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Abstract 
We study entanglement in coherent spin states and several superpositions of multi-

qutrit coherent states evolved under the one-axis counter-twisting Hamiltonian in the 
presence and absence of a magnetic field. Considering a non-entangled multi-qutrit spin 
coherent state as an initial one, it is found that the entanglement is instigated with an 
oscillatory behavior in time; however, its average is a decreasing function of the 
magnetic field. Also, we observe that under this Hamiltonian, the two-qutrit superposed 
state retains its maximum entanglement with no change, while, the negativity for the 
three-qutrit superposed state oscillates in time and its average increases in the presence 
of the magnetic field. 
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Introduction 
Entanglement is an important resource with 

applications in quantum information theory and 
quantum computations [1-3]. The spin coherent states 
and their superpositions have many applications in 
quantum information [4]. Recently high dimensional 
systems, including multi-qutrit ones have been the focus 
of more attention due to their usefulness in achieving 
different tasks, for example dense coding [5-11]. The 
generation of entanglement to the coherent states have 
been an interesting topics in quantum information [11-
13]. The one-axis counter-twisting Hamiltonian 
generates spin squeezing in multi qubit states [14, 15]. 
The close relationship between spin squeezing and 
quantum entanglement motivates us to apply this 
Hamiltonian for production of entanglement in multi 
qutrit systems. 

The aim of this paper is to study the production of 
entanglement in multi-qutrit systems using a nonlinear 

Hamiltonian and application of a magnetic field. We 
organize our paper as follows. We define the qutrit 
coherent states and the superpositions of qutrit coherent 
states. Also, the entangling Hamiltonian is introduced. 
Next, we study the entanglement of the above 
mentioned quantum systems under the one-axis counter 
twisting Hamiltonian, in the presence and absence of a 
magnetic field. The negativity of the systems obtain 
analytically and numerically. Finally, the last section is 
devoted to discussions. 

 

Materials and Methods 
1. Qutirt Spin Coherent States 

A qutrit is a three-level system in Hilbert space 3H . 
This state may be described in a three-dimensional 
Hilbert space by an orthonormal basis 1,1 , 1, 0 , 
1, 1− .  

The spin coherent state is defined by Radcliffe as 
[13]  
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Where ,j m  are the eigenvectors of the angular 

momentum operators 2Ĵ  and ˆ
zJ  with eigenvalues 

equal to ( )1j j +  and m , respectively. Now, for 1j =  
we obtain 

2
2

1,1 2 2 1 0
1

α α α
α

 = + + +
                   (4) 

where  
1,1 0≡ , 1,0 1≡ , 1, 1 2− ≡ .                                (5) 

 
We consider a general superposition of two and 

three of these qutrit spin coherent states as follows 
( ) ( )cos sinie φψ θ α β θ α β′ ′= ⊗ + ⊗           (6) 

 
( ) ( )cos sinie φψ θ α β γ θ α β γ′ ′ ′ ′= ⊗ ⊗ + ⊗ ⊗     (7) 

 
In the following sections the entanglement 

properties of these states will be considered. 
 

2. Nonlinear Hamiltonian 
We consider the following Hamiltonian introduced 

by Kitagawa and Ueda [14] 
( ) ( )2 2

x y x y y x zJ J J J J J f Jχ μ γΗ = + + + +        (8) 
 
Where the collective spin operators may define for 

qutrit systems as 

1
J j

N

x i
i

α α
=

= ( )x, y, zα =                                     (9) 

 
where ji α  are the angular momentum operators for 

the thi  qutrit. We consider the action of this 
Hamiltonian on the states (6) and (7) which turns out to 
lead to the production of squeezed states. 

By substituting ( ) 0zf Jμ γ= = =  in equation (8), the 
one axis counter twisting Hamiltonian reads 

2
xJχΗ =                                                                 

(10) 
Also, in the presence of the magnetic fields, we have 

2
1 x zJ BJχΗ = +                                                     (11) 

 

These are called one axis counter twisting 
Hamiltonian and have applications in the study of 
quantum optical systems, quantum dots and Bose-
Einstein condensates [15-21]. It is interesting to note 
that similar investigations have been done using the 
two-axis counter twisting Hamiltonian, with two 
nonlinear terms, in Reference [12]. 

The negativity is introduced as measure of 
entanglement for mixed bipartite state by Vidal [22]. 
The negativity is sufficient and necessary for 2 2×  and 
2 3×  systems while for higher dimensional ones, 
including 3 3×  necessary condition is not enough [22-
23]. The negativity is defined as follows  

( )
1

1
N

d

ρ
ρ

ΑΤ −
=

−
,                                                (12) 

 
where d  is dimension of qudit systems and ATρ  is 

the trace norm of the partial transpose density matrix 
ATρ . For the qutrit systems, it is equal to the absolute 

value of the sum of negative eigenvalues of ATρ  [22]. 
When ( )0 1N ρ< ≤  the two qutrits are entangled. 

 
3. Bipartite Entanglement in Multi-Qutrit Systems 

We consider a coherent state of two qutrits, in which 
both are in the ground state and according to equation 
(5), we write 

0 2,2Ψ = .                                                      (13) 
 
Action of the Hamiltonian (10) on the state (13) 

leads to the partial transposed of density matrix of the 
system as follow  

0 0 0 0 0
0 0 0 2 0 2 0 0 0

0 0 0 0 0
0 2 0 0 0 0 0 2 0
0 0 0 0 4 0 0 0 0
0 2 0 0 0 0 0 2 0

0 0 0 0 0
0 0 0 2 0 2 0 0 0

0 0 0 0 0

m q p r
p r

p r u v
q r

r
r v

q u r s
r s

r s v n

ρ ΑΤ

∗

 
 
 
 
 
 
 =  
 
 
 
 
  
 

                  (14) 

where  

( )2 21 cos 3 sin 2 cos
4

m t t tχ χ χ= − +  

( )2 3 41 cos 2
16

i t i t i tp t e e eχ χ χχ −= − + − +  

( )2 3 41 cos 2
16

i t i t i tq t e e eχ χ χχ −= − + − +  

2 21 sin cos
4

r t tχ χ=  
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( )2 3 41 cos 2
16

i t i t i ts t e e eχ χ χχ −= − − + +  

( )2 21 sin 3 cos 2 sin
4

u t t i tχ χ χ= − +  

( )2 3 41 cos 2
16

i t i t i tv t e e eχ χ χχ −= − − + +      (15) 

 
Using equations (12), (14) and (15), we finally have 

an expression (which we do not write it down) for the 
time dependent negativity, for the two-qutrit system at 
hand. We have also considered the action of 
Hamiltonian (10) on the following three and four-qutrit 
systems  

0 2,2,2ψ = , 0 2,2,2,2ψ =                         (16) 
 
 We have presented the negativity as a function of 

time for the two, three and four-qutrit systems in Figure 
1. It is observed that the negativity oscillates in time but 
its amplitude is independent of χ . Only in some points 
where negativity is zero, the entanglement dies down. 
The comparison of curves shows that the negativity 
reduces as N  is increased. 

Now we consider the two-, three- and four-qutrit 
systems under the action of the Hamiltonian 1H  in 
equation (11), in the presence of a magnetic field. We 
have plotted the negativity as a function of time for 
these systems and several values of the field in Figures 
2, 3 and 4 respectively. It is observed that the magnetic 
field decreases the negativity of the systems irrespective 
of the number of qutrits. 

 
4. Entanglement in Superposition of Two-Qutrit 
Coherent States 

We consider a pure state superposed of coherent 
states according to equation (6) as follows 

cos sinψ θ α β θ α β= ⊗ + ⊗    (17) 
 
We assume that the coherent state parameters are 

real and also satisfy the following relations 
α α′=− , β β′= −  and 0ϕ =                                      

(18) 
 
Now, we choose 1α β= = , 

4
πθ =  and use 

equations (4) and (17) to write 

( )1 0,0 0, 2 2 1,1 2,0 2, 2
2 2

ψ = + + + +      (19) 

 
Using equation (12) the negativity obtained for the 

above state is 0.5 which implies that it is entangled; 
however, the maximum entanglement is not attained. 
Now, we consider the action of Hamiltonian (10) on the 

coherent state (17), we observe that the reduced density 

 
Figure 1. ( )N ρ  as a function of tχ  for 4N =  (solid line), 

3N =  (dash dotted line) and 2N =  (dotted line). 

 
Figure 2. ( )N ρ  as a function of tχ  for 2N = ; 1Β=  

(dash dotted line), 5Β=  (dotted line) and 10Β=  (solid line). 

 
Figure 3. ( )N ρ  as a function of tχ  for 3N = ; 1Β=  

(dash dotted line), 5Β=  (dotted line) and 10Β =  (solid 
line). 

 
Figure 4. ( )N ρ  as a function of tχ  for 4N = ; 1Β=  
(dash dotted line), B=5  (dotted line) and 10Β =  (solid 
line). 
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matrix does not change in time and the negativity 
remains a constant equal to 0.5; that is the state (17) is 
the eigenvector of Hamiltonian (10). 

Now, we consider the negativity of the state (17) in 
the presence of the field, evolved by the Hamiltonian 

1H . Doing the calculations, we have plotted negativity 
for three values of the magnetic field in Figure 5. It is 
observed that the amplitude and also the time average of 
the oscillation are increasing functions of the magnetic 
field. 

Considering Figure 6, we note that the negativity is 
an increasing function of θ . 

 
5. Entanglement in Superposition of Two-Qutrit 
Coherent States ( 1α= , 2β = , 

4
πθ = ) 

Assuming 1α= , 2β = , 
4
πθ = , Eq. (17) can be 

written as 

( )1 4 0,0 0, 2 4 1,1 4 2,0 2, 2
50

ψ = + + + +      (20) 

 
Considering the action of Hamiltonian (10) on this 

state, we obtain its partial transposed matrix state ρ ΑΤ  

as follows. 

0 0 0 0 0
0 0 0 0 0 0 0

0 0 0 0 0
0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0

0 0 0 0 0
0 0 0 0 0 0 0

0 0 0 0 0

m r m r
u x

n s n s
p p

v
q q

m r m r
u x

n s n s

ρ ΑΤ

 
 
 
 
 
 
 =
 
 
 
 
 
 
 

         (21) 
 
The explicit expressions of non zero elements are 

skipped here for abbreviation. 
Now, using equations (12) and (21) we obtain the 

time-dependent negativity as follows 
( ) ( )

1
20.5[ 1 0.01 59 9 cos 4 0.014 4757 324 cos 4 81cos 8N t t tρ χ χ χ= − + + + − −

 
( )170 .41 0.09 cos 4 5.5 10 sin 4 ]t i tχ χ−+ − − ×         (22) 

 
( )N ρ  is 0.46  for 0χ = ; it checks that the initial 

state is entangled. We have plotted the negativity given 
by equation (22) in Figures 7 as a function of time. 
Figure 7 implies that negativity oscillates in time. Its 
amplitude is not a function of χ , but higher χ  values, 
correspond to smaller time periods. Figure 7 shows that 
the entanglement is an increasing function of α . 

Now, we consider the action of the Hamiltonian 1H  
in equation (11) on the state (20). Performing similar 

 

 
Figure 5. ( )N ρ  as function of tχ  assuming 1α β= =  

for 1B =  (dotted line) and 5B =  (solid line). 

 
Figure 6. ( )N ρ  as function of tχ  assuming 1α β= = , 

1B =  for 
12
πθ =  (dotted line) and 6

θ
π

=  (solid line). 
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Figure 7. ( )N ρ  as function of tχ  assuming 2β = , 

0ϕ = , 
4
πθ =  for 2α =  (dotted line) and 1α =  (solid 

line). 

 
Figure 8. ( )N ρ  as function of tχ  assuming 1α = , 

2β = , 0ϕ = , 
4
πθ =  for 20B =  (dotted line) and 

1B =  (solid line). 
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calculations as above, we have plotted the negativity as 
a function of time for two values of field and several 
values of ϕ  in Figures 8 and 9 respectively. 

It is observed that the oscillation amplitude and the 
time average of the entanglement are increasing 
functions of the magnetic field. It is also noted that the 
time average of the negativity is a decreasing function 
of the parameter ϕ .  

 
6. Entanglement in Superposition of Three-Qutrit 
Coherent States ( 1α β γ= = = , 

4
πθ = ) 

We consider the three qutrits coherent state in 
equation (7). We assume that the coherent state 
parameters are real and α α′=− , β β′= − , γ γ ′= −  and 

0ϕ = ; therefore we have 
1 ( 0,0,0 0,0, 2 2 1,1,1 0, 2,0 0, 2, 2 2 1,0,1

4 2
ψ = + + + + + +

 
2 1,1,0 2 1,1,2 2 1,2,1 2,0,0 2,0,2 2 2,1,1 2,2,0 2,2,2 )+ + + + + + +

                                                                                    (23) 
 
Using equation (12), the negativity for this state 

turns out to be zero while its I-concerence is 5
2

; that is 

this state is entangled. 
Now, we consider the action of the Hamiltonian (10) 

on the state in equation (23). Performing some 
calculations, we obtain the negativity as a function of 
time. We have plotted negativity in Figures 10 and 11. 
Figure 10 shows that the negativity is an oscillating 
function of time and its time average is an increasing 
function of the magnetic field. Figure 11 implies that the 
negativity is a decreasing function of the parameter ϕ . 

 
7. Entanglement in Superposition of Three-Qutrit 

Coherent States ( 0α β= = , 1γ = , 
4
πθ = ) 

We consider the three qutrits coherent state in 
equation (7) with the parameter values α α′=− , β β′= −

, γ γ′= − , 0ϕ = , 0α β= = , 1γ =  and 
4
πθ =  to find 

( )1 2,2,0 2,2,2
2

ψ = +                                 

(24) 
 
We examine the entanglement properties of this state 

evolved by the Hamiltonian H  given in equation (9). 
Performing some calculations as section 6, we obtain 
the partial transpose of the density matrix as follows 

 
Figure 9. ( )N ρ  as function of tχ  assuming 1α = , 

2β = , 1B = , 
4
πθ =  for 0ϕ =  (solid line), 

4
πϕ =  

(dotted line) and 
2
πϕ =  (dash dotted line). 
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Figure 10. ( )N ρ  as function of tχ  assuming 

1α β γ= = = , 0ϕ= , 4
πθ =  for 5B =  (dotted line) and 

1B =  (dash dotted line). 
 

 
Figure 11. ( )N ρ  as function of tχ  assuming 

1α β γ= = = , 5B = , 
4
πθ =  for 4

πϕ =  (dotted line) and 

2
πϕ =  (solid line). 
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                       (25) 

 
The non zero elements of the density matrix of the 

system is too complicated to write out here, so we 
discuss the numerical results.  

The negativity and I-concurrence are zero for state 
(25) at 0χ = , as we expect. This state is not entangled 
at 0t =  either. We have presented the negativity for the 
state in equation (25) as a function of time for two 
values of χ  in Figure 12. It is observed that the 
negativity oscillates in time. Its amplitude is 
independent of χ , but the time periods are smaller for 
higher χ  values. The state is entangled except at a set 
of discrete points, where the negativity is zero. Figure 
12 also shows that the negativity is an increasing 
function of θ .  

Finally, we consider the evolution of the 
Hamiltonian 1H  given by equation (11) on the state 
(24). Performing similar calculations as above, we have 
plotted the negativity as a function of time for two 
values of the field and several values of ϕ  in Figures 
13 and 14 respectively. It is observed that the amplitude 
is a decreasing function of the magnetic fields and ϕ . 

 

Results and Discussion 
We have studied the dynamics of entanglement of 

the coherent qutrit states and several superpositions of 
multi-qutrit coherent states under the influence of the 
one-axis counter twisting Hamiltonian in the presence 
and absence of magnetic fields. A summary of the 
important results follows: 

a) The multi-qutrit coherent states are entangled 
under the one-axis counter twisting Hamiltonian H . Its 
entanglement is reduced under Hamiltonian 1H  in the 
presence of magnetic field. In fact the nonlinear 
Hamiltonian establishes some correlations among qutrit 
systems. While the magnetic field just rotates the qutrit 
systems; therefore, does nor increase and even decreases 
the entanglement. As negativity is a decreasing function 
of N , in large multi-qutrit systems, larger values of χ  
are required for stronger entanglement. 

b) The superpositions of two-qutrit coherent states 
are entangled in all times under Hamiltonian  H . The 

amplitude and also the time average of the oscillation of 
bipartite entanglement are increasing functions of the 
magnetic field; that is, one is able to generate the 

 
Figure 12. ( )N ρ  as function of tχ  assuming 0α β= =

, 1γ = , 0ϕ =  for 
4
π

θ =  (solid line). 

 
8

π
θ =  (dotted line) and 

12

π
θ =  (dash dotted line). 

 

 
Figure 13. ( )N ρ  as function of tχ  assuming 0α β= =

, 1γ = , 0ϕ = , 
4

π
θ =  for 1B =  (dotted line) and 10B =  

(solid line). 

 
Figure 14. ( )N ρ  as function of tχ  assuming 0α β= =

, 1γ = , 1B = , 
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θ =  for 0ϕ =  (dotted line) and 
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maximally entangled state in superpositions of two-
qutrit coherent states by applying strong magnetic field. 
The amplitude of oscillation is an increasing function of 
α .   

c) The entanglement of the superposition of three 
qutrits coherent states, is entangled under the influence 
of H  except at a set of discrete points, where the 
negativity is zero. The magnetic field may have an 
adverse effect on the entanglement if 1H  is applied (for 

special case 0α β= = , 1γ = , 0ϕ = , 
4
πθ = ); therefore 

one can maximally entangle this state in all times by 
applying the small magnetic fields. 

d) For all superposition of qutrit coherent states, the 
entanglement is a decreasing function of ϕ .  
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