                                         Table 6. Correlation of indicators with ECe and SAR after normalization 

 ECe SAR 

ECe 1 0.89** 

SAR 0.89** 1 

BI 0.81** 0.77** 

COSRI -0.14 -0.12 

EMv 0.81** 0.77** 

NDSI 0.18 0.12 

NDVI -0.13 -0.10 

SI1 -0.29* -0.22* 

SI2 -0.25* -0.25* 

SI3 0.61** 0.44** 

SI4 0.54** 0.48** 

SI5 0.54** 0.48** 

SI6 0.81** 0.77** 

SI7 0.54** 0.48** 

SI8 -0.18 -0.24 

SI9 0.14 0.15 

SI10 0.78** 0.72** 

SI11 0.81** 0.77** 

EMh 0.13 -0.14 

SR 0.13 0.11 

VSSI 0.72** 0.67** 
*Significant at a level of 95% 
** Significant at a level of 99% 

 
           Table 7. Regression relation between the indices and EMv measurement with ECe 

Equation (1) R 𝑅2 𝑅2 Corrected 

ECe = 10.1 EMv – 12.9 SI6 + 3.57 SI11 – 109.27 0.75 0.69 0.69 

 

                   Table 8. Accuracy classification results 
Producer accuracy User accuracy Overall accuracy Kappa Index 

83.58 81.48 85.75 83.54 

 

     The independent variables of Equation (1) were classified by the maximum likelihood algorithm 

and the percentage of information classes in the study area was calculated. The results are 

demonstrated in Figure 9.As could be seen, land use of wheat and alfalfa had the largest area in the 

region Figure 10 shows the salinity class of all the classified lands. Based on our findings, arable 

lands could be classified into no salinity to low salinity, which indicated the effect of agricultural 

operations on leaching of salts and removal of salts from the root environment of plants. The 

highest level of salinity belonged to the salty lands with white crust classified in the S4 class. This 

implied the accumulation of salt in the surface soil in the hot season due to the predominance of 

evapotranspiration over rainfall and the lack of leaching of salts during the year. 

     As shown in Figure 10, 42.08% of the lands had a salinity problem (Alfalfa land and Wheat 

grass) and it is expected that the amount increase in the coming years due to the excessive use of 
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groundwater. Particularly, shallow plowed land seems to be highly prone to becoming an 

abandoned land. 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 
 

Figure 8. Salinity map calculated based on the model 

 

 
Figure 9. Area percentage of classes 
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Figure 10. Determination of salinity class for classified land 

 
                    Table 9. Area of salinity classes 

Class Explanation Area (ha) Area (%) 

S0 (EC<4)No salinity 4392.72 25.52 

S1 (4<EC<8) Low salinity 5573.34 32.38 

S2 Medium salinity (8<EC<16) 3031.02 17.61 

S3 (16<EC<32) High salinity 3576.87 20.78 

S4 Very high salinity (32<EC) 633.87 3.68 

 

     The results also revealed that about 25% of the land in the region was in the salinity class of 

very high to high and only 25% was in the no salinity class. Therefore, 50% of the lands are at the 

risk of salinity intensification (Table 9). In the future, these lands may be classified in the high to 

very high salinity class. 

 

Conclusions 
 

In the present work, the sampling sites were selected for measurement of salinity using 

conventional lab techniques and via electromagnetic induction instruments, considering 

photomorphic approach based upon false color composite and land use patterns. The evaluation 

capability of Landsat 8 satellite showed that it has the ability to identify saline soils. Analysis of 

spectral indices implied that soil salinity can be identified in the visible spectrum (blue, green, and 

red band). Additionally, bands 5, 6, and 7 in the saline soils had spectral interference with moderate 

vegetation canopy. Of course, these bands could be useful for distinguishing between white and 

gray crust salty lands. The salt crust lands exhibited the highest reflectance in the reflectance bands 

of the white and smooth crust. The gray crust had the least spectral reflectance. Distinguishing the 

abandoned soils from shallow plowed land was also hardly feasible and led to spectral interference 

and reduced user accuracy for classifying these classes. The obtained results results show that the 

combination of bands 5 and 6 causes the highest separation of saline crusts and gray crusts. 

Moreover, SI6 and SI11 salinity indices and EMv values were included in the best regression model 

and were found to be the most appropriate parameters for calculating the salinity map and spatial 
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distribution of salinity. Yao Rongjiang and Yang Jingsong (2010) concluded that the estimated 

salinity of the EM device has a high correlation with the measured salinity and increases the 

accuracy of salinity measurement in soil layers.  The evaluation of the land use classes indicated 

that wheat and alfalfa crops have the highest area. Furthermore, agricultural lands at low salinity 

levels (S0 and S1) and salty lands with white crust had the highest salinity levels (S4). In total, 

42.8% of the land had salinity problems. In general, this study and other studies on soil salinity 

monitoring using remote sensing (Fernandez-Buces et al. 2006) shed light on the fact that a 

combination of remote sensing and EM device measurements contributes to accurately estimating 

soil chemical properties, including soil salinity. The results also showed salinity indices SI6 and 

SI11 and vertical measurement of salinity with EM38 device are the most important parameters in 

modeling soil salinity estimation in arid region and the results of producing soil salinity map with 

these parameters with an overall accuracy of 85% and kappa coefficient is 0.83, these results 

demonstrate the success of combining spectral data and salinity measurements with EM38 device. 
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