
P3-Rainbow Edge Colouring of Digraphs

Mahdieh Hasheminezhad∗

Department of Computer Science,Yazd University, Yazd, Iran
Combinatorial and Geometric Algorithms Lab,Yazd University, Yazd, Iran

Abstract5

An edge coloring of a digraph D is called a P3-rainbow edge coloring if the edges

of any directed path of D with length 2 are colored with different colors. It is

proved that for a P3-rainbow edge coloring of a digraph D, at least dlog2χ(D)e

colors are necessary and 2 dlog2χ(D)e} colors are enough. One can determine

in linear time if a digraph has a P3-rainbow edge coloring with 1 or 2 colors.

In this paper, it is proved that determining that a digraph has a P3-rainbow

edge coloring with 3 colors is an NP-complete problem even for planar digraphs.

Moreover, it is shown that dlog2χ(D)e colors is necessary and sufficient for a

P3-rainbow edge coloring of a transitive orientation digraph D.

Keywords: rainbow coloring, planar digraphs, template-driven

rainbow coloring, transitive digraph, dichromatic index

Introduction

Consider an edge (vertex) colored graph G. A subgraph of G is rainbow-

colored if none pair of its edges (vertices) are colored with the same color. A10

considerable number of researches have been done on the rainbow coloring of

graphs and digraphs. There are different types of problems on rainbow coloring.

Some works are on rainbow connectivity [5, 11, 12, 23] and look for the minimum

number of colors for coloring a graph such that for each pair of vertices x and

y of the graph, there is a rainbow x− y-path.15

Some other researches give some conditions for having some special rainbow

subgraphs [3, 6, 7, 13, 15, 20, 22] and some others look for the maximum number
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of colors can be used for coloring of a graph such that the graph does not have

any rainbow subgraph isomorphic to some given graph [14, 18, 19, 24].

Considering a graph T , an edge (vertex) coloring of a graph G is a template-20

driven rainbow coloring if each copy of T in G is rainbow-colored. In this

type of rainbow coloring, graph T is considered as a template, and graph G is

considered as host. It is mentioned in [4] that for efficient design of parallel

algorithms on multiprocessor architectures with memory banks, simultaneous

access to a specified subgraph of a graph data structure by multiple processors25

requires that the data items belonging to the subgraph reside in distinct memory

banks. Such ”conflict-free” access to parallel memory systems and other applied

problems motivate the study of template-driven rainbow coloring of a graph.

There are some researches on template-driven rainbow coloring by considering

special structures for templates and hosts. In [10], the host graph G is a q-ary30

tree or binomial tree, and the template T is a path or a subtree. In [1], the

host graph is two-dimensional arrays, circular lists, and complete trees and the

templates are paths. In [9], the host is a tori or a hypercube graph and templates

are stars. In the most recent research [4], the host is an interval graph and the

templates are cycles.35

In this paper, a template-driven rainbow edge (vertex) coloring with graph

T as the template is called a T -rainbow edge (vertex) coloring. We consider

P3 as template graph and digraphs as host. The minimum number of colors

used for P3-rainbow edge coloring of a digraph is called dichoromatic index of

the digraph. It is proved that for a digraph D, dichoromatic index of D is not40

less than dlog2χ(D)e and it is not more than 2 dlog2χ(D)e} [17]. In [25] some

results are given on dichoromatic index of complete graphs, tournaments and

product of graphs. In [2] the dichoromatic index of digraphs is studied where

the out-degree and in-degree of the digraph is bounded.

In the first section we give some preliminaries to state the problem and45

results. In the second section, it is determined that how many colors is necessary

and sufficient for a P3-rainbow coloring of a transitive orientation digraph. In

the third section, the digraphs with P3 rainbow edge coloring with 2 colors
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are characterized and in section 4, we prove that characterizing digraphs with

P3-rainbow edge coloring with 3 colors is NP-complete even for planar graphs.50

Section 5 concludes the paper.

1. Preliminaries

Consider an edge (vertex) colored graph G. A subgraph of G is rainbow-

colored if none pair of its edges (vertices) are colored with the same color.

Subject to a graph T , an edge (vertex) coloring of a graphG is called a T -rainbow55

edge (vertex) coloring (T -rec(T -rvc)), if every copy of T in G is rainbow-colored.

It is interesting to note that every proper edge coloring of a graph G corresponds

to a K1,l-rec (l ≤ δ(G) ) of G and also every proper vertex coloring of a graph

corresponds to a P2-rvc of the graph.

Generalizing this concept for digraphs, an edge coloring of a digraph D is a60

P3-rec, if for every directed path P of D with length 2, edges of P are colored

with different colors. In other words, an edge coloring of a digraph D is a P3-rec

of D, if no vertices have an incoming edge and an outgoing edge with the same

color. The minimum number of colors needed for a P3-rec of D is called P3-rec

number of D and it is denoted with χ′~P3
(D). In [17], P3-rec number of a digraph65

is called dichoromatic index of the digraph. It is interesting to note that for

every digraph D, χ′~Pk
(D) = χ′~Ck

(D), for any natural number k ≥ 3.

For a digraph D, by χ(D) and χ′(D), we mean the vertex coloring number

and the edge coloring number of the underlaying graph of D. The maximum

in-degree of vertices of D is denoted with ∆in(D) and the maximum out-degree70

of vertices of D is denoted with ∆out(D).

In a digraph, a vertex that has no incoming edges or has no outgoing edges

is called flexible. For a digraph D, the set of all flexible vertices is denoted by

F (D).

Let D be a digraph with at least one edge. If each vertex of D is flexible,75

then D is a bipartite digraph such that all edges start from the same part. This
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type of digraphs is called one-way bipartite digraphs. It is interesting to note

that in a P3-rec of a digraph, each color class is an one-way bipartite digraph.

Proposition 1. For a digraph D with at least one edge, χ′~P3
(D) = 1 iff D is

an one-way bipartite digraph ( All vertices of D are flexible).80

There are some upper bounds for P3-rec number of a digraph D. It is easy

to find out that χ′~P3
(D) ≤ min{χ(D), χ′(D)}.

Theorem 1. [17] For every digraph D, dlog2χ(D)e ≤ χ′~P3
(D) ≤ 2 dlog2χ(D)e.

For a digraph D, the clique number of the underlying graph of D is denoted

by ω(D). The following theorem proves an interesting result about digraphs D85

that ω(D) = χ(D).

Theorem 2. For any digraph D that ω(D) = χ(D), there is a 2-approximation

algorithm for finding a P3-rec coloring of D.

Proof. There is a polynomial time algorithm for finding a coloring of D with

χ(D) colors [16].90

let P = {V1, ..., Vχ(D)} be the partition of vertex set of D into color classes.

For each edge (x, y), there are distinct sets Vi and Vj in P such that x ∈ Vi and

y ∈ Vj . We find the binary representation of i and j using dlog2χ(D)e bits and

denote them by b(i) and b(j), respectively. Suppose that k − 1 first bits of b(i)

and b(j) are the same and k’th bit of b(i) and b(j) are different. If k’th bit of95

b(i) is zero then color (x, y) by color 2k-1 and otherwise color (x, y) by color

2k. The obtaining coloring is a P3-rec and the number of used colors is at most

2 dlog2χ(D)e. By Theorem 1, the number of used colors is at most two times

χ′~P3
(D).

100
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2. Acyclic digraphs and transitive orientation digraphs

We can find some more upper bound for χ′~P3
(D) when D is an acyclic digraph

1.

A sequence P1, . . . , Pk of subsets of vertex set of a digraph is called an acyclic

partition if {P1, . . . , Pk} is a partition of vertex set of D and for each edge (x, y),105

if Pi contains x and Pj contains y, then i < j. It is obvious that every digraph

with an acyclic partition is an acyclic digraph and vise versa.

For an acyclic digraphD, the minimum k such thatD has an acyclic partition

into k sets is denoted by AP (D). By definition each set Pi is independent,

therefore χ(D) ≤ AP (D). Theorem 3 proves that dlog2AP (D)e colors are110

enough to find a P3-rec for an acyclic digraph D.

Theorem 3. For every acyclic digraph D,

χ′~P3
(D) ≤ min{∆in(D) + 1,∆out(D) + 1, dlog2AP (D)e}.

Proof. If D is an acyclic digraph. Find a topological ordering 2 of vertices of

D. Color the outgoing edges of vertices based on their order in the topological

ordering. Color the outgoing arcs of v with a color which is not used in the

coloring of incoming arcs of v. It is a P3-rec of D and the number of used colors115

is not more than ∆in(D)+1. A similar approach can be used to prove that

χ′~P3
(D) ≤ ∆out(D) + 1.

Let P1, . . . , PAP (D) be an acyclic partition of D. For each edge (x, y), there

are distinct sets Pi and Pj such that i < j, x ∈ Pi and y ∈ Pj . We find the

binary representation of i and j using dlog2AP (D)e bits and denote them by120

b(i) and b(j), respectively. Suppose that k − 1 first bits of b(i) and b(j) are the

same and k’th bit of b(i) and b(j) are different. Since i < j, the k’th bit of b(i)

is zero and the k’th bit of b(j) is one. Color (x, y) with color k. The obtaining

coloring is a P3-rec and the number of used colors is at most dlog2AP (D)e.

1 A digraph with no directed cycles is called an acyclic digraph
2An ordering of vertices such that for each edge (x, y), x appears before y in the ordering.

Every acyclic digraph has a topological ordering
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A digraph is a transitive orientation digraph if for every three vertices x, y

and z, if (x, y) and (y, z) are edges of D, then (x, z) is an edge of D.

Theorem 4. Let D be a transitive orientation digraph, then χ′~P3
(D) = dlog2χ(D)e.

Proof. According to Theorem 1, it is sufficient to prove that χ′~p3(D) ≤ dlog2χ(D)e

colors. Since D is a transitive orientation digraph, the underlying graph of D is130

a comparability graph3. Hence χ(D) = ω(D) .

For completing the proof, we use the idea mentioned in [21]. For each vertex

x, let ∆(x) be the maximum number of vertices in a directed path that ends in

x. Now define Ni = {x|∆(x) = i}. We can obtain the following.

• N1 is not empty135

• If Ni+1 is not empty, then Ni is not empty.

Let ω ∈ N be the maximal number such that Nω is not empty. Then ω =

ω(D) = χ(D) [21]. The sets N1, ..., Nω form an acyclic partition of D. Hence

χ(D) = AP (D). Since D is an acyclic digraph, by Theorem 3 χ′~p3(D) ≤

dlog2χ(D)e.140

3. Characterization of graphs with P3-rec number 2

In [17], it is proved that if D is bipartite then χ′~p3(D) ≤ 2. In this section,

we characterize digraphs whose P3-rec number is 2.

Theorem 5. Let D be a digraph with at least one edge. Then χ′~P3
(D) = 2 if145

and only if digraph D\F (D) is K1 or it is bipartite.

3A graph is a comparability graph if it has an orientation such that the obtained digraph

is a transitive orientation digraph.
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Proof. If D\F (D) is K1 or it is a bipartite digraph, then it has at least a vertex

which is not flexible. So χ′~p3(D) ≥ 2.

If D\F (D) is K1, then it has exactly one vertex v which is not flexible. Color

every outgoing edge from v with color 1, and color every incoming edge to v150

with color 2. Color other edges of D arbitrarily with colors 1 and 2.

If D\F (D) is a bipartite digraph with parts A and B. For each vertex v in

A, color every outgoing edge from v with color 1 and color every incoming edge

to v with color 2 and for each vertex u in B, color every outgoing edge from u

with color 2 and color every incoming edge to u with color 1. Color other edges155

of D arbitrarily with colors 1 and 2. The obtained coloring is a P3-rec of D.

Suppose that χ′~P3
(D) = 2 and D\F (D) is not K1. If D\F (D) has no edges

then obviously, it is a bipartite digraph. Suppose D\F (D) has some edge (x, y).

Find a P3-rec of D with colors 1 and 2. Partition the vertex set of D into two

subsets A and B. Set A contains all the vertices with at least one outgoing160

edge colored by the same color used for (x, y) and B contains the other vertices.

Define A′ = A\F (D) and B′ = B\F (D). It is easy to find out that x ∈ A′,

y ∈ B′ and every edge of D\F (D) has one end in A′ and one end in B′.

Therefore, D\F (D) is a bipartite digraph.

Corollary 1. For a digraph D, if χ(D\F (D)) = 3, then χ′~p3(D) = 3.165

Proof. By Theorem 3 χ′~p3(D) ≤ 3 and by Proposition 1 and Theorem 5, χ′~p3(D) ≥

3.

Note that the opposite of Corollary 1 is not true.

4. Planar graphs

By the obtained results, we can see that characterizing digraphs with P3-rec170

number 1 and 2 can be done in linear time. Theorem 6 proves that characterizing

digraphs with P3-rec number 3 is NP-complete even for planar graphs.

Theorem 6. Determining that a planar digraph has a P3-rec with three colors

is an NP-complete problem.
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Proof. It is easy to see that the problem is NP. It is well known that the 3-175

colorability problem for planar graphs is an NP-complete problem [8]. In order

to complete the proof, we reduce the 3-colorability problem for planar graphs.

Let G be a graph. Construct digraph
←→
G by replacing each edge xy of G

with two edges (x, y) and (y, x). It is obvious that
←→
G is a planar digraph.

Since G is the underlying graph of
←→
G , if G has a vertex coloring with three180

colors, then χ′~p3(
←→
G ) ≤ 3.

Conversely, suppose there is a P3-rec of
←→
G with three colors B, R, G. For

each vertex v in
←→
G , incoming edges of v or outgoing edges v have the same

color. Therefore, we can define six following subsets.

IB = {v| all incoming arcs of v are colored with color B}185

IR = {v| all incoming arcs of v are colored with color R}

IG = {v| all incoming arcs of v are colored with color G}

OB = {v| all outgoing arcs of v are colored with color B}

OR = {v| all outgoing arcs of v are colored with color R}

OG = {v| all outgoing arcs of v are colored with color G}190

Define three subsets X = {IB ∪OG}, Y = {(IR \OG) ∪OB}, Z = {(IG \

OB) ∪ (OR \ IB)}. We can obtained the followings:

• Every pair of subsets do not intersect.

• Each subset is an independent set of G.

• Each vertex of G is in exactly one of the three subsets.195

This proves that χ(G) ≤ 3.

The proof of Theorem 6, shows that for every planar or none planar graph

G, if χ′~P3
(
←→
G ) = 3 then χ(G) = 3 and so we can obtain the following corollary.

Corollary 2. For a graph G, if 2 ≤ χ(G) ≤ 3, then χ(G) = χ′~P3
(
←→
G ). Moreover200

if χ(G) = 4, then χ′~P3
(
←→
G ) = 4.

Corollary 3. For every planar graph G with at least one edge, χ(G) = χ′~P3
(
←→
G ).
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It is interesting to note that the Corollary is not true for none planar graphs.

For graph K7, χ(K7) = 7 but, χ′~p3((
←→
K7) ≤ 2 dlog27e = 6.

5. Conclusion205

In this paper, template-driven rainbow edge coloring has been studied where

the host is a digraph and the template is a directed path with length 2. As

mentioned interestingly in [4], the application of this concept in efficient design

of parallel algorithms on multiprocessor architectures is the main motivation for

studying this type of coloring problems. Some combinatorial and algorithmic210

results are presented in this paper. The results show that the problem is hard

enough to worth extra work.
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