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Abstract 

In this study, the nonlinear autoregressive neural network with exogenous input (NARX) model  was employed to 

predict solar power in different geoclimatic zones of Nigeria using six solar radiation parameters. The solar power 

was first deduced using the surface direct and diffuse solar radiation data obtained from the archives of the Modern-

Era Retrospective Analysis for Research and Application, Version 2, over 20 stations spread across Nigeria. NARX 

model was then created and trained using Levenberg-Marquardt (LM), Bayesian regularization (BR), scaled 

conjugate gradient (SCG), and Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithms, and the values were 

compared to the calculated values of the solar power. The performance of the four algorithms were assessed using 

standard evaluation metrics. Error analyses showed that all the algorithms had desirable performances with root 

mean square error (RMSE) values ranging from 0.162 to 0.544 W/m2. Regionally, the NARX-BFGS model had the 

best performance in the Coastal and Guinea Savanna zones, whereas the NARX-LM and NARX-BR models had the 

best performances in the Sahel and Derived Savanna zones, respectively. The results of this study will assist solar 

engineers in calibrating the performance of solar conversion systems for the future planning of sustainable 

renewable energy policies. 

 

Keywords: NARX, solar power, artificial neural network, renewable energy, Broyden–Fletcher–Goldfarb–Shanno 

 

1. Introduction 

Renewable energy sources are resources that can be 

efficiently utilized to counter energy shortfalls and 

ever-increasing electricity demands in Nigeria  

(Olusola et al., 2020). One of the viable renewable 

energy  sources in Nigeria is the sun, as researches 

have shown that solar radiation is abundant in the 

north east, north west, and north central geo-political 

zones of the country (Bugaje 2006). Solar energy is 

mainly influenced by the incoming solar radiation, 

characteristics of the solar panel, and several other 

factors including atmospheric conditions, trajectory 

of the sun, tilt angle of the solar panel relative to the 

sun, weather conditions, cloud cover, and the 

physical properties of the solar energy plant that 

convert solar energy to electric power (Awan, Khan, 

and Aslam 2018). Thus, the knowledge and 

consideration of these factors are essential for the 

accurate estimation of solar energy. However, insitu 

solar radiation data are rarely available in Nigeria 

owing to the high costs associated with purchasing 

and maintaining the measuring equipment. Moreover,  

 

the calculation of the solar power on a tilted plane is 

complex; hence, most studies usually rely on 

assumptions which may lead to poor performance 

(Olusola et al., 2020).  

In recent times, artificial intelligence (AI) methods 

have been used to learn the relationships between 

predicted and actual outputs using time-series 

historical data (Abuella and Chowdhury 2015). AI 

methods utilize algorithms that can implicitly 

describe the nonlinear and highly complex 

relationships between input data and output power 

rather than an explicit statistical analysis, thereby 

significantly reducing the complexity associated with 

prediction calculations (Abuella and Chowdhury 

2015; Maind and Wankar 2014). For both statistical 

and AI approaches, high-quality time series data 

comprising weather predictions and power outputs 
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from the past are very important. One of the most 

common AI models is the artificial neural network 

(ANN). ANNs are particularly suited for  solving 

problems that are difficult to model analytically, and 

they have been applied in several areas such as 

pattern recognition systems, optimization, signal 

processing, and prediction (Rajendra et al. 2019). The 

operations of ANNs are similar to those of the human 

brain in which knowledge is acquired through 

learning and stored using weights, which are the 

internal connections between the neurons (Ojo, 

Adeyemi, and Oluleye 2020; Sözen et al. 2005). 

Several researchers have demonstrated the suitability 

of the nonlinear autoregressive network with 

exogenous inputs (NARX) network model for 

modeling nonlinear systems over classical modeling 

approaches and other ANNs (Inman, Pedro, and 

Coimbra 2013; Ojo, Adeyemi, and Oluleye 2020; 

Sani et al. 2014). The key advantages of the NARX 

network model over other neural network models are 

its better generalization ability, faster convergence, 

and ability to remember information stored for a long 

period of time (Haddad et al. 2015; Çoruh et al. 

2014). (Haddad et al. 2015) compared different ANN 

models for the prediction of the water flow rate in a 

photovoltaic water pumping system, and they found 

that NARX model offered a slightly better 

performance than nonlinear autoregressive model and 

generalized regression neural network. Moreover, 

(Tikyaa et al. 2018) predicted solar radiation in 

Makurdi using a hybrid SARIMA-NARX nonlinear 

dynamics model. They found that the model had 

good accuracy after validation with an R value of 

0.771. Similarly, (Ozoegwu 2019) predicted solar 

radiation using NARX model over six locations in 

Nigeria, and found that the model had the best 

performance in Abuja with an R value of 0.78. 

Furthermore, (Ojo and Adeyemi 2020) estimated the 

global solar radiation in Nigeria using NARX, and 

compared the results with those of multivariate linear 

regression (MLR). They discovered that the NARX 

model gave a better prediction of global solar 

radiation than the MLR model for all the zones in 

Nigeria. However, to the best of our knowledge, no 

study has reported the best NARX algorithm that is 

appropriate for the prediction of solar power over 

different geoclimatic zones of Nigeria. 

In this study, the solar power was predicted from six 

solar radiation parameters using the NARX model 

with four optimization algorithms, namely Bayesian 

regularization (NARX-BR), Levenberg–Marquardt 

(NARX-LM), scaled conjugate gradient (NARX-

SCG), and Broyden–Fletcher–Goldfarb–Shanno 

(BARX-BFGS). The best optimization algorithm that 

produced the highest solar power in each zone were 

then identified after their performance had been 

evaluated using standard statistical metrics such as 

root mean square error (RMSE), coefficient of 

determination (R2), Theil’s  inequality coefficient 

(U), and standard deviation reduction (SDR). The rest 

of this paper is organized as follows: The 

methodology is presented in Section 2. The results 

are discussed in Section 3, and conclusions are 

provided in Section 4. 

 

MATERIALS AND METHODS 

The surface data of direct and diffuse solar radiation 

on hourly time-series format from 2013–2017 were 

obtained from the archives of the Modern-Era 

Retrospective Analysis for Research and Application, 

Version 2 (MERRA-2) for twenty stations spread 

across Nigeria, as shown in Fig. 1. The MERRA-2 

data is powered by Earth Observing System Data and 

Information System, the key core capability in the 

National Aeronautics and Space Administration Earth 

Science Data Systems program [19]. The data 

gridded in NetCDF format at a spatial resolution of 

0.5° x 0.63° was converted into a readable format 

using Ferret software.  
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Fig. 1 Map of Nigeria showing the study locations (Olusola et al., 2020) 

 

Data preprocessing was performed by normalizing 

the time series data to have values between 0 and 1 

because each dataset had different magnitudes. This 

process ensures that measured values with different 

scales are converted to a common scale. The equation 

for the normalization is given by Eq. (1) (Mohanty, 

Patra, and Sahoo 2016): 

 

                                                         min

max min

( )

( )
normalized

X X
X

X X

−
=

−
                                                                           (1) 

The solar radiation parameters used as input 

parameters of the model were solar declination angle, 

sunlight duration, hour angle, solar zenith angle, solar 

elevation angle, and solar azimuth angle, which are 

briefly described below: 

The solar declination angle δ is the angle between a 

line joining the centers of the sun and the earth (Iqbal 

1983). For a particular day, δ is calculated by 

(Pandey and Katiyar 2009): 

 

                                                      
23.45 2 (284 )

sin
180 365

n 


+ 
=  

 
                                                                     (2) 

 

where n is the nth day of the year. 

The solar azimuth   is the angle at the local zenith 

between the plane of the observer's meridian and the 

plane of a great circle passing through the zenith and 

the sun (Iqbal 1983). It is measured east positive, 

west negative (south zero) and is given by: 

 

                                                              
1 cos sin

sin
cos

 




−  
=  

 
                                                                           (3) 

 

where  is the hour angle and  is the solar elevation 

angle. 

The hour angle   is the angle measured at the 

celestial pole between the observer's meridian and the 

solar meridian (Iqbal 1983), and it is given by: 
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                                                                   ( )1cos tan tan  −= −                                                                     (4) 

 
where   is the latitude. 

The solar zenith angle z  (also called the zenith 

distance) is the angle between the local zenith and the 

line joining the observer (Iqbal 1983), and it is given 

by: 

 

                                                    
1cos (sin sin cos cos cos ) sinz      −= + =                                       (5) 

 

The solar elevation angle   (also called the solar 

altitude) is the sun's angular height above the 

observer's celestial horizon (Iqbal 1983). It is the 

complement of the zenith angle, and it is given by: 

 

                                                                             90 z = −                                                                                    (6) 

 

The solar power  was computed using Eq. (7) for a 

60-cell solar panel with an area of 1.66  and 

electrical power of 250 Wp according to (Markos and 

Sentian 2016): 

 

                                                                        E A r H PR=                                                                             (7) 

 

where A  = total solar panel area (
2m ), H = 

monthly average global solar radiation on tilted 

panels, PR  = performance ratio (0.75) (Markos and 

Sentian 2016), r  is the solar panel yield (%) given 

by: 

 

                                                                                                                 (8) 

Meanwhile, H  was computed by summing the beam, diffuse, and ground-reflected radiations as follows: 

 

                                                                     g b s rH H H H= + +
                                                                           (9) 

where bH , sH , and rH  are the daily beam, 

diffuse, and ground-reflected radiations received on 

an inclined surface. The calculations for the 

radiations are given below: 

The daily beam radiation received on an inclined 

surface can be expressed as: 
 

                                                                       
( )b g d bH H H R= −

                (10) 

 

where gH and dH are the monthly mean daily 

global and diffuse radiations on the horizontal 

surface, and bR is the beam radiation conversion 

factor  According to (El-Sebaii et al. 2010), bR can 

be expressed as: 

 

                                       

cos( )cos sin sin( )sin

cos cos sin sin sin
bR

       

     

− + −
=

+
                                           (11) 

 

where   is the tilt angle,   is the declination angle, 

and   is the hour angle for the tilted surface. 

The daily diffuse radiation was estimated using 

Klucher model (Pandey and Katiyar 2009), as it has a 

good agreement with the experimental value for all 

types of slope: 
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3 2 31

(1 cos ) 1 sin (1 cos sin )
2 2

s d zH H F F


  
  

= + + +  
  

                                              (12) 

 

 where sH is the sky-diffuse radiation, dH is the 

daily diffuse solar radiation on horizontal surface, 

 is tilt angle, z is the solar zenith angle,  is solar 

incidence angle on tilted plane, and F  is a 

modulating function. The modulating function can be 

obtained using: 

 

                                                   

2

1 dH
F

H

 
= − 

 
                                                             (13) 

 

When the skies are overcast, F  is zero. For clear sky 

conditions, F  is one.  

The solar incidence angle (Iqbal 1983) on tilted plane 

is given by: 

 

                                         
1cos [sin sin( ) cos cos( )cos ]       −= − + −                                            (14) 

 

The daily ground-reflected radiation was obtained using anisotropic model (Katiyar and Panday 2010), given by: 

 

                                   
21

(1 cos )[1 sin ] (| cos |)
2 2

day z
r i

H I


 
  

= − +   
  

                                             (15) 

 

where  is the azimuth of the tilted surface with 

respect to that of the sun, z  is the solar azimuth 

angle,   is the albedo,   is the tilt angle. 

NARX is a recurrent dynamic network with feedback 

connections enclosing several layers of the network. 

It has been demonstrated to be well suited for 

modeling nonlinear systems, especially time series, 

as it is based on the linear ARX model, which is 

commonly used in time-series modeling (Diaconescu 

2008). The main advantage of NARX over feedback 

neural networks is that it can accept time series 

represented as dynamic inputs (Ojo and Adeyemi 

2020). Moreover, NARX models have a better 

performance in discovering long-term characteristics 

and behavior than traditional recurrent networks 

based on the back-propagation through time 

algorithm [31]. NARX has been extensively utilized 

in several applications, including pattern 

classification (Bishop 1995), forecasting, function 

approximation, optimization,  and control systems 

[33]. The equation for the NARX model is given by 

(Ojo and Adeyemi 2020): 

 

                                   ( ) ( ( 1), ( 2),..., ( , ( 1), ( 2,... ( ))y uy t f y t y t y t n u t u t u t n= − − − − − −                         (16) 

 

where ( )y t  is the output signal and ( )u t  is the 

input (exogenous) signal. The next value of the 

dependent output signal ( )y t  is regressed on the 

previous values of the output signal and previous 

values of an independent/external (exogenous) input 

signal. Figure 2 shows a block diagram which 

represents a NARX model (Ojo and Adeyemi 2020). 

 

 
Fig. 2 NARX block diagram 

 

The output of the NARX model is considered an 

approximation of the actual output of a nonlinear 

dynamic system because the actual output is 

produced during the network training phase, and a 
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series-parallel design is used to replace the estimated 

goal with the actual output (Ojo and Adeyemi 2020). 

NARX uses optimization algorithms to obtain the 

best network for time-series predictions. The 

optimization algorithms adopted in this study are 

briefly described below. 

The LM algorithm is one of the most widely used 

functions for time series network predictions and 

training (Zhang and Behera 2012; Verma et al. 2016; 

Fentis et al. 2017). It is a variation of the Gauss–

Newton algorithm that finds the function minima and 

optimizes the solution. It uses an approximation of 

the Hessian matrix as given below (Guzman, Paz, 

and Tagert 2017): 

 

                                                                   
1[ ] ( ) ( )T Tw J J I J w e w − = +                                                         (17) 

 

where w  is the weight, 
TJ J  represents the Hessian 

matrix, J  is the Jacobian matrix,  is the learning 

constant, 
TJ  is the transpose of J , I  is the identity 

matrix and e represents the vector of errors. The 

learning constant   is adjusted based on the error in 

each iteration to find the minima. In this study, the 

iteration process started with a random   for the 

weight optimization. 

The BR backpropagation algorithm provides robust 

estimation for noisy and difficult inputs when 

sufficient amount of training data are available 

(Jazayeri, Jazayeri, and Uysal 2016). Regularization 

reduces the probability of overfitting the model by 

setting the optimal performance function to provide 

an efficient generalization based on Bayesian 

inference techniques (Guzman, Paz, and Tagert 

2017). The algorithm works effectively by 

eliminating network weights that do not have a 

significant impact on the problem solution and it 

shows good performance in avoiding local minima 

difficulties. It does not require cross-validation; 

hence, some data do not need to be reserved for 

validation purposes. Moreover, it prevents the ANN 

from over-training and over-fitting problems. The 

objective function of the BR algorithm is given by 

(Kumar, Merchant, and Desai 2004):  

 

                                                                
2

1
,

N

w d w ii
F E E E w 

=
= + =                                                          (18) 

 

where wE  is the sum of squares of the network 

weights, and   and   are objective function 

parameters. The smaller the weights, the better the 

generalization capability of the network. 

In numerical optimization, the BFGS algorithm is an 

iterative method for solving unconstrained nonlinear 

optimization problems (Mukherjee and Routroy 

2012). The BFGS algorithm is implemented by 

estimating the inverse odd Hessian function H 

directly with a symmetric positive definite matrix P 

iteratively using the following steps (Asirvadam, 

McLoone, and Irwin 2004): 

Step 1: The search direction kd  is set to be equal to 

1k kP g−−  where 1kP −  and kg  are the approximation 

to inverse 1kH −  and its gradient, respectively, at the 

kth iteration. The convergence tolerance is set to be a 

minimum value of order 10–3. 

Step 2: The weights which yield the minimum error 

along kd  is obtained by: 

 

                                                                         1k k o kw w d+ = +                                                                            (19) 

                                                                     min[ ( )]o k kE w d = +                                                                   (20) 

 

Step 3: The new gradient 1kg +  is computed and the approximation to kP  is updated using the new weight and 

gradient information given as: 

 

                                                                      1k k ks w w+= −  and  1k k ky g g+= −                                                 

(21) 
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                                       1
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k k k k k
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k k k k

y P y s s
u

s y s y

 
= + 
 

,      

T

k k k k k k
k T

k k

y P y P y s
v

s y

+
=                                                (22) 

                                                                              1k k k kP P u v+= + +                                                                     (23) 

 

The initial approximation to the inverse Hessian 

matrix ( )oP  is an identity matrix ( )I  which 

corresponds to the steepest descent ( )k kd g= − . 

Matrices u , v , and P  are symmetric and therefore 

lead to a reduction of the weight errors to meet the 

convergence tolerance (Ojo, Adeyemi, and Oluleye 

2020). 

The SCG algorithm uses second order information 

from the neural network. However, it requires only 

( )O N   memory usage, where N  is the number of 

weights in the network (Mishra, Prusty, and Hota 

2016). Its objective function is given by: 

 

                                                                 
' ''1

( ) ( ) ( ) ( )
2

T TE w y E w E w y y E w y+  + +                                   (24) 

 

where w   is the weight vector, ( )E w   is the global 

error function, 
'( )E w   is the gradient, and 

'' ( )E w  is 

the Hessian matrix.  

In this study, the method proposed by (Rajendra et al. 

2019; Ojo, Adeyemi, and Oluleye 2020) was used to 

obtain the optimal number of hidden nodes  

necessary for generating accurate model responses. 

The NARX model was trained for 1000 epochs and 

its performance was evaluated by changing the 

number of hidden neurons. It was found that 10 

hidden nodes (Figure 3) provided the most effective 

network architecture similar to the observations of 

(Jazayeri, Jazayeri, and Uysal 2016; Mohanty, Patra, 

and Sahoo 2016).  

 
Fig. 3 Series-parallel NARX network 

 

For all the algorithms, the minimum gradient was set 

to 1.0e−10 as the training goal to achieve accuracy 

and generalization capabilities at the same time. 

Seventy percent of the normalized data was used for 

training, 15% for validation to tune the 

hyperparameters of the model, and 15% for testing 

the performance of the models. 

The normalized values of the solar parameters were 

fed to the network through the input layer as shown 

in Fig. 4. The inputs passed through the hidden layer 

comprising 10 hidden neurons having a tan-sigmoid 

transfer function, and reached the output layer 

comprising one neuron with a linear transfer 

function. The estimated output was compared with 

the target output, and the error was back-propagated 

through the network. After 1000 epochs of 

backpropagations and weight adjustments, the 

training goal was achieved and the network 

generalized new outputs was produced. 
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Fig. 4 NARX model architecture 

 

The accuracy of the models was tested by evaluating 

the RMSE, R2, U, and SDR between the predicted 

and actual values of solar power using Eqs. (25)–(29) 

according to (Madugu et al. 2019; Fentis et al. 2017; 

Khalil and Shaffie 2013; Banadkooki et al. 2019). 

The lowest values of RMSE and U provide the best 

performance. Besides, R2 and SDR lie between 0 and 

1, of which values closest to unity provide the best 

performance.  

 

                                                                        
2

1

1
( )

n

p an
RMSE E E

n −
= −                          (25) 
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| |

( ) ( )
| |

p

a p

a

E
SDR sd E sd E

E
= −                                                    (28) 

where pE   and aE  are the predicted and actual values of the solar power, respectively, and n  is the number of 

observations.  

 

RESULTS AND DISCUSSIONS 

The comparison of the predicted solar power by the 

four NARX algorithms (BFGS, BR, LM, and SCG) 

with the actual data for training and testing in the 20 

stations spread over four climatic regions are shown 

in Table 1. It can be observed from the table that the 

actual values are closely related to the values 

predicted by the NARX models with minimum 

residues. Furthermore, the NARX-BR model had the 

lowest residue of -3.515 W/m2 in Minna in the 

Guinea Savanna zone and -2.837 W/m2 in Akure in 

the Coastal zone. Similarly, NARX-LM model had 

the lowest residue of -4.119 W/m2 in Kano in the 

Sahel zone, whereas NARX-SCG model had the 

lowest residue of -4.037 W/m2 in Iseyin in the Sahel 

zone. 

Tables 2–4 present the performance evaluation of the 

NARX models over the 20 stations in Nigeria. There 

was a strong correlation between the predicted and 

actual values of the solar power for all the models, 

with the R2 value exceeding 70% in all the stations. 

This confirms the suitability and validity of the four 

NARX algorithms for the prediction of solar power 

over the stations. Generally, the lower the values of 

the RMSE metrics, the better the performance of the 

ANN model. The NARX-BFGS model had the 

lowest RMSE values of 0.418 W/m2 in Maiduguri in 

the Sahel zone, 0.162 W/m2 in Abuja in the Guinea 
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Savanna zone, 0.237 W/m2 in Ibadan in the Derived 

Savanna zone, and 0.226 W/m2 in Enugu the Coastal 

zone. For the NARX-BR model, the lowest RMSE 

values were 0.404 W/m2 in Maiduguri in the Sahel 

zone, 0.181 W/m2 in Abuja in the Guinea Savanna 

zone, 0.298 W/m2 in Ibadan and Ado-Ekiti in the 

Derived Savanna zone, and 0.213 W/m2 in Akure in 

the Coastal zone. Meanwhile, the lowest RMSE for 

the NARX-LM model were 0.394 0.418 W/m2 in 

Maiduguri in the Sahel zone, 0.174 W/m2 in Abuja in 

the Guinea Savanna zone, 0.221 W/m2 in Makurdi in 

the Derived Savanna zone, and 0.213 W/m2 in Akure 

in the Coastal zone. In addition, the lowest RMSE for 

the NARX-SCG model were 0.394 W/m2 in 

Maiduguri in the Sahel zone, 0.181 W/m2 in Abuja in 

the Guinea Savanna zone, 0.204 W/m2 in Makurdi in 

the Derived Savanna zone, and 0.221 W/m2 in Enugu 

the Coastal zone. Furthermore, all the models had U 

values below 0.7. For instance, the NARX-BFGS 

model had the lowest U values of 0.438 in Maiduguri 

in the Sahel zone, 0.179 in Abuja in the Guinea 

Savanna zone, 0.289 in Ibadan in the Derived 

Savanna zone, and 0.285 in Port Harcourt Ibadan in 

the Coastal zone. Additionally, all the models had 

high SDR values above 0.7.   

 

 

Table 1 Comparison of the actual and predicted mean solar power by the NARX algorithms over 20 selected 

stations in four climatic regions of Nigeria 

Zone Station Mean solar power (W/m2) Mean error 

Actual BFGS BR LM SCG BFGS BR LM SCG 

Sahel Sokoto 70.580 70.535 71.878 71.294 70.567 0.045 -1.298 -0.714 0.013 

Gusau 67.221 68.445 67.655 67.658 69.146 -1.224 -0.434 -0.437 -1.925 

Kano 65.007 65.563 65.048 69.126 66.220 -0.556 -0.041 -4.119 -1.213 

Katsina 70.869 65.884 71.211 70.210 70.551 4.985 -0.341 0.660 0.319 

Maiduguri 62.948 63.173 62.847 63.462 62.831 -0.224 0.101 -0.514 0.117 

Guinea Kontagora 43.665 44.858 45.971 44.561 44.514 -1.193 -2.306 -0.896 -0.849 

Minna 41.533 41.645 45.047 41.913 42.052 -0.112 -3.515 -0.380 -0.520 

Abuja 2.151 2.162 2.163 2.163 2.167 -0.011 -0.012 -0.012 -0.017 

Jos 67.090 65.840 66.829 65.712 66.260 1.250 0.261 1.377 0.830 

Yola 49.667 51.498 49.912 50.536 53.140 -1.831 -0.246 -0.869 -3.473 

Derived Ilorin 33.114 34.582 33.547 34.071 34.657 -1.468 -0.433 -0.958 -1.543 

Iseyin 33.150 34.299 34.951 35.424 37.187 -1.149 -1.801 -2.273 -4.037 

Ibadan 26.665 27.885 27.142 27.709 27.940 -1.219 -0.477 -1.043 -1.275 

Ado-Ekiti 27.089 28.084 28.281 30.037 28.136 -0.995 -1.192 -2.948 -1.047 

Makurdi 27.924 28.667 28.110 28.376 28.859 -0.743 -0.186 -0.451 -0.934 

Coastal Ikeja 33.675 36.114 34.810 34.898 35.071 -2.439 -1.136 -1.223 -1.397 

Akure 23.692 25.965 26.530 26.220 24.213 -2.273 -2.837 -2.528 -0.521 

Benin 24.955 26.689 25.960 26.415 26.377 -1.733 -1.004 -1.459 -1.421 

Enugu 25.806 25.894 25.968 26.580 25.856 -0.088 -0.161 -0.774 -0.050 

PH 26.848 25.021 28.423 27.234 29.082 1.827 -1.575 -0.386 -2.234 

 

Table 2 Performance evaluation of NARX-BFGS model 

Zone Station Train Test 

R2 RMSE U SDR R2 RMSE U SDR 

Sahel Sokoto 0.772 0.466 0.478 0.887 0.776 0.491 0.473 0.896 

Gusau 0.821 0.413 0.423 0.906 0.808 0.419 0.439 0.925 

Kano 0.767 0.475 0.484 0.895 0.744 0.462 0.498 0.886 

Katsina 0.730 0.514 0.521 0.902 0.657 0.544 0.601 0.816 

Maiduguri 0.784 0.471 0.464 0.884 0.802 0.418 0.438 0.946 

Guinea Kontagora 0.853 0.384 0.384 0.901 0.869 0.311 0.341 0.878 

Minna 0.809 0.494 0.490 0.965 0.760 0.435 0.594 1.182 

Abuja 0.962 0.195 0.196 0.967 0.959 0.162 0.179 0.977 

Jos 0.827 0.417 0.415 0.905 0.749 0.379 0.499 0.898 

Yola 0.827 0.419 0.416 0.917 0.786 0.315 0.429 0.918 

Derived Ilorin 0.852 0.406 0.384 0.929 0.785 0.314 0.417 0.927 
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Iseyin 0.873 0.371 0.356 0.921 0.838 0.269 0.351 0.808 

Ibadan 0.889 0.356 0.332 0.935 0.879 0.237 0.289 0.962 

Ado-Ekiti 0.887 0.353 0.335 0.915 0.884 0.284 0.339 0.833 

Makurdi 0.883 0.340 0.342 0.943 0.778 0.258 0.387 0.848 

Coastal Ikeja 0.908 0.330 0.304 0.929 0.871 0.299 0.361 0.898 

Akure 0.882 0.363 0.340 0.939 0.890 0.238 0.287 1.023 

Benin 0.903 0.329 0.310 0.931 0.908 0.237 0.287 0.923 

Enugu 0.883 0.349 0.341 0.938 0.873 0.226 0.319 0.921 

PH 0.889 0.329 0.333 0.926 0.918 0.318 0.285 0.904 

 

 

Table 3 Performance evaluation of NARX-BR model 

Zone Station Train Test 

R2 RMSE U SDR R2 RMSE U SDR 

Sahel Sokoto 0.761 0.480 0.492 0.834 0.754 0.515 0.496 0.844 

Gusau 0.817 0.417 0.427 0.911 0.807 0.420 0.440 0.934 

Kano 0.757 0.485 0.494 0.858 0.730 0.475 0.512 0.857 

Katsina 0.722 0.521 0.528 0.890 0.736 0.465 0.513 0.862 

Maiduguri 0.772 0.484 0.478 0.878 0.812 0.404 0.423 0.921 

Guinea Kontagora 0.842 0.397 0.397 0.909 0.864 0.317 0.347 0.963 

Minna 0.755 0.550 0.545 0.761 0.650 0.453 0.618 0.779 

Abuja 0.962 0.195 0.196 0.970 0.949 0.181 0.200 0.974 

Jos 0.812 0.434 0.433 0.917 0.709 0.411 0.540 0.907 

Yola 0.838 0.392 0.402 0.915 0.903 0.325 0.306 0.952 

Derived Ilorin 0.880 0.366 0.346 0.911 0.879 0.245 0.326 0.861 

Iseyin 0.865 0.383 0.367 0.921 0.805 0.295 0.385 0.828 

Ibadan 0.874 0.379 0.353 0.942 0.874 0.245 0.298 0.943 

Ado-Ekiti 0.889 0.349 0.331 0.926 0.893 0.249 0.298 0.868 

Makurdi 0.888 0.332 0.334 0.940 0.832 0.224 0.337 0.885 

Coastal Ikeja 0.890 0.364 0.336 0.921 0.839 0.343 0.414 0.872 

Akure 0.890 0.352 0.329 0.937 0.910 0.213 0.257 0.987 

Benin 0.883 0.361 0.340 0.945 0.909 0.236 0.286 1.038 

Enugu 0.876 0.364 0.355 0.928 0.877 0.225 0.317 0.938 

PH 0.888 0.331 0.336 0.924 0.918 0.332 0.298 0.855 

Table 4 Performance evaluation of NARX-LM model 

Zone Station Train Test 

R2 RMSE U SDR R2 RMSE U SDR 

Sahel Sokoto 0.761 0.477 0.489 0.879 0.731 0.539 0.520 0.877 

Gusau 0.839 0.392 0.401 0.895 0.817 0.409 0.428 0.938 

Kano 0.773 0.468 0.476 0.887 0.776 0.434 0.469 0.920 

Katsina 0.711 0.534 0.541 0.903 0.730 0.472 0.522 0.900 

Maiduguri 0.775 0.481 0.474 0.887 0.822 0.394 0.413 0.945 

Guinea Kontagora 0.845 0.394 0.394 0.924 0.847 0.336 0.368 0.992 

Minna 0.845 0.397 0.394 0.910 0.823 0.286 0.390 0.937 

Abuja 0.961 0.195 0.196 0.974 0.954 0.174 0.192 0.964 

Jos 0.806 0.442 0.440 0.920 0.701 0.418 0.550 0.904 

Yola 0.840 0.389 0.399 0.910 0.883 0.358 0.338 0.935 

Derived Ilorin 0.851 0.408 0.386 0.903 0.790 0.313 0.415 0.916 

Iseyin 0.872 0.373 0.357 0.922 0.606 0.448 0.586 0.720 

Ibadan 0.806 0.442 0.440 0.920 0.701 0.418 0.550 0.904 

Ado-Ekiti 0.889 0.350 0.332 0.913 0.887 0.266 0.317 0.841 

Makurdi 0.887 0.336 0.338 0.957 0.837 0.221 0.332 0.909 

Coastal Ikeja 0.900 0.343 0.316 0.925 0.877 0.293 0.354 0.894 

Akure 0.887 0.356 0.333 0.934 0.879 0.247 0.297 0.906 
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Benin 0.898 0.337 0.318 0.932 0.913 0.222 0.270 0.937 

Enugu 0.935 0.276 0.269 0.878 0.934 0.183 0.259 0.846 

PH 0.885 0.335 0.340 0.926 0.898 0.355 0.319 0.885 

 

 

 

Table 5 Performance evaluation of NARX-SCG model 

Zone Station Train Test 

R2 RMSE U SDR R2 RMSE U SDR 

Sahel Sokoto 0.783 0.456 0.467 0.872 0.790 0.476 0.459 0.869 

Gusau 0.805 0.431 0.442 0.919 0.807 0.422 0.442 0.942 

Kano 0.762 0.479 0.488 0.888 0.739 0.472 0.510 0.918 

Katsina 0.715 0.530 0.537 0.899 0.714 0.486 0.537 0.884 

Maiduguri 0.781 0.474 0.468 0.885 0.821 0.394 0.413 0.916 

Guinea Kontagora 0.854 0.382 0.382 0.918 0.854 0.326 0.358 0.958 

Minna 0.837 0.407 0.403 0.915 0.766 0.331 0.452 0.941 

Abuja 0.961 0.197 0.198 0.969 0.953 0.174 0.192 0.966 

Jos 0.823 0.421 0.420 0.911 0.738 0.387 0.509 0.886 

Yola 0.846 0.383 0.392 0.905 0.893 0.341 0.321 0.935 

Derived Ilorin 0.884 0.362 0.342 0.900 0.843 0.279 0.371 0.856 

Iseyin 0.869 0.376 0.361 0.924 0.704 0.374 0.489 0.879 

Ibadan 0.889 0.356 0.331 0.936 0.873 0.250 0.303 0.897 

Ado-Ekiti 0.892 0.351 0.332 0.895 0.900 0.278 0.332 0.799 

Makurdi 0.892 0.326 0.328 0.934 0.865 0.204 0.307 0.862 

Coastal Ikeja 0.895 0.351 0.324 0.936 0.875 0.301 0.364 0.898 

Akure 0.889 0.353 0.330 0.937 0.895 0.223 0.269 0.971 

Benin 0.900 0.333 0.314 0.934 0.891 0.250 0.304 0.981 

Enugu 0.884 0.348 0.340 0.932 0.881 0.221 0.311 0.925 

PH 0.846 0.383 0.392 0.905 0.893 0.341 0.321 0.935 

 

Figures 5 and 6 show the comparison of the 

algorithms based on R2 and RMSE, respectively. The 

Coastal zone had the highest R2 values for all the 

algorithms, except NARX-SCG algorithm for which 

the highest R2 value occurred in the Derived Savanna 

zone. Furthermore,  whereas the Derived Savanna 

zone the lowest R2 values. Furthermore, the highest 

RMSE values occurred in the Sahel zone for all the 

algorithms, whereas the lowest RMSE values 

occurred in the Derived Savanna zone. The NARX-

BFGS algorithm had the best performance among the 

other algorithms for the Coastal and Guinea Savanna 

zones owing to their lowest RMSE and highest R2 

values. Similarly, the NARX-LM and NARX-BR 

algorithms had the best performance in the Sahel and 

Derived Savanna zones, respectively.  
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Fig. 5 Comparison of models based on coefficient of determination 

 
Fig. 6 Comparison of models based on root mean square error 

 

CONCLUSION 

In this study, the surface data of direct and diffuse 

solar radiation were obtained from the archives of 

MERRA-2 for 20 stations spread across Nigeria. 

Four NARX models were employed to estimate the 

solar power for the different geoclimatic zones of 

Nigeria, and the most appropriate algorithm for each 

geoclimatic zone was identified. The assessment of 

the models using statistical metrics showed that all 

the models had desirable performance with RMSE 

values ranging from 0.162 to 0.544 W/m2. 

Furthermore, all the values predicted by the models 

had strong correlations with the actual values, with 

R2 exceeding 70%. On a regional basis, NARX-

BFGS algorithm had the best performance in the 

Coastal and Guinea Savanna zones, whereas NARX-

LM and NARX-BR algorithms had the best 

performances in the Sahel and Derived Savanna 

zones, respectively. The proposed models can be 

used to predict the solar power in any location within 

each of the four geoclimatic regions of Nigeria. 

Moreover, other machine learnings techniques can be 

explored to estimate solar power in Nigeria in 

comparison with the NARX model used in this study. 
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