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ABSTRACT ARTICLE INFO

On a graph with a negative cost cycle, the shortest path
is undefined, but the number of edges of the shortest
negative cost cycle could be computed. It is called Neg-
ative Cost Girth (NCG). The NCG problem is applied in
many optimization issues such as scheduling and model
verification. The existing polynomial algorithms suffer
from high computation and memory consumption. In
this paper, a powerful Map-Reduce framework imple-
mented to find the NCG of a graph. The proposed algo-
rithm runs in O(log k) parallel time over O(n3) on each
Hadoop nodes, where n, k are the size of the graph and
the value of NCG, respectively. The Hadoop implemen-
tation of the algorithm shows that the total execution
time is reduced by 50% compared with polynomial algo-
rithms, especially in large networks concerning increas-
ing the numbers of Hadoop nodes. The result proves the
efficiency of the approach for solving the NCG problem
to process big data in a parallel and distributed way.
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1 Introduction

Graph algorithms are a large group of widely used algorithms in computer networks,
such as social nets. Due to their high degree polynomial time, when the graphs become
large, the processing time will increase. Therefore, parallelism is an efficient approach to
increase the speed up of the graph algorithms [12].
One of the most challenging graph algorithms is the Negative Cost Girth (NCG) problem.
This problem is well-studied in operational research and theoretical computer science. It
is also applied in different applications such as constraint-solving, real-time scheduling,
and program verification [8, 11, 14, 6, 16, 18, 4]. Based on the definition in [23, 22], The
Negative Cost Girth (NCG) problem is defined as the number of edges of the negative cost
cycle or the negative cost cycle with the fewest number of edges in a weighted directed
graph.
The rest of the paper will continue with related work in section 2, the preliminaries in
section 3 including the problem formulation and the Map-Reduce programming paradigm,
our proposed algorithm and two examples are described in section 4, the analytical results
in section 5 continues with the experimental results in section 6, and it will end with a
final conclusion.

2 Related Work

Several studies investigate finding NCG using different approaches. The proposed ap-
proaches are classified into two major groups, including sequential and parallel algorithms.
The first polynomial time algorithm proposed in [19] was based on a dynamic program-
ming method. They trace path cost increment from each node to itself to find the NCG.
The time complexity of this algorithm is estimated O(n3. log k) where n is the number of
vertices and k is the value of NCG.
Moreover, edge progression algorithm and edge relaxation algorithm have been proposed
in [20]. They use matrix multiplication to find path length from each node to itself and
check that the negative cost cycle exists or not. The difference between the two algorithms
is their different methods to extend paths. In the edge progression algorithm, all paths
of incoming vertices y to x should be identified to find the shortest path between u and
x including paths from u to y and y to x. In the edge relaxation algorithm, it will relax
each edge to find the shortest non-positive cost path between each pair of vertices. While
the time complexity of edge progression algorithm is O(n2.k + m.n.k), edge relaxation
algorithm is O(m.n.k) where m is the number of edges and n is the number of vertices in
the graph and k equals to the value of the NCG [20]. The comparison results indicate that
both edge progression and edge relaxation algorithms perform better compared to [19] in
sparse graph. Furthermore, the proposed algorithm in [19] is superior to both algorithms
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in [20] for a dense graph. Eventually, in all cases, the edge relaxation algorithm works
better than edge progression. It is noted that all three algorithms terminate when the
first negative cost cycle is found.
Moreover, a divide and conquer algorithm is proposed for the NCG problem in planar
networks which runs in O(n1.5k) when k is the NCG length[22]. The algorithm is based
on the well-known LiptonTarjan planar separator theorem [22].
In addition to sequential algorithms, parallel algorithms have been developed to solve the
NCG problem. In [24], the focus is on finding all elementary negative cycles. It provides
a heuristic algorithm based on divide and conquers framework producing sub-problems
to solve the main problem. It shows the reasonable CPU time and more efficiency than
some proposed recursive algorithms with increasing the number of vertices up to some
hundred vertices.
In [16], there are two fast randomized algorithms for finding the shortest negative cost
cycle in a directed and weighted graph. It proposed two randomized algorithms using
some bits to indicate the indices of vertices and will permute them randomly to find out
all shortest paths using k edges from vertices in at least probability O(1− 1

e
). Therefore,

the first proposed algorithm runs in O(m.n. log n) time in at least probability of (1− 1
e
),

in a network using n vertices and m edges. The second proposed algorithm reduced the
randomized bits. It runs in O(m.n. log n) time using O(n) random bits. Both of these
algorithms are faster than the proposed algorithm in [20].
In [9], a crossover-based algorithms is applied. They mentioned that using repairing mech-
anisms or appropriate selection strategies can speed up the running process. The result
showed that, repairing infeasible offspring improved time complexity to O(n3.2.(log n)0.2).
Also, selecting parents that guarantee feasible offspring will improve the time complexity
to O(n3 log n). The most important characteristic of the evolutionary algorithms is their
parallelism capabilities.
In [23], a parallel implementation has been proposed using Message Passing Interface
(MPI) which runs in O(log k. log n) time on O(n3) processors. It uses a matrix multi-
plication approach for the NCG problem. It modified the sequential algorithm which is
explained in [19], to run in parallel mode.
Furthermore, three type algorithms for the NCG problem including the All-pair approach
proposed in [23], the Single-Source approach proposed in [22], and the Randomized ap-
proach proposed in[16] are compared in [2]. It is addressed that the Randomized approach
could be superior to others for all graph classes.
All the related works studied are summarized in Table 1.

2.1 Motivation and Contribution

Due to the enormous growth of computer networks and related graphs, the use of parallel
algorithms has a higher priority than sequential algorithms. Moreover, Map-Reduce is
considered an efficient model of parallelism which is easy to use even for programmers
without experience with parallel and distributed systems. Since the Map-Reduce model
hides the details of parallelism, as well as enhances fault-tolerance, locality optimization,
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Table 1: Summary of related works
Ref, Year Applied Method Complexity
[24] , 2002 Heuristic algorithm - divide and

conquers
-

[19] , 2009 Dynamic Programming O(n3. logk)
[20] , 2013 Edge progression O(n2.k + m.n.k)
[20] , 2013 Edge relaxation O(m.n.k)
[9] , 2013 Crossover-based algorithms O(n3.2.(log n)0.2)
[23] , 2015 Message Passing Interface O(log k. log n) on O(n3) processors
[22] , 2015 divide and conquers O(n1.5k)
[16] , 2018 randomized fast algorithms O(m.n. log n) with probability (1 −

1
e
)

[16] , 2018 reduced randomized bits O(m.n. log n) on O(n) random bits

and load balancing, it is applied as an effective approach in a large variety of problems
[10, 15, 5, 13]. Therefore, Map-Reduce is used as a powerful model to find the NCG,
effectively.
The main contribution of this paper is an efficient algorithm based on a Map-Reduce pro-
gramming approach using completing and modifying the matrix multiplication to find all
shortest paths between vertices. We focus on proposing a Map-Reduce based parallelism
for discovering the NCG problem. It is implemented in the Hadoop environment and its
performance is analysed and compared.

3 Preliminary

In this section, the problem formulation, Map-Reduce, and Hadoop are described. Also,
all preliminaries which are used in this paper are explained.

3.1 Problem Formulation

In this section, the Negative Cost Girth problem is explained as proposed in [23]. Ad-
ditionally, all assumptions used in this algorithm are presented. It is noted that the
procedure and assumptions are employed as the basis of the proposed algorithm using the
Map-Reduce method.
Suppose that a network is defined by G =< V,E,C > where V and E denote vertex-set
{v1, v2, ..., vn} and edge set {eij|1 ≤ i, j ≤ n}, respectively. Besides, C defines a cost
function (C : E → Z) which is an integer weight to each edge between i and j vertices.
Moreover, the adjacency matrix of a graph G is denoted by A = (aij) where aij = C(eij)
for existing edge between vertices i and j, otherwise aij =∞.
In addition to the principal definition of the network graph, matrix D(k) = dkij is the
cost of the shortest path between each pair of vertices passing at most k edges where
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1 ≤ k ≤ n. Note that, d1
ij = 0 if i = j , d1

ij = aij for an edge eij ∈ E between i and j and
otherwise d1

ij =∞.
The proposed algorithm is performed recursively by computing the value of dkij from the

value of dk−1
ij . To do so, each path breaks into two sub-paths including

1. The shortest path from vi to vr using at most (k−1) edges, where vr is the neighbour
of vj

2. and the edge from vr to vj.

It is formulated as equation 1 [23]:

dkij = min
(1≤r≤n,r 6=j)

(d
(k−1)
ir + arj) (1)

where arj denotes the cost of the edge from vr to vj. It should be noticed that the cost
of a self-loop equals 0. In fact, the number of edges will be increased in each iteration
and the cost likewise will be raised. It checks the shortest paths of any vertices to itself,
if there is a negative cost then the NCG is found [23]. After detecting the first negative
cost cycle, the algorithm should be terminated. If the process continues, the shortest path
crosses from some vertices or edges twice or more, thus the path will not a simple path.
Note that the simple path is defined as the path which does not comprise any repeated
vertices. In fact, to compute the shortest simple path correctly, any NCG algorithm
should be terminated after detecting the first negative cost cycle.
Based on the explained algorithm in [23], to reduce the running time of the proposed
algorithm, square power of matrix D(2), D(4), ... are computed instead of using all power
of matrix D(k). In the case of detecting NCG in D(l) matrix, NCG equals l at most and
l/2 + 1 at least due to executing the binary search. A binary search will explore the
interval [l/2 + 1, l] for finding the smallest value of r that D(r) has a negative cost cycle.

3.2 Map-Reduce

Map-Reduce introduced by Google is a paradigm for programming and an architecture
model for parallel implementation in distributed computation systems [10]. In this model,
data is divided into smaller sections and it is allocated to the different nodes in distributed
systems to perform an independent sub-process on them. In fact, Map-Reduce divides
the problem into sub-problems to solve them in the parallel model leading to enhanced
processing speed up. Therefore, Map-Reduce is useful for big data problems that could
be implemented in a parallel way [3].
Map-Reduce assigns computational tasks to several machines communicating over the net-
work through exchanging messages among them. The input dataset should be distributed
among these machines. [21]. The algorithm will perform in several rounds (sometimes
called a job). Each job is consisting of two main phases, Map, and Reduce [21]. After
completing the Map phase, the Reduce phase will be started. To do so, the output of the
Map phase is considered as the input of the Reduce phase. After computing the Reduce
phase, the final outputs will be produced.
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3.2.1 Map phase

In the Map phase, the computation task takes place among different machines through
exchanging data among them. It is noted that each machine with local storage produces
a list of key-value pairs (k, v) extracted from the input of its local storage. The values of
k is numeric and the v includes other information, respectively [21].
It is supposed that a list of key-value pairs is produced by all machines in the Map phase.
Key-value pairs with the same keys like (k, v1), (k, v2), ..., (k, vn) will be sent to the same
machine in the reduce phase [21].

3.2.2 Reduce phase

Note that network communication should not be considered in this phase resulting in per-
forming calculations on the local storage of each machine. Each machine should combine
the key-value pairs of the previous phase into its local storage leading to processing on
the local data. After completing the Reduce phase of each machine, the current iteration
will be finished [21].
After performing each round, the local storage of each machine will be delivered to a
Distributed File System (DFS) as a disk on the cloud which never fails. It is due to
improving the robustness of the system in the case of failing machines during running
algorithm by replacing the failed machine with the other machine. To do so, by requesting
a new machine, the previous load on the old storage is transferred to the new storage.
Therefore, the current round will be implemented again in the case of failing the old
machine [21].

3.3 Hadoop

Hadoop is an open-source software framework that implements distributed processing big
data on some clusters of servers. This framework is based on Java language using for
distributed processing on thousands of machines that are robust against failures [7].
The main framework of Hadoop includes below modules[17]:

• Hadoop commons part: They consist of necessary libraries and utilities of other
Hadoop modules.

• Hadoop Distributed File System (HDFS): It is a distributed file system which stores
data on the cluster machines makings wide bandwidth

• Hadoop YARN: It is a platform for resource management to handle the computation
resources in the clusters.

• Hadoop Map-Reduce: It is a programming model for data processing on a large
scale.

Eventually, Hadoop makes a distributed file system storing data on several servers and
distributing tasks among them. It is noted that Hadoop is a more well-known open-source
implementation for Map-Reduce.
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4 The proposed algorithm based on Map-Reduce

This section explains the parallel implementation of the proposed algorithm using Map-
Reduce for solving the NCG problem. Our implementation is like the Message Passing
Interface (MPI) implementation, proposed in [23]. But our algorithm uses a parallel
implementation based on Map-Reduce. To do so, we should define the input file. After
defining the structure of the input file, we should perform two main phases including Map
and Reduce to reduce running time.
The input file is made with the adjacency matrix. Each record inside the file includes
three items, the row id, the column id, and the matrix value corresponds to the row and
column. The record is represented as (i, j, aij) in the input file.
In the Map phase, key-value pairs will be produced from the input data. This process is
implemented in Algorithm 1. As shown in Algorithm 1, for each record (i, j, aij) in an
input file, we produce two key-value pairs marking with “1” and “2”. The first key-value
pairs, built in line 5 of Algorithm 1. The key is an ordered pair (i, z) where i is the
row number of matrix, and z = 1, 2, 3, ..., n. Here, n is the number of Matrix columns.
Value is built as (1, j, aij) which is marked by “1”. j and aij comes from input file as
mentioned above. Furthermore, the second key-value pairs , shown in line 6 of Algorithm
1, is extracted by the column number of matrix (j, z) as the key and value of (2, i, aij)
marking by “2”.

Algorithm 1 Map Phase Algorithm.
1: Inputs: Adjacency Matrix as the input file;
2: Outputs:set of (key,value)
3: for each element of input matrix (i, j, aij) do
4: for z = 1,2,3,.. to the size of input square matrix(n) do
5: produce (key, value) pairs as ((i, z), (1, j, aij))
6: produce (key, value) pairs as ((z, j), (2, i, aij))
7: end for
8: end for
9: return set of (key,value) pairs that each key has a list with values (1, j, aij) and (2, i, aij)

After producing key-value pairs, we classify them into distinct groups corresponding to
the same keys. In fact, key-value pairs with the same key are collected in the same group.
In the next step, the extracted first key-value pairs in which their column numbers are
equal to the row numbers of the second key-value pairs are transmitted to the reduce
phase which is presented in Algorithm 2. To do so, we classify each produced group
of the Map phase into two main lists named list1 and list2 according to the marking
values. Therefore, list1 includes key-value pairs marking with “1” and list2 consists of
items starting with “2”. Then, these two lists beginning with 1 and 2 should be sorted,
depicted in line 5, 6 of Algorithm 2.
After creating two sorted lists, the value of cells form list1 and list2 with the same j
are added, shown in line 7. j value indicates the column numbers in value cells of list1
and row numbers in value cells of list2. It is meaning that cell values in which the row
numbers in list1 are equivalent to the column number of value cells in list2 should be
added. It is similar to what happened in the matrix multiplication. Then, as shown in
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line 8 of Algorithm 2, it finds minimum value among all the results of the last step (sum
of values). Therefore, it scans all paths using at most k edges and finds the minimum cost
paths. k is a number that is a power of 2 and related to the round number of running
Map-Reduce phase. In the last step, it is necessary to check the diameter of the output
matrix for finding a negative cost girth. So, if the row number of matrix (i) is equal to
the column number of matrix (j) and the minimum value is less than zero, a negative
cost cycle is successfully detected which is illustrated in line 9 of Algorithm 2.

Algorithm 2 Reduce Function Algorithm.
1: Inputs: list1 includes key-value pairs marking with “1” and list2 consists of items starting with “2”;
2: Outputs:(key, minimum value);
3: Initialization:
4: for each key do
5: sort values begin with 1 by j in list1
6: sort values begin with 2 by i in list2
7: sum of aij and ajk values (column number in list1 = row number in list2)
8: find minimum of sum results
9: if i = j and the minimum value < 0 then found = true
10: end for
11: return (key, minimum value)

For running the program, first, a job is created. After reading the input file, the Map and
Reduce functions are executed. If no negative cost girth is found, a new job is created by
reading the output of the previous Reduce function, and then, Map and Reduce functions
will be executed recursively. In other words, the output from a Reduce function will be
sent as input to the next Map function. It means that after completion of any Map and
Reduce functions, a new matrix that contains the length of the shortest paths using at
most k edges will be created. This iteration will be terminated when the first negative
cost cycle is detected.
When a negative cost cycle using l length (l is a power of 2) is detected, we need to know
the exact value of the NCG. We remember that the number of edges used in the NCG is
at most l and at least l/2 + 1. Therefore we search this interval by the binary search to
find the precise value of the NCG.
Algorithm 3 explains how a binary NCG search is used to find the correct value of k. In
the initialization phase, variables are set in lines 4 and 5. In the while loop, a new job is
created.
Note that after first iteration, there are two inputs for Binary NCG Search algorithm and
we should combine them to create one input file for Map phase in line 8. Two inputs are
combined and sent to the Map function. In each round, D(low), D( k

r
) are sent to Map and

Reduce functions as inputs, thus the shortest path between each pair of vertices is found
using at most (low + k

r
) edges through D(low+ k

r
) matrix. Note that low, k, r variables

are changed and prepared in each round. D(low), D( k
r

) are matrices including the shortest
path between each pair of vertices using at most low and (k

r
) edges, respectively. These

matrices are produced in the previous Map-Reduce iteration.
In other words, the search continues in the lower or upper half of the interval, recursively,
eliminating the other half from consideration if there is no NCG in that half.
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Algorithm 3 Binary NCG search algorithm.

1: Inputs: D(low),D( k
r
);

2: Outputs: k;
3: Initialization:
4: found = false; high = k; low = k/2; r = 4;
5: mid = (low + high) / 2;
6: while true do
7: Create job with inputs: D(low),D( k

r
) ;

8: Do Map-Reduce;
9: if ”Negative Cost Cycle is found” then
10: found = true;
11: end if
12: if found = true then
13: if mid is even then
14: high = mid;
15: r = 2 * r;
16: mid = (low + high) / 2;
17: found = false;
18: else
19: return(mid);
20: end if
21: else
22: if mid is even then
23: low = mid;
24: r = 2 * r;
25: mid = (low + high) / 2;
26: else
27: return(mid + 1);
28: end if
29: end if
30: end while

After completion of Map and Reduce phases in each round, it checks if the NCG is found
and mid is an even number then k is equal to mid, or if mid is an even number and the
NCG is not found, then k equals to mid+1. The conditions are shown in Algorithm 3 in
lines 12 to 29.
Fig 1 shows the Map and Reduce phases in the proposed Algorithms. First, there is a
loop for finding the interval of the NCG. Then, a binary NCG search begins that uses the
previous outputs to search the range and to find the smallest value of the NCG.

4.1 Two examples

In this section, two examples are provided to comprehend the process of the proposed
algorithm. For the first example, it is assumed that the adjacency matrix is given as
follows:

A =

[
0 1
−2 0

]
The Map phase produces key-value pairs that values are grouped based on the keys. As
depicted in Table 2, different groups are indicated by specified colors. Therefore, the list
of a different group is identified as follows:
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Figure 1: Map and Reduce phases in the proposed algorithm based on Map-Reduce


(1, 1) : (1, 1, 0), (2, 1, 0), (1, 2, 1), (2, 2,−2)
(1, 2) : (1, 1, 0), (2, 1, 1), (1, 2, 1), (2, 2, 0)
(2, 1) : (2, 1, 0), (1, 1,−2), (2, 2,−2), (1, 2, 0)
(2, 2) : (2, 1, 1), (1, 1,−2), (1, 2, 0), (2, 2, 0)

(2)

Table 2: KEY-VALUE pairs produced by Map Function

KEY VALUES

(1,1) (1,1,0)
(1,1) (2,1,0)
(1,2) (1,1,0)
(2,1) (2,1,0)
(1,1) (1,2,1)
(1,2) (2,1,1)
(1,2) (1,2,1)
(2,2) (2,1,1)
(2,1) (1,1,-2)
(1,1) (2,2,-2)
(2,2) (1,1,-2)
(2,1) (2,2,-2)
(2,1) (1,2,0)
(1,2) (2,2,0)
(2,2) (1,2,0)
(2,2) (2,2,0)

The produced key-values of the Map phase is classified into two main lists defined by list1
and list2 according to the marking values as depicted in Table 3 step 1. Therefore, list1
and list2 include key-value pairs marking with “1” and “2”, respectively.
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Table 3: Example 1 execution step by step

S
T

E
P

1

(1, 1) j = 1 j = 2
list1 (1, 0) (2, 1)
list2 (1, 0) (2,−2)

0 + 0 = 0 1 + (−2) = −1
⇒Minimum = −1

S
T

E
P

2
(1, 2) j = 1 j = 2
list1 (1, 0) (1, 1)
list2 (2, 1) (2, 0)

0 + 1 = 1 1 + 0 = 1
⇒Minimum = 1

S
T

E
P

3

(2, 1) j = 1 j = 2
list1 (1,−2) (2, 0)
list2 (1, 0) (2,−2)

−2 + 0 = −2 0 + (−2) = −2
⇒Minimum = −2

S
T

E
P

4

(2, 2) j = 1 j = 2
list1 (1,−2) (2, 0)
list2 (1, 1) (2, 0)

−2 + 1 = −1 0 + 0 = 0
⇒Minimum = −1

It means that each key indicates (row, column) numbers, and items in list1 are in (column,
value) form and items in list2 are in (row, value) form produced in the previous step. So,
it is extensible the form (row, column, value) in each step using each presented key and
value separately.
For instance, Fig 2 shows that there is a cycle with considering cost between each pair,
which is illustrated in equation Table 3 step 1.
We conduct the same process for other groups to find the minimum value in each group,
which is shown in Table 3 steps 2-4.
The output of the Reduce phase for key-value pairs of the example are as below:∣∣∣∣∣∣∣∣

1, 1,−1
1, 2, 1
2, 1,−2
2, 2,−1

that contains a negative number in the diagonal. We can represent it as a matrix. They
are the shortest path between each pair of vertices using at most 2 edges. So, the NCG
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Figure 2: Details of equation 3

is equal to 2 which is shown in the matrix form.

A =

[
−1 1
−2 −1

]
In the second example, Fig 3 shows a graph sample with a negative cost cycle. In this
graph, the NCG of the network is 3; the fewest edges that make a negative cost girth is
equal to 3. The cycle corresponding to the NCG of each network is indicated with dashed
lines.

Figure 3: A sample graph with negative cost girth

First, an adjacency matrix is created for this graph, and then according to this matrix, an
input file is provided for the algorithm. The initial adjacency matrix is formed as follows:

A =


0 −1 ∞ 1
∞ 0 ∞ ∞
2 ∞ 0 ∞
∞ ∞ −4 0


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Table 4: The input and output of each iteration
The initial input The output of the

first round
The input of the
second round

The output of the
second round

The output of the
binary search

(1,1,0)
(1,2,-1)
(1,3,∞)
(1,4,1)
(2,1,∞)
(2,2,0)
(2,3,∞)
(2,4,∞)
(3,1,2)
(3,2,∞)
(3,3,0)
(3,4,∞)
(4,1,∞)
(4,2,∞)
(4,3,-4)
(4,4,0)

(1,1,0)
(1,2,-1)
(1,3,-3)
(1,4,1)
(2,1,∞)
(2,2,0)
(2,3,∞)
(2,4,∞)
(3,1,2)
(3,2,1)
(3,3,0)
(3,4,3)
(4,1,-2)
(4,2,∞)
(4,3,-4)
(4,4,0)

(1,1,-1)

(1,2,-2)
(1,3,-3)
(1,4,0)
(2,1,∞)
(2,2,0)
(2,3,∞)
(2,4,∞)
(3,1,1)
(3,2,1)
(3,3,-1)

(3,4,3)
(4,1,-2)
(4,2,-3)
(4,3,-5)
(4,4,-1)

(1,1,-1)

(1,2,-1)
(1,3,-3)
(1,4,1)
(2,1,∞)
(2,2,0)
(2,3,∞)
(2,4,∞)
(3,1,1)
(3,2,1)
(3,3,-1)

(3,4,3)
(4,1,-2)
(4,2,-3)
(4,3,-4)
(4,4,-1)

The initial input which is produced according to the adjacency matrix is presented in the
first column of Table 4. It contains row number, column number and value of each cell;
in the form (i, j, value).
After creating a job and performing the first Map and Reduce phases, the output would
be produced which contains all the shortest paths using at most 2 edges, shown in the
following matrix. Although the output of the first round is depicted in (i, j, value) form,
the matrix is presented to understand more clearly.

A =


0 −1 −3 1
∞ 0 ∞ ∞
2 1 0 3
−2 ∞ −4 0


In this step, the matrix will be checked to identify if a negative number exists in the
diagonal, it means there is a negative cost cycle in the graph. In the output matrix of our
example, there is no negative number on the matrix diagonal. Therefore, The input file
of the second round which was the output of the first round in form (i, j, value) is shown
in the second column of Table 4.
The new job will be created and Map and Reduce phases are performed again for the
second iteration. The input of the second Map-Reduce phases is considered as the output
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produced by the first Map-Reduce round. By performing the second round, all the shortest
paths using at most 4 edges are found. The output of the second iteration is presented in
the form of matrix as follows:

A =


−1 −2 −3 0
∞ 0 ∞ ∞
1 1 −1 3
−2 −3 −5 −1


Moreover, it can be seen that there exist negative values on the diagonal of the output
matrix. So, a negative cycle is found in this step and iteration will be terminated. The
output of the second round is shown in the (i, j, value) form which is depicted in the third
column of Table 4.
The NCG of the network is underlined in the output of the second round. This output
shows the shortest path between each pair of vertices using at most 4 edges. That is a
power of 2 meaning that the NCG is at most 4 and at least 4/2+1. In fact, we can use
binary search in the interval [4/2 + 1, 4] to find the smallest value of the NCG. Therefore,
based on the binary NCG search, the shortest paths using at most 3 edges should be
found.
The inputs of the first round of the binary NCG search algorithm are D(2), D(1), that they
are matrices produced by previous Map-Reduce tasks. During this round, all the shortest
paths using at most 3 edges are found. Now the NCG is found and the binary NCG search
is terminated. The output of the proposed binary search for D(3) is as follows:

A =


−1 −1 −3 1
∞ 0 ∞ ∞
2 1 −1 3
−2 −3 −4 −1


Therefore, the output of the proposed binary NCG search (it will be in (i, j, value) form)
for D(3) is presented in the last column of Table 4.

5 Analytical results

In this section, the analytical performance of the proposed algorithm based on Map-
Reduce is conducted to compare with the nave sequential algorithm (A Hadoop with only
one node) and MPI.
To analyse the performance, the total runtime is estimated by two phases as described in
equation 3 and equation 4:

TotalMap time =
(n2 ∗ z)

nodes
(3)

Total Reduce time =
(n2 ∗ z)

nodes
(4)
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Where n is the number of graph nodes and z is the number of columns or rows of the
adjacency matrix, as well as nodes is the number of Hadoop nodes. It is concluded that
the total job execution time is computed as equation 5:

Total T ime = r ∗ (Map Time + Reduce T ime) (5)

where r is the number of iterations for finding the final NCG value.
It is assumed that there are n lines in the input file in the job function. Each line of the
input file should be read and be sent to the Map function. The Map function includes a
loop with size z, which is equal to the number of columns or rows of input square matrix;
it is clear that the value of z is equal to n value. Thus the total Map time is shown as
equation 6:

Map Time =
(n2 ∗ n)

nodes
→ n3

nodes
(6)

where nodes is the number of Hadoop nodes which is variable.
After completing the Map phase, the Reduce phase will capture any mapped item, and
there are n2 keys which are received from the Map phase; so the Reduce function will
repeat capturing operation as n times to find similar j in two lists. By the end of the re-
ceiving operation, it will calculate and summarize the captured items. The other elements
of the Reduce function are the same as the Map function.
The total job execution time is equal to the time consumed for the Map and Reduce
phases. Execution of the job will repeat r rounds. In fact, the binary NCG search
function will produce the jobs r times. To be more specific, r determines the times of
creating and running a new job until finding the NCG.
For the first time, r is the power of 2 and continues to 4,... and then it repeats job-
creating until finding the smallest value for the NCG by the binary search; each one of
these operations has O(log n) time order at most. So, the value of r equals to 2 log n at
most. Therefore, we considered the maximum r value as 2 log n.(See equation 7)

(2 log n)( n3

nodes
+ n3

nodes
)→ (2 log n)( 2n3

nodes
)→ (4n3 logn

nodes
) (7)

For more precise analysis, to find the NCG wherein it crosses k edges, at the first, 2 log k
rounds will be iterated to find the NCG which progresses by the power of 2 matrices and
after it. After that, the binary NCG search will be executed log k rounds to find the
smallest value of k in the interval [k/2 + 1, k]. It will be deduced that finding the NCG
is faster in the smaller value of k because it is clear that lower rounds will be iterated to
find the NCG and algorithm will be terminated earlier.
So, we have in equation 8:

(2 log k + 1)(
2n3

nodes
)→ O(log k)(

2n3

nodes
) (8)

In order to compare the effect of k on time complexity, we should define the following
scenario. Fig 4 depicts the number of performed operations versus number of vertices
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(a) (b) (c)

Figure 4: Number of operations when a) k = 0.25× n, b) k = 0.5× n, c) k = 0.75× n

n = 32, 64, 128, 256 considering different number of edges used in the first negative cost
cycle k = 0.25× n, 0.5× n, 0.75× n.
As can be seen, by increasing the denominator, which is defined as the number of Hadoop
nodes, the numbers of performed operations are decreased. In fact, there is a fast de-
scending with 5 denominators compared with the other denominators when the number
of vertices reaches 256. Also, differences among various values of denominators in the low
number of vertices are less than the higher number of vertices. Thus, it is beneficial to
large problems.
Actually, it is obvious that decreasing the number of denominators causes an increase in
the numbers of performed operations. For instance, the number of operations in the case
of k = 0.25×n are very more than k = 0.75×n. It is due to the fact that total execution
time is increased when k is decreased which is expressed as equation 9:

(2 log (1
4
n) + 1)( 2n3

nodes
) k = 0.25× n

(2 log (1
2
n) + 1)( 2n3

nodes
) k = 0.5× n

(2 log (3
4
n) + 1)( 2n3

nodes
) k = 0.75× n

(2 log n + 1)( 2n3

nodes
) k = 1× n

(9)

6 Experimental results

In this section, the performance of the proposed algorithm based on Map-Reduce is evalu-
ated through implementing different graphs with respect to various parameters, including
several vertices and varying number of Hadoop nodes. The graphs are connected and
generated randomly; they have at least one negative cost cycle.
In addition to preparing the experimental setup, the proposed algorithm based on Map-
Reduce is implemented using Java code to compare the performance of the proposed
algorithm with the implemented nave sequential algorithm (A Hadoop with only one
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node). Moreover, our testing platform is Hadoop-2.8.0 that is installed on Ubuntu 14.04
operating system. In total, there is one NameNode (1GB RAM, 3Core Processors) and
one, two, three, and four DataNodes (1GB RAM, 3 Core Processors) respectively.
All the implementations are built on VMware machines on a computer. In order to get
final results precisely, we try to limit some restrictions that are made by the running
virtual machines on a computer. The following restrictions are eliminated.

• When we run on over one virtual machine on a computer, the power of the computer
will be decreased because the power of the processor and memory and other items
will be divided among them.

• We get the imposed cost of running several virtual machines on a computer to
overcome the restrictions and to achieve more exact results.

• Each virtual machine that runs on the computer will impose some overloads leading
to an increase in the final execution time. In fact, it will be increased for any virtual
machines which we will run on the same computer. So, we ignore this value from
any got execution time.

We let the number of vertices n starting with 32 and keep doubling up to 128. Also, the
number of Hadoop nodes is increased up to 5 nodes (1 master and 1 to 4 slaves). The
number of edges used in the first negative cost cycle is shown as k, where k = 0.25×n, k =
0.5× n, k = 0.75× n, k = 1× n.
The important selected metric of the performance evaluation is time complexity. Each
reported result is tested on five independent samples and the average execution time is
reported approximately as shown in Table 5.
It is observed that in the large graphs, the execution time is grown in sequential implemen-
tation, while parallel implementation is lower than the time consumed in the sequential
approach. Besides, low improvement is occurred by increasing the number of Hadoop
nodes in the low number of vertices due to forming a small graph with a low number of
vertices. Furthermore, the emission and collection times or communication costs could in-
crease the running time. In other words, the effect of communication cost is ignored in this
case. Therefore, the parallelism is useful in the large type of graphs which communication
cost is negligible.
Fig 5 is provided to show the comparison of proposed algorithm based on Map-Reduce
and sequential algorithm versus different number of vertices 32, 64, 128 with respect to
different k values including k = 0.25× n, k = 0.5× n, k = 0.75× n, k = 1× n.
In fact, it is obvious that although the execution time is increased more rapidly in the
sequential approach, there is smooth time enhancement in parallel implementations. Be-
sides, in a low number of graph vertices, there is a low time reduction, even by five Hadoop
nodes. It concludes that we should select the number of Hadoop nodes in relation to the
number of graph vertices for better results. Moreover, in large and complex problems, the
Hadoop paradigm is helpful. However, the real restriction makes execution time longer
than theory. Subtracted value varying from 0-0.5 to at most 14-20 seconds dependent on
k value is ignored to overcome the imposed restrictions.
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(a) (b)

(c) (d)

Figure 5: Execution time when a) k = 0.25×n b) k = 0.5×n c) k = 0.75×n d) k = 1×n
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Table 5: Execution Time (seconds)
Hadoop Nodes 32 64 128

k= 0.25n

sequential 5.4 11.1 100.3
2 nodes 5.2 10.9 77.5
3 nodes 5.1 10.5 73.5
4 nodes 5 10 72.4
5 nodes 4.8 9.6 71.8

k= 0.5n

sequential 6.5 13.3 116.4
2 nodes 6.2 12.9 92.6
3 nodes 5.9 12.2 88.3
4 nodes 5.7 12 86.8
5 nodes 5.5 11.8 86.1

k= 0.75n

sequential 9 17.8 144.8
2 nodes 8.9 17.2 91.4
3 nodes 8.5 16.2 90.8
4 nodes 8.2 15.5 89.2
5 nodes 7.9 14.9 88.8

k= 1n

sequential 9.8 20.1 149.7
2 nodes 9.1 19.8 92.1
3 nodes 8.8 19.2 91.5
4 nodes 8.3 18.4 90.3
5 nodes 8.1 17.6 89.1

6.1 Map-Reduce vs MPI

A parallel algorithm will have a faster execution time than a sequential algorithm. So, we
have to compare our results with a parallel algorithm such as MPI. In paper [23] a parallel
implementation has been proposed using MPI which runs in O(log k. log n) time on O(n3)
processors as our based paper. The comparison result of our Map-Reduce algorithm vs the
reported results in paper [23] has shown in Table 6. Note that, we choose only the case of
a graph with 128 vertices with 1, 2, and 4 Hadoop nodes and we compare our result with
the same configured graph with 1, 2, and 4 parallel processors reported in their paper.
Although they applied 128 processors in their experimentation, our hardware limitation
for creating more Hadoop nodes did not allow us to compare the result with more than 4
processors.
Note that, the execution time in these two cases are not comparable, because paper [23]
experiments were implemented on the Frost IBM Blue Gene/L supercomputer consists
of 8,192 processors, and our platform was a simple Hadoop with one NameNode (1GB
RAM, 3Core Processors). But, the result again proves that our theoretical improvement.
The execution time of the MPI algorithm depends on O(log n), whereas our Map-Reduce
algorithm depends on O(log k). Since the Map-Reduce algorithm is theoretically faster
than the existing parallel implementation, we think that the execution time in the same
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Table 6: Execution time in Map-Reduce vs MPI (seconds)
Map-Reduce MPI

k= 0.25n
1 Node vs 1 Processor 100.3 0.62
2 Node vs 2 Processors 77.5 0.45
4 Node vs 4 Processors 72.4 0.22

k= 0. 5n
1 Node vs 1 Processor 116.4 0.76
2 Node vs 2 Processors 92.6 0.59
4 Node vs 4 Processors 86.8 0.29

k= 0.75n
1 Node vs 1 Processor 144.8 0.92
2 Node vs 2 Processors 91.4 0.72
4 Node vs 4 Processors 89.2 0.35

k= 1n
1 Node vs 1 Processor 149.7 0.92
2 Node vs 2 Processors 92.1 0.72
4 Node vs 4 Processors 90.3 0.35

platforms will be significantly less than the parallel algorithms.

6.2 Speedup analysis

Speedup measurement is one of the most important metrics to analyse the performance
of parallel algorithms like Map-Reduce. It computes how faster a parallel algorithm
runs than the sequential one. There are two main methods to measure the speedup, using
execution time and Amdahls Law [1]. Speedup measures by execution time using equation
10.

Speedup =
T (1)

T (n)
(10)

where n is the number of Hadoop nodes, T (1) is the execution time with one node, and
T (n) is the execution time using n Hadoop nodes parallelly.
Amdahls Law defines speedup as equation 11.

Speedup =
Ws + Wp

Ws + Wp

n

(11)

where n is the number of Hadoop nodes, Ws is the portion of the process that cannot be
parallelized, and Wp is the parallelizable work of the whole work.
Because of our hardware limit, we implement a Hadoop with 5 nodes and at most a graph
with 128 vertices. Thus our speedup regarding the execution time is equal to T (1)

T (5)
where

the graph vertices are 128. The speedup for different values of NCG(k) are shown in Table
7.
As we know there is an upper bound for speedup and the speedup will converge to an
upper bound when n increases. Our result does not converge, and it means that the 5
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Table 7: Speedup of proposed Map-Reduce algorithm for different values of NCG(k)
NCG value k = 0.25n k = 0.5n k = 0.75n k = 1n
Speedup 1.396 1.351 1.630 1.680

Hadoop nodes are not sufficient to find the final speedup of the algorithm. Therefore, we
try to find the final speedup with Amdahl’s Law. The whole process is divided into the
following sub process:

1. Create the input file

2. First round to find the upper bound of k among 2, 4, 8, ... including

• Create a new job

• Map phase

• Reduce phase

• Pass the output to the next Map

3. Binary NCG search algorithm in range [k
2

+ 1, k]

• Combine two matrices as input file

• Create a new job

• Map phase

• Reduce phase

• Pass the output to the next Map

Among all jobs described above, only the Map and Reduce processes are parallel. It
means that the portion of parallel works is 40%. Based on Amdahl’s Law the speedup is
equal to 1

0.6+ 0.4
n

and it’s upper bound is around 1.666. But Consider that most of the time

the algorithm runs on the Map and Reduce phase. So the Wp

Ws
ratio is more than 40% and

the experimental evidence shows that it is more than 50%. If we assume that the ratio is
around 50%, then the speedup upper bound is 2. These facts are shown in Fig 6. Briefly,
the speedup is between 1.66 and 2, which is confirmed by experimental results.

7 Conclusion

The NCG problem is defined to find the fewest number of edges making a negative cost
cycle. As discussed in this paper, existing algorithms check all shortest paths between
pairs until finding the first negative cost cycle. In the big and dense graphs, it is more
difficult. So, parallelism is an efficient method to find NCG in the graph.
Parallelism is a potential solution for processing complicated and massive data. Map-
Reduce is a new paradigm to parallelize big data problems. To do so, Map-Reduce divides
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Figure 6: Speedup according to Amdahl’s Law

the task into subtasks, which should be allocated to each one of multiple processors in
order to perform one of the partitioned tasks using separated data. Therefore, Map-
Reduce causes the total execution time to reduce significantly.
In this paper, we focus on the NCG problem in networks using a Map-Reduce based
algorithm. In fact, we implemented a Map-Reduce based algorithm for the NCG problem
on the Hadoop framework. The evaluation results show that our algorithm gets superior
results than the other parallel approach. In our algorithm, if we select the number of
Hadoop nodes with respect to the number of graph vertices, we get significant results
reaching half of the running time of sequential implementation.
As future work, we can increase the number of participating machines and consider the
limitations in order to achieve better speed. Also, we can test the algorithm on real
clusters to check our performance evaluations. Besides, through selecting larger graphs,
we can increase the number of Map and Reduce tasks in the job to investigate its effects
on the performance.
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