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Abstract 
The bending analysis of composite structures is usually performed using the Finite Element 

Method (FEM), which is also used in many fields of engineering. However, other efficient, 
accurate, and robust numerical methods can be alternatives to FEM’s widespread use. This work 
focus on a meshless discretization technique - the Radial Point Interpolation Method (RPIM) – 
which only requires an unstructured nodal distribution to discretize the problem domain. The 
numerical integration of the Galerkin weak form governing the plate’s bending problem is 
performed using a background integration mesh. The nodal connectivity is enforced using the 
‘influence-domain’ concept which is based on a radial search of nodes closer to an integration 
point. Thus, in this work, the RPIM is used for the first time to analyse the bending behaviour of 
symmetric cross-ply composite laminated plates using equivalent single layer (ESL) formulations, 
following different transverse high-order shear deformation theories (HSDTs). Varying the plate’s 
geometry and stacking sequences, the applied loads, or the plate model, several composite 
laminated plates are analysed. In the end, the meshless solutions are compared with analytical 
solutions available in the literature. The accuracy of the meshless approach is proved and several 
new numerical solutions for the bending of symmetric laminates are proposed.   

 
Keywords: Symmetric Laminated Plates; High-Order Shear Deformation Theories; Meshless 

Method; Radial Point Interpolation Method (RPIM). 

1 Introduction 
Beams [1]–[4], plates and shells are key structures in engineering. The recent progress in 

materials’ science made possible the manufacturing of these structures as advanced composite 
structures like laminates, sandwich panels or functionally graded [5]–[8] materials.  

In the case of plates, they are three-dimensional (3D) structures but can be treated as two-
dimensional (2D) solids since their thickness is much smaller than their other two dimensions. 
Using mostly composite laminates, the application of these structures may be found in many 
engineering fields, such as aircraft or aerospace components, in which it is vital to accurately 
predict their behaviour and avoid structural failures. To predict the mechanical behaviour of such 
structures, three types of 2D plate models are commonly used and frequently chosen over the 
classical 3D elasticity deformation theory [9], which cannot be generically applied to problems 
with more complex geometries. These 2D plate models are the Equivalent Single Layer (ESL) 
theories, the layerwise (LW) theories (which consider independent degrees of freedom for each 
layer resulting in accurate results but also computationally expensive) [10] and the zig-zag (ZZ) 
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theories [11] (where the kinematic behaviour is described on the whole laminate, and local 
refinement approach acts on the scale of the layer thickness [11]). If the plate is thin, simple plate 
ESL theories, such as the Classical Plate Theory (CLPT) or the First-Order Shear Deformation 
Theory (FSDT) [12]–[15] by Reissner-Mindlin, can be used to predict, in a satisfactory way, the 
stress tensor installed in each point of the plate [16]. Nevertheless, the CLPT neglects the 
transverse shear strain and in the FSDT the distribution of the transverse shear strain is constant 
along with the plate’s thickness, violating the traction boundary conditions at the top and bottom 
surface of plates [16]. Due to this last characteristic of the FSDT, shear correction factors are 
required in order to satisfy those conditions. Thus, the CLPT and the FSDT can only reasonably 
the kinematics of thin composite laminated plates [17]. Thus, for thick plates, other approaches 
have to be taking into account. Despite being accurate plate models, LW and ZZ theories yield 
solutions linked to higher computational costs when compared with other solutions proposed in 
the literature, such as the ESL formulation following High-order shear deformation theories 
(HSDTs). These theories can describe better the kinematics of a plate since they possess transverse 
shear functions capable to represent the nonlinear parabolic variation of transverse shear stresses 
through-thickness [16] and, at the same time, fulfil the traction boundary condition. The transverse 
shear functions used in the HSDTs can have different mathematical formulations. In the literature, 
it can be found transverse shear functions using polynomial [18]–[20], trigonometric [21], 
exponential [22],[23] or hyperbolic [24], [25] functions. 
To analyse the mechanical behaviour of composite laminated plates, it is common to use numerical 
approaches. The finite element method (FEM) is the most used numerical tool in computational 
mechanics and particularly in the analysis of composite laminates. The FEM discretizes the 
problem domain in smaller parts called elements. Using this approach, the considered problem can 
be analysed in a local perspective and, subsequently, the assemblage of the elements can be 
performed considering their connectivity (forming the FEM’s mesh). The field variable in the FEM 
is approximated within each element using shape functions. Unlike the FEM, in meshless methods, 
for instance, the concept of mesh is inexistent because these methods rely only on the position of 
a set of nodes discretizing the problem domain. Because there is no mathematical connection 
between nodes, meshless methods can handle better situations involving a transitory geometry, 
such as crack propagation problem, that often requires re-meshing procedures in the FEM. In 
meshless methods, the shape functions have virtually a higher-order, allowing a higher continuity 
and reproducibility [26] and the refinement procedure is simplified because nodes can be added or 
removed from the initial nodal mesh [27].   

Meshless methods were initially proposed in 1977, with the introduction of the Smooth Particle 
Hydrodynamics Method (SPH) [28], being the first global weak form-based meshless method only 
presented in 1994 with the development of the Element Free Galerkin Method (EFGM) [29]. In 
these numerical methods, the field variables are approximated within an ‘influence-domain’ [26] 
which is concentric to an interest point and contains a certain number of nodes that contribute to 
the interpolation of the field variable at referred interest point. The overlap of ‘influence-domains’ 
assures the nodal connectivity [26], being the  numerical integration performed using a background 
integration mesh. If the integration mesh is independent of the nodal distribution, the meshless 
technique is called a ‘not truly’ meshless method [30]. Nevertheless, this characteristic does not 
decrease the accuracy or efficiency of the method. 

The most relevant shape functions used in meshless methods are the Taylor approximation, the 
moving least-square approximation, the reproducing kernel approximation, the hp-cloud 
approximation function, the polynomial interpolation, the parametric interpolation, the radial 
interpolation and the Sibson interpolation [26]. These functions need to verify the compact support 
property, which requires a domain of applicability and outside this domain the function assumes 
zero values. Concerning the type of shape functions used in the meshless methods, they can be 
divided into two different categories: the approximant and interpolant meshless methods. The first 
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ones produce smoother solutions and, because of that, the majority of meshless methods, such as 
the SPH and the EFGM, use approximation functions [26]. Other very popular approximant 
meshless methods are the Reproducing Kernel Particle Method (RKPM) [31] and the Meshless 
Local Petrov-Galerkin Method (MLPG) [32]. Despite the approximants meshless methods can 
produce smoother solutions, they do not verify a very attractive and useful numerical property: the 
Kronecker delta property. Field functions possessing the Kronecker delta property make simpler 
the numerical imposition of the essential and natural boundary conditions. Because of that, some 
meshless methods (such as the Point Interpolation Method (PIM) [33], the Point Assembly Method 
[34], the Radial Point Interpolation Method (RPIM) [35] or Natural Neighbour Radial Point 
Interpolation Method (NNRPIM) [26],[36]) use interpolation functions, which verify the 
Kronecker delta property. The RPIM is a more complex version of the PIM, using both the 
polynomial basis function and radial basis function (RBF), allowing the construction of stable and 
more robust interpolation shape functions. This is the meshless method studied in this work and it 
uses the Galerkin weak formulation for the definition of the discrete system of equations. 

Although the FEM is the most used numerical tool to analyse composite laminated plates, several 
studies in the literature aim to combine distinct meshless formulations with several plate theories. 
For instance, the EFGM was first applied to the bending analysis of thin plates assuming the CLPT 
[37] and later it was formulated by Belinha et al. based on the FSDT for the linear and nonlinear 
analysis of isotropic plates and laminates [38], [39]. The Third-Order Shear Deformation Theory 
(TSDT) of Reddy [18] was also applied to the EFGM by Dai et al. [40] for static and free vibration 
analysis of shear deformable laminated composite plates. The RKPM was also used for the static 
analysis of plates and shells [41] using the FSDT. Considering several high-order shear 
deformation theories (developed by Levinson [42], Aydogdu [43], Karama [22] and Touratier 
[21]), a meshless local radial point collocation method based on multiquadric radial basis function 
(MQ-RBF) was proposed by Xiang et al. [44] for the study of the static response of isotropic, 
sandwich and laminated plates. The same meshless method was considered by the same authors 
[44] but based on inverse multiquadric RBFs for the free vibration of laminated composite plates 
considering the FSDT. Ferreira et al., in several papers, considered the FSDT [45] and the TSDT 
[46] [47] [17] and a global meshless approach using RBFs. The MLPG was also used in the 
analysis of thick laminated composite and functionally graded plates using a higher-order shear 
and normal deformable plate theory (HOSNDPT) [48] [49] [50]. The EFGM, RPIM, NNRPIM 
and NREM were recently compared in a study by  Belinha et al. in which the authors analysed the 
bending behaviour of composite laminate plates using and the FSDT [27], [51].  
Despite the mentioned extensive applications of meshless methods in the analysis of composite 
laminates, the RPIM has not been used yet in the analysis of composite laminated plates using 
HSDTs. In comparison with other meshless approaches, the RPIM is a rather simple numerical 
method whose programming simplicity resembles the FEM because the integration scheme is the 
same for both. Thus, the RPIM can be viewed as an advanced discretization technique that can be 
programmed as easily as the FEM, while having the aforementioned advantages that FEM does 
not have, and potentially providing smoother and more accurate results than the well-established 
FEM. Thus, this work focuses, for the first time in the literature, on the combination of the RPIM 
with bending of symmetric laminates following different HSDTs. Therefore, this work contributes 
with new accurate numerical solutions for this kind of analysis, expanding the range of application 
of meshless methods, in particular the RPIM. 

2  The RPIM formulation for a 2D linear elastic problem 
In the meshless methods, such as the RPIM, the nodal distribution does not form a mesh because 
there is no previous information regarding the spatial relationship between each node. In these 
numerical methods, the nodal connectivity is enforced by an overlap rule of ‘influence-domains’ 
which completely differs from the FEM formulation, where the nodal connectivity is ensured at 
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the element level by the interaction between nodes of adjacent elements.  
In this section, the generic procedure of a meshless method is introduced. After that, the 
formulation of the RPIM is presented using key-concepts of the method: nodal connectivity, 
interpolation functions, numerical integration and the meshless discrete system of equations.  

2.1  Meshless standard procedure 

 
Most of the meshless methods, such as the RPIM, follow a standard procedure. After the 
description of the problem (with the essential and natural boundary conditions), the problem 
domain is discretized using a nodal mesh (which can be regular or irregular). Generally, irregular 
meshes present a lower accuracy. Nevertheless, in some problems where the locations of the stress 
concentration are expectable (crack propagation, holes, clamped boundaries, etc.), it is necessary 
to have a higher nodal density in those locations, which will lead to better results.  Thus, it is 
essential to choose a correct nodal density for the discretization and the best nodal distribution 
possible (without increasing significantly the computational cost) since these discretization 
parameters influence the method performance. An unbalanced distribution of the nodes could lead 
to less accurate results [52]. After the nodal discretization, a background integration mesh is 
constructed. In the case of the RPIM, this integration mesh is nodal independent which ensures the 
characteristic of ‘not truly’ meshless method of the RPIM. After the definition of the integration 
mesh, the nodal connectivity can be imposed using the concept of ‘influence-domains’ [52]. The 
next step is to obtain the field variables, approximated within the ‘influence-domains’. Consider a 

variable field I )u(x  obtained at an interest point Ix  within the problem domain and interpolated 
using the nodal values of the nodes inside the ‘influence-domain’ of the correspondent interest 

point, Ix .  Thus, the equation of interpolation can be defined as : I Ij 1
( ) ( )

n

j ju u
=

= ϕ∑x x , where 

n is the number of nodes within the ‘influence-domain’ of the interest point Ix , ju  is the value of 

the variable field in each node within the ‘influence-domain’ and I( )jϕ x  is the shape function of 

the nodej obtained using only the n nodes inside the ‘influence-domain’ and calculated at the 

interest point Ix , [52].  
After the determination of the interpolation functions, the system of equations can be arranged 

in a local system of discrete equations and assembled into a global system of equations. To obtain 
the displacement field, it can be used, for instance, the Gauss elimination method [52]. 

2.2  Nodal connectivity 

In the RPIM, the nodal connectivity between each node is achieved with the overlap of the 
‘influence-domains’, created following the nodal discretization and the definition of the 
background integration mesh. In the 2D problems analysed in this work, the ‘influence-domains’ 
for each interest point can be concentric areas with the interest point (such as circles – Figure 1 (a) 
– or rectangles with a predefined size). On the other hand, they can have a certain number of nodes 
that are closer to the interest point, as shown in Figure 1 (b). The shape and size of an ‘influence-
domain’ may vary depending on the position of the interest points, the nodal distribution and the 
nodal density. For example, for a variable size ‘influence-domain’, it may occur that an ‘influence-
domain’ with the same shape has a different number of nodes within it if the nodal distribution is 
irregular. On the opposite side, for a fixed size ‘influence-domain’, it is common that the shape of 
each domain is different. The recommendations of the literature [26] lead to the necessity of 
‘influence-domains’ with the same number of nodes inside (for 2D problems, it is recommended 
between 9 and 16 nodes per ‘influence-domain’ [35]), which allows the construction of shape 
functions with the same degree of complexity.  
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(a) (b) 

 
Figure 1 - (a) Fixed size ‘influence-domain’ (I Jr r= ). (b) Variable size ‘influence-domain’ (

I Jr r≠ ). 

2.3  Numerical integration 

 
In the RPIM, the differential equations of the Galerkin weak form are integrated using the Gauss-

Legendre quadrature. Since this work is related to the analysis of square plates, the background 
integration mesh is composed of quadrilateral cells (isoparametric quadrilateral shape) and in each 
cell are placed the Gauss integration points. 

This numerical approach to solve the integro-differential equation ruling the problem does not 
assure the designation of a "truly" meshless method because the integration scheme neglects the 
nodal distribution to construct the integration mesh. Thus, the numerical integration performed in 
RPIM follows the same procedure as in FEM. 

2.4  RPI shape functions 

The RPIM uses interpolation functions based on the combination of multiquadric (MQ)  radial 
basis functions (RBF) [35] [53] with polynomial basis functions. Consider the interpolation of 

( )Iu x , at the integration point Ix , using: 
 

( ) ( ) ( ) ( ) ( )T T

I I I I Iu = +x R x a x p x b x  )1( 

with, 
 

( ) ( ) ( ) ( ){ }T

1 2, , ...I I I InR R R=R x x x x  )2( 

 

( ) ( ) ( ) ( ){ }T

1 2, , ...I I I Imp p p=p x x x x  )3( 

 

( ) ( ) ( ) ( ){ }T

1 2, , ...I I I Ina a a=a x x x x  )4( 

 

( ) ( ) ( ) ( ){ }T

1 2, , ...I I I Imb b b=b x x x x  )5( 

  
where n is the number of nodes within the ‘influence-domain’ of Ix , ( )i IR x is the RBF, ( )i Ia x  

and ( )j Ib x  are non-constant coefficients of ( )i IR x  and ( )j Ip x , the polynomial basis, 

Ix

Jx

Jn 10=

Jn 14=

Ir

Jr

Ix

Jx

Jn 14=

Jn 14=

Ir

Jr
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respectively, with m being the basis monomial number. The RBF depends on I ir , the Euclidian 

distance between the interest point Ix  and the neighbour node ix , given by 

2 2( ) ( )i I I i I iI ir x x y y= − = − + −x x . The MQ-RBF used in this work is given by 

( ) ( ) 2 2 p

i I I iI iR R r r c = = + x , being c  and p  shape parameters that are considered fixed as 

1.42c =  and 1.03p = , according to the literature [26]. 
An extra requirement needs to be satisfied if a polynomial basis function is used [26]: 

{ }T

1
0 ( ) ( ) 0, 1,2,...,( ) ( ) i i

n

j i i ii
j mp a

=
= ⇔ = =∑ p x a xx x , which combined with equation (1) 

results in the system (6),  
 

( ) ( )
( )

( )
( )

( )
( )T

I I I I

I I I

s       
= =      

       00

x x x x

x x x

R p a au
G

p b b
 )6( 

with { }T

1 2, ,...,s nu u u=u . Matrix R has dimensions [×n n] and it is defined as ( )ij ijR = R r .  

11 12 1

21 22 2

1 2

( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

n

n

n n nn

R r R r R r

R r R r R r

R r R r R r

 
 
 =
 
 
 

K

K

M M O M

L

R  )7( 

The polynomial matrix,p , has dimensions [n m× ], being each line defined as 

{ } { }2 21, , , , , , ... , 1,2,...i x y x xy y i n= =p  and m  the chosen monomial number.  

1 1 2 1 1

1 2 2 2 2

1 2

p ( ) p ( ) p ( )

p ( ) p ( ) p ( )

p ( ) p ( ) p ( )

m

m

n n m n

 
 
 =
 
 
 

K

K

M M O M

L

x x x

x x x
p

x x x

 )8( 

For instance, if 1m = , p  has dimensions [ 1n× ] and ( ) { }1i =p x . Matrix G  in equation (6) is 

a symmetric matrix since the distance is directional independent. Solving equation (6) in order to 
the non-constant coefficients, 

( )
( )

-1I s

I

   
   

   0

a x u
= G

b x
 )9( 

and substituting (9) in (6) , the interpolation functions can finally be obtained,  

{ } sT T 1

I( ) ( ) , ( ) ( )
0I I I su −= =

 
 
 

u
x R x p x G x uϕ  )10( 

where vector { }I 1 2( ) ( ), ( ),..., ( )I I n Iϕ = ϕ ϕ ϕx x x x  is the interpolation function calculated at the 

interest point Ix . 

 

2.5 Weak form and meshless discrete system of equations 

 
In the RPIM, the discrete system of equations is obtained from the Galerkin weak form written 

for a generic solid with domain Ω  and boundary Γ , 
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t

T T Td d d
Ω Ω Γ

δ Ω = δ Ω + δ Γ∫ ∫ ∫u b u tε σ  (11) 

 
being ε  the strain tensor, σ  the stress tensor, u  the displacements vector, b  the body forces 

and Γ∈Ω the traction boundary where the external forces t  are applied. δε  is the virtual strain 
tensor and δu  the virtual displacement. Considering the stress-strain relation, cσ = ε  (where c  is 
the constitutive matrix), and the linear relation between strains and displacements, = L uε , 
equation (11) can be rewritten, 

 
T T T Td d d

Ω Ω Γ
δ Ω = δ Ω + δ Γ∫ ∫ ∫u c u u H b u H tΒ Β  (12) 

 

where the deformation matrix, Β , is defined as: 
n

I1
( )jj =

= ϕ∑ L xΒ , with  I( ) =x B uε . 

Additionally, H  represents a diagonal matrix containing the shape function component of a node 
j  inside the ‘influence-domain’ of Ix : I I( ) ( )j jϕx = x IΗ , being I  an identity matrix with 

dimension [5 5]× . Removing the virtual displacement δu  from equation (12), the discrete system 
of equations is obtained for an elasto-static problem, 

T d d d
Ω Ω Γ

Ω = Ω + Γ∫ ∫ ∫c u H b H tΒ Β  (13) 

which can be written as ⋅ =K u F , with T d
Ω

Ω= ∫ cK Β Β  and d d
Ω Γ

Ω + Γ∫ ∫H b H tF = . 

The procedure to obtain the meshless discrete system of equations is here briefly explained. A 
more detailed explanation can be found in the literature [26], [27], [51]. 

3 High-Order Shear Deformation Theories 
 
Higher-Order Shear Deformation Theories (HSDTs) were proposed to respond to some 

insufficiencies of the CLPT and the FSDT. Despite being computationally more demanding, the 
HSDTs yield non-constant shear strains along with the plate’s thickness and they fulfil the 
condition of zero shear stresses on the bottom and top faces of the laminated plate. In this section, 
the generalized displacement fields are presented as well as the transverse shear functions used in 
each studied HSDT. Additionally, is it presented the stress-strain relations and, in the end, the 
matrices of the discrete system of equations are determined. 

3.1  Generalized Displacements Field and Transverse Shear Functions 

The displacement field produced on a plate subjected to a generic load can be written in a 
generalized form considering any equivalent single layer theory. Thus, accounting five 
independent field variables (i.e. five generalized displacement functions of the mid surface of the 
plate - 0 0 0( , ), ( , ), ( , ), ( , )xu x y v x y w x y x yφ  and ( , )y x yφ ) ,  

 

0

0

0

( , ) ( , )
( , , ) ( , ) ( ) ( , )

( , ) ( , )
( , , ) ( , ) ( ) ( , )

( , , ) ( , )

x

y

w x y w x y
u x y z u x y z f z x y

x x

w x y w x y
v x y z v x y z f z x y

y y

w x y z w x y

 ∂ ∂ = − ⋅ + ⋅ φ +  ∂ ∂ 
  ∂ ∂= − ⋅ + ⋅ φ +  ∂ ∂ 

 =

 )14( 
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The in-plane displacements, u  and v , presented in equation (14) depend on a transverse shear 
function, ( )f z , which assumes a different form for each equivalent single layer theory. If ( )f z z=
, it is obtained the displacement field of the FSDT, while the equivalent is obtained for the CLPT 
if ( ) 0f z = . The shear transverse functions are chosen such that the shear stresses assume zero 
values at the top and bottom surfaces of the plate (i.e. '( / 2) '( / 2) 0f h f h= − = , being h  the 
thickness of the plate).  

In Figure 2 and Table 1, the transverse shear functions of the seven HSDTs studied in this work 
are presented.  The displacement field related to each HSDT can be obtained by simply substituting 
the correspondent transverse shear function in equation (14). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2 - Distribution of the function f(z) for different HSDTs along with the normalized 
thickness z/h. 

The first three theories shown in Table 1 define the variation of the in-plane displacements along 
with the thickness of a plate as polynomial functions, more specifically as cubic functions. They 
are the third-order shear deformation theory (TSDT) of Reddy [42], [54] [18], the TSDT of Shi, 
[55], [56], [12] [19] and the TSDT of Ambartsumian [20]. These three TSDTs can be written in a 
standard form, which simplifies their computational implementation, 

2 3
3

1 2 1 22 2 2

2 3
3

1 2 1 22 2 2

2 2 2 3 2
3

1 2 1 2

4 4 4
Reddy : ( ) 1 , 1

3 3 3

5 4 5 5 5 5
Shi : ( ) 1 ,

4 3 4 3 4 3

1
Ambartsumian : ( ) ,

2 4 3 8 6 8 6

z z
f z z z k z k z k k

h h h

z z
f z z z k z k z k k

h h h

z h z h z h
f z z k z k z k k

 
= − = − = + = ∧ = − 

 
 

= − = − = + = ∧ = − 
 

 
= − = − = + = ∧ = − 

 

 )15( 
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Table 1 - HSDTs selected for the bending analysis  of composite laminated plates using the 
RPIM. 

 

By changing the constants 1k  and 2k  in the function 3
1 2( )f z k z k z= + , the transverse shear 

function is driven to one of the three TSDTs. If one takes a look on those constants, it can be 
concluded that Shi’s formulation is very similar to Reddy’s model because the coefficients of the 
linear and cubic terms are identical. On the other hand, Ambartsumian’s theory has a smaller 
coefficient of the third-order term and, because of that, it is not expected a similar solution to the 
previous mentioned theories. From Figure 2Error! Reference source not found., it can be seen 

that the distribution of Ambartsumian’s transverse shear function, ( )zf h
, is almost equal to zero 

1 1,2 2
z

h
 ∀ ∈ − 

, which is also the case of the CLPT (where ( ) 0f z = ). Thus, despite being a 

HSDT, Ambatsumian plate theory is very similar to the CLPT, meaning that the solutions obtained 
from this theory, in particular for the shear stresses, will not be as accurate as the solutions obtained 
from the other selected HSDTs.  

Another selected HSDT is the Touratier [21] model which predicts the variation of the in-plane 
displacements along with the thickness of the plate as a trigonometric function (it is a 
Trigonometric Shear Deformation Theory - TRSDT). If one takes a look on the expansions [22], 
[57] of the transverse shear stress function proposed by Touratier (notice that all available 
functions ( )f z  that can be found in literature can be explicitly approximated in form of a unified 
polynomial form, as noted and studied by Nguyen et al. [16]), 
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it becomes clear that, by comparison to Reddy and Shi theories, the coefficients of the linear and 
cubic terms are also very similar. Nevertheless, Touratier’s HSDT possesses terms with order 
higher than the third, which will lead to slightly higher results for the transverse shear stresses 
when compared with the referred TSDTs. 

Karama [22] and Aydogdu [23] proposed Exponential Shear Deformation Theories (ESDT) 
using exponential expressions as transverse shear functions. The two models are similar, as the 
following expressions denote, 
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Karama theory is a particular case of Aydogdu’s model when eα = . This assumption allows, 
in computational terms, to study both ESDTs as a single one, using the dependence on α  
parameter. The optimal value of the parameter α  was studied by Aydogdu [23]. His research 
concluded that assuming 3α =  leads to closer solutions to the 3D Elasticity solutions of Pagano 
and Hatfield [9]. Since the value of e  is approximately equal to 3 , Karama and Aydogdu models 
are not only formally similar but also mathematically equivalent. Observing the expansions of the 
transverse shear stress function proposed by Karama considering only the odd powers (

( )2
2 / 3 2 5 4 7 6 9 8( ) 2 / 2 / 1.3332 / 0.667 / ...z hf z ze z z h z h z h z h−= = − + − + + ) it can be concluded that, 

in comparison with the TRSDT of Touratier, the coefficients of successive high-order terms are 
decreasing more slowly, making the Karama model (proposed in 2009 [22]) stronger than the one 
by Touratier (dated from 1991 [21]). 

Mantari [58] proposed a series of different transverse shear functions which are combinations of 
exponential and trigonometric functions. The theory studied on this work was proposed in 2012 
and has the following generic expression, 

cos
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 )18( 

In the equation (18), m  is a parameter optimized by Mantari in order for his theory to be closer 

to the 3D Elasticity solutions. Mantari proved that this situation is achieved for 1
2m= . This 

considerably lowers the errors between 3D Elasticity and 2D solutions than any other existing 
HSDTs, according to Mantari. Notice that if 0m= , Touratier model can be reproduced as a special 
case.  

3.2 Stress-strain relations 

The component of the strain along with the plate thickness, zzε , is considered to be zero in ESL 
formulations. Thus, the strain tensor written in the Voigt notation is given by 

{ }T

yzxx yy xy xz= ε ε γ γ γε , which can be divided in two components: the in-plane deformations, 

{ }T0
xx yy xy= ε ε γε  and the shear components, { }T

yz xz= γ γγ . Considering the displacement field 

(14) and its partial derivatives, the generalized strain field is established  
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The strain field in a plate will also be different considering the different HSDTs proposed by 

each researcher mentioned in Table 1, and can be obtained substituting the transverse shear 
function and its derivative in equations (19) and (20).  

Considering the compliance matrix, s, which relates the strains with the stresses such that 

= ⋅sε σ , with { }T

xx yy xy yz zx= σ σ τ τ τσ , 
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where, for a generic layer of a composite laminate of Figure 3, 1E  is the Young modulus along 

with the fibres’ direction, 2E  the Young modulus along with the transverse direction, i jυ  is the 

Poisson ratio used to characterize the deformation rate in direction j  when a force is applied in 

direction i  and i jG  is the shear modulus characterizing the variation angle between directions i  

and j . Direction 3 is assumed as the cross thickness direction of the layer. 
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(a) (b) 
  

 
Figure 3 – (a) Composite layer distribution and correspondent global coordinate system Oxyz. 

(b) Local coordinate system O123. 
 
From the compliance matrix presented in equation (21), it is possible to define the constitutive 

matrix, 1−c = s , which is defined for a local coordinate system 123O  associated with each layer of 
the laminate. - Figure 3(b). This matrix needs to be transformed to the global coordinate system, 
applying the equation of coordinates transformation, resulting in the transformed constitutive 
matrix, kc ,  

 T
kc = T cT  )22( 

 
where the matrix T depends on the angle of the layer, θ , 
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The linear relation between the stress and the strain in each layer k  is defined by the Hooke’s 

law, k= cσ ε . 

 

3.3 Matrix form of the discrete system of equations  

 
To fully define the discrete system of equations represented in the equation (14), the matrices 

used in that equation must be determined. Since there is a different transverse shear function for 
each plate theory studied, the deformation matrix, B , will also be different. The deformation 

matrix can be determined using ( ) ( ) ( )I IzB =x L H x , where the differential operator is a function 

of z  and, consequentially, the deformation matrix also depends on the coordinate z . The matrix 
of interpolation functions has dimensions [5 5n× ] since there are five independent field variables, 

with n  being the number of nodes within the ‘influence-domain’ of the interest point Ix . The 
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differential operator can be deducted using the linear relation between strains and displacements, 

( )z=ε L u , with { }T

0 0 0, , , ,x yu v w φ φu = , denoted in equations (19) and (20), 
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For instance, using the generic transverse shear function for the TSDTs – presented in the 

equation (15)  - the deformation matrix associated to the TSDTs selected can be defined as follows, 
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which can be divided in a sum of submatrices independent of the coordinate z  and affected by 

a distinct expressions dependent on the variable z , 
2 3

0 0 1 1 2 2 2 3 1 4( ) ( ) ( ) + ( ) 3 ( ) ( ) ( ) ( )I M I S I I I I Ik z k z k z k z z= + ⋅ + ⋅ + + − ⋅B x B x B x B x B x B x B x  (26) 
 
The deformation sub-matrices used in the equation (26) are presented by the following equations: 
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and, 
 

0 0 0( ) ( )+ ( )I M I S IB x =B x B x  )33( 

 
Using the obtained deformation matrix, the stiffness matrix can finally be obtained using the 

integration scheme presented in subsection 2.3. 
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where nQ  is the number of integration points, I

)ω  is the weight of each integration point Ix , kn  

is the number of layers of the laminated plate, 1kz −  and kz  are the coordinates along with the axis 

z  (see Figure 3(a)) of bottom and top faces of  the layer i  and kc  is the transformed constitutive 

matrix of the layer i . Substituting equation (26)into equation (34), the stiffness matrix K  can also 
be obtained considering as a sum of sub-matrices  mnK  with { }, 0,1,2,3,4m n= : 
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being m and n the indexes of the deformation sub-matrices. The procedure to obtain the matrices 
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Where the homogenized matrix ijc  is obtained with 
1

1
( ) ( )

kk

k

zN i j
ij kk z

z z dz
−

=
= ⋅ ⋅∑ ∫c c . Thus, matrices 
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The process to obtain the matrices mnK  uses the homogenisation of the constitutive matrices. 

Due to the consideration that the deformation sub-matrices do not depend on the material, they can 
be moved outside of the integral in equation (34). This procedure reduces the computational effort 
because the homogenised constitutive matrices can be separately determined and they do not 
depend on the integration point, Ix . Following the described procedure, the other sub-matrices 

mnK  can be calculated. Changing the transverse shear function in equation (24), the stiffness 

matrix associated to the other selected HSDTs can be obtained.  
The discrete system of equations is fully defined with the determination of the force vector, given 

by the sum of the vector of the body forces, { }( ) 0 0
T

Ab x y z dAf f f=∫f xΗ  , with ,x yf f and 

zf being the body forces along ,x y and z  directions, respectively, and the vector of the external 

surface forces, { }( ) 0 0 0 0
T

A ze dAp=∫f xΗ , where zp is an external solicitation on the plate 

along the axis z . 

4 Numerical examples 
In this section are presented the obtained results for symmetric cross-ply laminates. Firstly, a 

convergence study is presented. Then, the solutions for the non-dimensionalized displacements 
and stresses are obtained for different laminates, Non-dimensionalized maximum stresses along 
with the thickness for various laminates are also calculated and represented in graphs for 
comparison purposes. Over the sub-sections, several comparisons are made, especially between 
the results obtained and the solutions from the literature, but also between the selected HSDTs. 

4.1  Generic laminate geometry and introduction to the problem  

The generic laminate geometry is presented in Figure 3(a), being a ,b  and h  the dimensions of 
the composite plate, and the coordinate system has its origin at the geometrical centre of the plate. 
The considered material properties of each laminate layer are: 1 25 GPaE = , 2 GPa1E = , 12 0.25ν = ,

12 13 5 GPaG G= =  and 23 2 GPaG = . 

The composite plates are considered to be simply supported and the loads applied are uniformly 
distributed transversal loads (UDL) and sinusoidally distributed transversal loads (SSL), according 
to equation (40), where 0q  is the nominal load, 
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The numerical solutions obtained from the RPIM for the different HSDTs are compared, when 
available, with the solutions proposed by the literature. The solutions obtained for the maximum 
central transverse displacements and stresses are normalized considering the equations (41). 
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The letters A, B, C and D are points of the plane Oxywith the following coordinates: {0, 0}A =
, { / 2, / 2}B a b= − − , {0, / 2}C b= −  and { / 2, 0}D a= . The z  coordinate where the variables 
are calculated depends on the analysed laminated. Thus, for each composite laminate, Table 2 
shows the height (measured on the z  coordinate axis) where these six variables are obtained.  In 
the mentioned Table 2, all the layers of the cross-ply laminates have the same thickness. Thus, the 
thickness of each layer is given by the total thickness of the plate divided by the number of layers. 
The only exception is the cross-ply laminate with the stacking sequence (0/90/0/90/0) where 

1 3 5 / 6h h h h= = =  and 2 4 / 4h h h= = . 
Table 2 - z coordinate where the non-dimensional transverse displacement and stresses are 

computed. 
       

 w  σxx  σ yy  τxy  τ yz  τxz  

       
       

(0/90/0) 0 
h/2 

(k = 3) 
h/6 

(k = 2) 
- h/2 

0 
(k = 2) 

0 
(k = 2) 

(0/90/90/0) 0 
h/2 

(k = 4) 
h/4 

(k = 3) 
- h/2 

0 
(k = 3) 

0 
(k = 3) 

(0/90/0/90/0) 0 
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4.2  Convergence study 

In order to select the discretization to be used in further analysis, a convergence study is 
performed. A constant polynomial basis function is used in the RPIM formulation, as suggested 
by the literature [51]. Regarding the ‘influence-domains’, in this work only fixed size ‘influence-
domains’ are considered, obtained from a regular nodal discretization. 

The limitation of the computer processor (about 18000 degrees of freedom) was not an 
obstacle in attempting to yield a converged solution. The highest discretization analysed is 
composed of 2601 nodes (corresponding to a (50 1) (50 1)+ × +  nodal mesh). In Figure 4 are 
presented the solutions for the maximum normalized transverse displacement of a simply 
supported square laminate, (0/90/90/0), subjected to a sinusoidal transverse load, and computed 
with seven equivalent single layer theories. The displacements are represented as a function of the 
number of nodes. From the convergence study presented, it can be concluded that a nodal 
distribution with 1089 nodes (33 33×  nodal mesh) allows to achieve an acceptable converged 
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solution for all the studied plate theories. Despite that fact, it was observed that the Ambartsumian 
theory has a dissimilar way to converge when compared to the other theories. Instead of beginning 
with small displacements for the first step of convergence, it begins with a value near the final 
converged central transverse displacement. This behaviour seems to confirm the conclusion made 
in sub-section 3.1, where it was stated that the solutions obtained from the Ambartsumian theory 
are predicted to be dissimilar from the remaining HSDTs due to the shape of its transverse shear 
function. 

 
Figure 4 –Convergence study for a composite laminated square plate with the stacking 

sequence (0/90/90/0) square plate, with a/h=100, subjected to a sinusoidal load (SSL). Central 
transverse displacement as function of the number of nodes computed with RPIM. 

4.3  Bending analysis of symmetric cross-ply laminates  

The nodal distribution obtained from the convergence study was used for the analysis of several 
composite laminates with different thicknesses and subjected to two types of loads. The solutions 
obtained using the RPIM were computed for seven high-order shear deformation theories (Reddy, 
Shi, Ambartsumian, Karama, Aydogdu, Touratier and Mantari theories). The obtained results are 
presented from Table 3 to Table 13, where it can be found the maximum normalized displacements 
and stresses for symmetric cross-ply laminates with the following stacking sequences: (0/90/0), 
(0/90/90/0), (0/90/0/90) and (0/90/90/0/90/90/0). In those Tables are also presented, when 
available, the exact analytical solutions for the correspondent HSDTs as well as the 3D-Elasticity 
solutions. Those solutions were consulted in [23] for the Aydogdu’s solutions, in [58] for Mantari 
and Karama’s solutions, in [18] for Reddy’s exact solution, in [59] for Shi’s solutions and, finally, 
in [21] for Touratier’s solutions. Ambartsumian solutions could not be found for composite 
laminated plates. The 3D Elasticity solutions of Pagano and Hatfield were obtained in [18].  
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Table 3 - Maximum normalized transverse displacements and stresses for a simply supported 
symmetric square laminate with cross-ply layers (0/90/0) subjected to a sinusoidal load (SSL), 

a/h={4,10}. 
          

a/h Solution ESL Load w  σxx  σyy   τxy  τyz  τxz  

4 

Exact Aydogdu SSL 1.9856 0.781 0.509 0.0524 0.197 0.226 

 Karama SSL 1.944 0.775 0.502 0.0516 0.191 0.22 

 Mantari SSL 1.9434 0.823 0.497 0.0536 0.201 0.245 

 Shi SSL 1.9227 0.7337 0.5021 0.0498 0.2085 0.2856 

 Touratier SSL - - - - - - 

 Ambartsumian SSL - - - - - - 

 Reddy SSL 1.9218 0.7345 - - 0.1832 - 

  Elasticity SSL 2.006 0.755 0.556 0.0505 0.2172 0.282 

RPIM Aydogdu SSL 1.9269 0.7374 0.4734 0.0489 0.1809 0.2089 

 Karama SSL 1.9269 0.7374 0.4734 0.0489 0.1809 0.2089 

 Mantari SSL 1.9519 0.7915 0.4671 0.05 0.1874 0.233 

 Shi SSL 1.9206 0.7019 0.475 0.0481 0.1738 0.1926 

 Touratier SSL 1.9204 0.7184 0.4742 0.0482 0.1772 0.2003 

 Ambartsumian SSL 1.8537 0.6823 0.4686 0.0406 0.1666 0.1881 

  Reddy SSL 1.9097 0.6988 0.4742 0.0474 0.1733 0.192 

10 

Exact Aydogdu SSL 0.7336 0.578 0.275 0.0284 0.111 0.282 

 Karama SSL 0.723 0.576 0.272 0.0281 0.108 0.272 

 Mantari SSL 0.7342 0.588 0.276 0.0288 0.115 0.314 

 Shi SSL 0.7133 0.5681 0.2687 0.0277 0.1167 0.3693 

 Touratier SSL - - - - - - 

 Ambartsumian SSL - - - - - - 

 Reddy SSL 0.7125 0.5684 - - 0.1033 - 

  Elasticity SSL - 0.59 0.288 0.0289 0.1228 0.357 

RPIM Aydogdu SSL 0.718 0.5474 0.257 0.027 0.1026 0.2588 

 Karama SSL 0.718 0.5474 0.257 0.027 0.1026 0.2588 

 Mantari SSL 0.7409 0.5643 0.2612 0.0276 0.1077 0.3002 

 Shi SSL 0.7126 0.5414 0.2545 0.0268 0.0982 0.2331 

 Touratier SSL 0.7136 0.5434 0.2556 0.0268 0.1003 0.2452 

 Ambartsumian SSL 0.6904 0.5299 0.2524 0.0247 0.0941 0.2292 

  Reddy SSL 0.7087 0.5395 0.2541 0.0266 0.0979 0.2324 
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Table 4 - Maximum normalized transverse displacements and stresses for a simply supported 

symmetric square laminate with cross-ply layers (0/90/0) subjected to a sinusoidal load (SSL), 
a/h={20,100}. 

          

a/h Solution ESL Load w  σxx  σyy   τxy  τyz  τxz  

20 

Exact Aydogdu SSL 0.511 0.548 0.206 0.0232 0.0877 0.295 

 Karama SSL 0.508 0.548 0.205 0.0231 0.086 0.285 

 Mantari SSL 0.5113 0.551 0.206 0.0233 0.09 0.331 

 Shi SSL 0.505 0.5458 0.2042 0.023 0.0919 0.3881 

 Touratier SSL - - - - - - 

 Ambartsumian SSL - - - - - - 

 Reddy SSL - - - - - - 

  Elasticity SSL  -  0.552 0.21 0.0234 0.0938 0.385 

RPIM Aydogdu SSL 0.5038 0.5197 0.1939 0.0222 0.0815 0.2709 

 Karama SSL 0.5038 0.5197 0.1939 0.0222 0.0815 0.2709 

 Mantari SSL 0.5161 0.5282 0.196 0.0226 0.0851 0.3166 

 Shi SSL 0.5043 0.5196 0.1933 0.0223 0.0786 0.2428 

 Touratier SSL 0.5027 0.5188 0.1934 0.0222 0.0799 0.256 

 Ambartsumian SSL 0.4889 0.5094 0.1923 0.021 0.0753 0.2392 

  Reddy SSL 0.5015 0.5179 0.193 0.0222 0.0784 0.287 

100 

Exact Aydogdu SSL 0.435 0.5389 0.181 0.0214 0.0791 0.3003 

 Karama SSL 0.435 0.538 0.18 0.0213 0.078 0.289 

 Mantari SSL 0.4353 0.539 0.181 0.0214 0.081 0.337 

 Shi SSL 0.4351 0.5389 0.1805 0.0214 0.0828 0.3948 

 Touratier SSL - - - - - - 

 Ambartsumian SSL - - - - - - 

 Reddy SSL 0.4342 0.539 - - 0.075 - 

  Elasticity SSL 0.4337 0.5384 0.1804 0.0213 0.0703 - 

RPIM Aydogdu SSL 0.4312 0.5105 0.1706 0.0205 0.0734 0.2753 

 Karama SSL 0.4312 0.5105 0.1706 0.0205 0.0734 0.2753 

 Mantari SSL 0.4388 0.5158 0.1717 0.0207 0.077 0.3191 

 Shi SSL 0.434 0.5124 0.171 0.0206 0.0712 0.2459 

 Touratier SSL 0.4314 0.5107 0.1706 0.0205 0.0721 0.26 

 Ambartsumian SSL 0.4209 0.5027 0.1702 0.0197 0.0755 0.2397 

  Reddy SSL 0.4317 0.5108 0.1707 0.0205 0.0709 0.2457 
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Table 5 - Maximum normalized transverse displacements and stresses for a simply supported 
symmetric rectangular (b=3a) laminate with cross-ply layers (0/90/0) subjected to a sinusoidal 

load (SSL). 
          

a/h Solution ESL Load w  σxx  σyy   τxy  τyz  τxz  

4 

Exact Karama SSL 2.6838 1.0970 0.1040 0.0272 0.0360 0.2980 

 Mantari SSL 2.6841 1.1180 0.1030 0.0274 0.0360 0.3020 

 Touratier SSL 2.6660 1.0340 0.1030 0.0268 0.0355 0.2850 

 Reddy SSL 2.6410 1.0360 0.1030 0.0263 0.0348 0.2720 

 Elasticity SSL 2.8200 1.1000 0.1190 0.0281 0.0334 0.3870 

RPIM Karama SSL 2.6575 1.0262 0.0959 0.0259 0.0328 0.2863 

 Mantari SSL 2.7189 1.1085 0.0994 0.0265 0.0326 0.3218 

 Touratier SSL 2.6428 0.9987 0.0957 0.0256 0.0324 0.2740 

 Reddy SSL 2.6213 0.9700 0.0952 0.0252 0.0320 0.2619 

10 

Exact Karama SSL 0.8768 0.7040 0.0400 0.0117 0.0180 0.3190 

 Mantari SSL 0.8800 0.7080 0.0400 0.0118 0.0180 0.3260 

 Touratier SSL 0.8700 0.6980 0.0401 0.0116 0.0172 0.3020 

 Reddy SSL 0.8620 0.6920 0.0398 0.0115 0.0170 0.2860 

 Elasticity SSL 0.9190 0.7250 0.0435 0.0123 0.0152 0.4200 

RPIM Karama SSL 0.8695 0.6571 0.0373 0.0113 0.0161 0.3071 

 Mantari SSL 0.9044 0.6817 0.0393 0.0116 0.0163 0.3581 

 Touratier SSL 0.8634 0.6518 0.0371 0.0112 0.0159 0.2906 

 Reddy SSL 0.8567 0.6465 0.0369 0.0111 0.0157 0.2752 

20 

Exact Karama SSL 0.5997 0.6440 0.0290 0.0092 0.0140 0.3230 

 Mantari SSL 0.5994 0.6450 0.0290 0.0092 0.0140 0.3290 

 Touratier SSL 0.5960 0.6420 0.0290 0.0091 0.0141 0.3050 

 Reddy SSL 0.5940 0.6410 0.0289 0.0091 0.0139 0.2880 

 Elasticity SSL 0.6100 0.6500 0.0299 0.0093 0.0119 0.4340 

RPIM Karama SSL 0.5930 0.6002 0.0269 0.0088 0.0133 0.3104 

 Mantari SSL 0.6114 0.6129 0.0281 0.0090 0.0134 0.3640 

 Touratier SSL 0.5916 0.5990 0.0268 0.0088 0.0131 0.2933 

 Reddy SSL 0.5901 0.5978 0.0268 0.0088 0.0130 0.2773 

100 

Exact Karama SSL 0.5080 0.6200 0.0250 0.0083 0.0130 0.3230 

 Mantari SSL 0.5083 0.6240 0.0250 0.0083 0.0130 0.3310 

 Touratier SSL 0.5070 0.6240 0.0253 0.0083 0.0131 0.3060 

 Reddy SSL 0.5070 0.6240 0.0253 0.0083 0.0129 0.2890 

 Elasticity SSL 0.5080 0.6240 0.0253 0.0083 0.0108 0.4390 

RPIM Karama SSL 0.5032 0.5817 0.0234 0.0080 0.0118 0.3110 

 Mantari SSL 0.5154 0.5903 0.0243 0.0081 0.0118 0.3629 

 Touratier SSL 0.5036 0.5818 0.0234 0.0080 0.0117 0.2936 

 Reddy SSL 0.5040 0.5820 0.0235 0.0080 0.0116 0.2774 
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Table 6 - Maximum normalized transverse displacements and stresses for a simply supported 

symmetric square laminate with cross-ply layers (0/90/0) subjected to a uniformly distributed 
load (UDL). 

 

a/h Solution ESL Load w  σxx  σyy   τxy  τyz  τxz  

4 RPIM 

Aydogdu UDL 2.9242 1.0535 0.6940 0.0959 0.4179 0.3526 

Karama UDL 2.9242 1.0535 0.6940 0.0959 0.4179 0.3526 

Mantari UDL 2.9715 1.1385 0.6907 0.0967 0.4242 0.3876 

Shi UDL 2.9065 0.9993 0.6905 0.0951 0.4069 0.3286 

Touratier UDL 2.9098 1.0242 0.6922 0.0949 0.4122 0.3399 

Ambartsumian UDL 2.7917 0.9667 0.6787 0.0784 0.3885 0.3198 

Reddy UDL 2.8892 0.9948 0.6892 0.0936 0.4058 0.3275 

10 RPIM 

Aydogdu UDL 1.0984 0.8177 0.3257 0.0528 0.3136 0.4461 

Karama UDL 1.0984 0.8177 0.3257 0.0528 0.3136 0.4461 

Mantari UDL 1.1335 0.8405 0.3331 0.0539 0.3267 0.5139 

Shi UDL 1.0898 0.8101 0.3207 0.0525 0.3019 0.4030 

Touratier UDL 1.0913 0.8125 0.3230 0.0524 0.3075 0.4234 

Ambartsumian UDL 1.0536 0.7919 0.3182 0.0479 0.2916 0.3960 

Reddy UDL 1.0836 0.8074 0.3201 0.0520 0.3011 4.0188 

20 RPIM 

Aydogdu UDL 0.7751 0.7849 0.2235 0.0429 0.2862 0.4670 

Karama UDL 0.7751 0.7849 0.2235 0.0429 0.2862 0.4670 

Mantari UDL 0.7938 0.7965 0.2270 0.0436 0.3004 0.5445 

Shi UDL 0.7759 0.7851 0.2224 0.0430 0.2756 0.4189 

Touratier UDL 0.7734 0.7838 0.2228 0.0428 0.2805 0.4416 

Ambartsumian UDL 0.7514 0.7694 0.2216 0.0404 0.2685 0.4126 

Reddy UDL 0.7716 0.7826 0.2220 0.0427 0.2747 0.4177 

100 RPIM 

Aydogdu UDL 0.6655 0.7732 0.1865 0.0391 0.2747 0.4739 

Karama UDL 0.6655 0.7732 0.1865 0.0391 0.2747 0.4739 

Mantari UDL 0.6770 0.7803 0.1883 0.0394 0.2914 0.5498 

Shi UDL 0.6699 0.7759 0.1871 0.0394 0.2648 4.2310 

Touratier UDL 0.6659 0.7734 0.1866 0.0392 0.2693 0.4475 

Ambartsumian UDL 0.6492 0.7612 0.1868 0.0375 0.2765 4.1451 

Reddy UDL 0.6663 0.7736 0.1867 0.0392 0.2638 0.4228 
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Table 7 - Maximum normalized transverse displacements and stresses for a simply supported 
symmetric square laminate with cross-ply layers (0/90/90/0) subjected to a sinusoidal load 

(SSL), a/h={4,10}. 
          

a/h Solution ESL Load w  σxx  σyy   τxy  τyz  τxz  

4 

Exact Aydogdu SSL 1.9590 0.7040 0.6360 0.0465 0.2600 0.2320 

 Karama SSL 1.9190 0.6690 0.6370 0.0459 0.2530 0.2260 

 Mantari SSL 1.9210 0.7400 0.6350 0.0480 0.2690 0.2540 

 Shi SSL 1.8947 0.6645 0.6316 0.0441 0.2984 0.2306 

 Touratier SSL 1.9098 0.6823 0.6342 0.0450 0.2460 0.2162 

 Ambartsumian SSL - - - - - - 

 Reddy SSL 1.8937 0.6651 0.6322 0.0440 0.2389 0.2064 

 Elasticity SSL 1.9540 0.7200 0.6630 0.0467 0.2920 0.2190 

RPIM Aydogdu SSL 1.9046 0.6662 0.6007 0.0434 0.2392 0.2146 

 Karama SSL 1.9046 0.6662 0.6007 0.0434 0.2392 0.2146 

 Mantari SSL 1.9340 0.7134 0.6017 0.0445 0.2529 0.2414 

 Shi SSL 1.8940 0.6361 0.5987 0.0426 0.2267 0.1966 

 Touratier SSL 1.8961 0.6500 0.5994 0.0428 0.2328 0.2051 

 Ambartsumian SSL 1.8264 0.6186 0.5878 0.0355 0.2195 0.1914 

 Reddy SSL 1.8828 0.6330 0.5972 0.0412 0.2262 0.1959 

10 

Exact Aydogdu SSL 0.7340 0.5520 0.3960 0.0273 0.1670 0.3030 

 Karama SSL 0.7240 0.5530 0.3930 0.0272 0.1630 0.2940 

 Mantari SSL 0.7300 0.5610 0.3950 0.0280 0.1770 0.3350 

 Shi SSL 0.7156 0.5454 0.3885 0.0268 0.1923 0.3069 

 Touratier SSL 0.7206 0.5488 0.3906 0.0270 0.1581 0.2787 

 Ambartsumian SSL - - - - - - 

 Reddy SSL 0.7149 0.5456 0.3888 0.0268 0.1530 0.2640 

 Elasticity SSL 0.6627 0.4989 0.3614 0.0241 0.1292 0.1670 

RPIM Aydogdu SSL 0.7190 0.5241 0.3709 0.0261 0.1547 0.2792 

 Karama SSL 0.7190 0.5241 0.3709 0.0261 0.1547 0.2792 

 Mantari SSL 0.7371 0.5385 0.3749 0.0266 0.1664 0.3205 

 Shi SSL 0.7150 0.5198 0.3683 0.0259 0.1454 0.2516 

 Touratier SSL 0.7155 0.5210 0.3693 0.0259 0.1498 0.2648 

 Ambartsumian SSL 0.6921 0.5085 0.3631 0.0240 0.1411 0.2469 

 Reddy SSL 0.7110 0.5179 0.3674 0.0258 0.1451 0.2508 
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Table 8 - Maximum normalized transverse displacements and stresses for a simply supported 
symmetric square laminate with cross-ply layers (0/90/90/0) subjected to a sinusoidal load 

(SSL), a/h={20,100}. 
          

a/h Solution ESL Load w  σxx  σyy   τxy  τyz  τxz  

20 

Exact Aydogdu SSL 0.5120 0.5400 0.3060 0.0230 0.1340 0.3260 

 Karama SSL 0.5090 0.5410 0.3060 0.0229 0.1310 0.3160 

 Mantari SSL 0.5110 0.5430 0.3060 0.0230 0.1420 0.3620 

 Shi SSL 0.5069 0.5391 0.3054 0.0228 0.1541 0.3299 

 Touratier SSL 0.5083 0.5400 0.3048 0.0229 0.1272 0.2989 

 Ambartsumian SSL - - - - - - 

 Reddy SSL 0.5060 0.5393 0.3043 0.0228 0.1230 0.2825 

 Elasticity SSL 0.5128 0.5430 0.3080 0.0230 0.1560 0.3280 

RPIM Aydogdu SSL 0.5053 0.5128 0.2886 0.0220 0.1243 0.3000 

 Karama SSL 0.5053 0.5128 0.2886 0.0220 0.1243 0.3000 

 Mantari SSL 0.5045 0.5122 0.2882 0.0220 0.1206 0.2839 

 Shi SSL 0.5062 0.5132 0.2882 0.0221 0.1175 0.2692 

 Touratier SSL 0.5045 0.5122 0.2882 0.0220 0.1206 0.2839 

 Ambartsumian SSL 0.4904 0.5028 0.2848 0.0209 0.1140 0.2648 

 Reddy SSL 0.5034 0.5115 0.2876 0.0220 0.1171 0.2684 

100 

Exact Aydogdu SSL 0.4350 0.5380 0.2700 0.0213 0.1200 0.3360 

 Karama SSL 0.4350 0.5380 0.2700 0.0213 0.1180 0.3240 

 Mantari SSL 0.4350 0.5390 0.2710 0.0210 0.1280 0.3720 

 Shi SSL 0.4352 0.5386 0.2708 0.0214 0.1389 0.3388 

 Touratier SSL 0.4352 0.5385 0.2707 0.0213 0.1149 0.3068 

 Ambartsumian SSL - - - - - - 

 Reddy SSL 0.4343 0.5387 0.2708 0.0213 0.1120 0.2897 

 Elasticity SSL 0.4337 0.5382 0.2704 0.0213 0.1008 0.1780 

RPIM Aydogdu SSL 0.4312 0.5102 0.2558 0.0205 0.1128 0.3081 

 Karama SSL 0.4312 0.5102 0.2558 0.0205 0.1128 0.3081 

 Mantari SSL 0.4387 0.5152 0.2574 0.0207 0.1232 0.3526 

 Shi SSL 0.4341 0.5120 0.2565 0.0206 0.1071 0.2758 

 Touratier SSL 0.4315 0.5103 0.2559 0.0205 0.1097 0.2914 

 Ambartsumian SSL 0.4206 0.5019 0.2539 0.0198 0.1143 0.2685 

 Reddy SSL 0.4317 0.5104 0.2559 0.0205 0.1067 0.2753 
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Table 9 - Maximum normalized transverse displacements and stresses for a simply supported 
symmetric square laminate with cross-ply layers (0/90/90/0) subjected to a uniformly distributed 

load (UDL). 

a/h Solution ESL Load w  σxx  σyy   τxy  τyz  τxz  

4 RPIM 

Aydogdu UDL 2.8897 0.9351 0.8886 0.0865 0.4981 0.3720 

Karama UDL 2.8897 0.9351 0.8886 0.0865 0.4981 0.3720 

Mantari UDL 2.9411 1.0075 0.8858 0.0874 0.5188 0.4119 

Shi UDL 2.8673 0.8909 0.8861 0.0854 0.4763 0.3446 

Touratier UDL 2.8731 0.9109 0.8871 0.0853 0.4870 0.3575 

Ambartsumian UDL 2.7516 0.8624 0.8667 0.0692 0.4577 0.3342 

Reddy UDL 2.8496 0.8868 0.8839 0.0839 0.4753 0.3433 

10 RPIM  

Aydogdu UDL 1.1116 0.7880 0.5232 0.0495 0.3850 0.4952 

Karama UDL 1.1116 0.7880 0.5232 0.0495 0.3850 0.4952 

Mantari UDL 1.1389 0.8069 0.5281 0.0506 0.4120 0.5649 

Shi UDL 1.1056 0.7832 0.5192 0.0492 0.3637 0.4478 

Touratier UDL 1.1062 0.7842 0.5209 0.0492 0.3738 0.4705 

Ambartsumian UDL 1.0682 0.7651 0.5115 0.0451 0.3527 0.4391 

Reddy UDL 1.0993 0.7805 0.5180 0.0488 0.3627 0.4464 

20 RPIM 

Aydogdu UDL 0.7908 0.7861 0.3929 0.0405 0.3447 0.5325 

Karama UDL 0.7908 0.7861 0.3929 0.0405 0.3447 0.5325 

Mantari UDL 0.8072 0.7967 0.3960 0.0412 0.3721 0.6129 

Shi UDL 0.7924 0.7872 0.3921 0.0406 0.3259 4.7834 

Touratier UDL 0.7896 0.7854 0.3922 0.0405 0.3345 0.5042 

Ambartsumian UDL 0.7669 0.7708 0.3876 0.0383 0.3180 0.4706 

Reddy UDL 0.7880 0.7847 0.3913 0.0404 0.3247 0.4768 

100 RPIM 

Aydogdu UDL 0.6791 0.7873 0.3400 0.0369 0.3304 0.5461 

Karama UDL 0.6791 0.7873 0.3400 0.0369 0.3304 0.5461 

Mantari UDL 0.6906 0.7944 0.3420 0.0373 0.3626 0.6250 

Shi UDL 0.6837 0.7901 0.3410 0.0372 0.3127 0.4886 

Touratier UDL 0.6796 0.7876 0.3402 0.0370 0.3207 0.5165 

Ambartsumian UDL 0.6622 0.7744 0.3378 0.0355 0.3267 4.7735 

Reddy UDL 0.6800 0.7878 0.3403 0.0370 0.3115 0.4879 
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Table 10 - Maximum normalized transverse displacements and stresses for a simply supported 
symmetric square laminate with cross-ply layers (0/90/0/90/0) subjected to a sinusoidal load 

(SSL). 

a/h Solution ESL Load w  σxx  σyy   τxy  τyz  τxz  

4 RPIM 

Aydogdu SSL 1.5645 0.6297 0.4864 0.0322 0.2186 0.4123 

Karama SSL 1.5645 0.6297 0.4864 0.0322 0.2145 0.4123 

Mantari SSL 1.5324 0.6648 0.4793 0.0324 0.1939 0.4391 

Shi SSL 1.5951 0.6077 0.4931 0.0321 0.2238 0.3912 

Touratier SSL 1.5778 0.6178 0.4894 0.0320 0.2196 0.4014 

Ambartsumian SSL 1.5409 0.5927 0.4840 0.0266 0.2169 0.3817 

Reddy SSL 1.5858 0.6052 0.4917 0.0316 0.2232 0.3898 

10 RPIM 

Aydogdu SSL 0.6186 0.5183 0.3827 0.0227 0.1944 0.4576 

Karama SSL 0.6186 0.5183 0.3827 0.0227 0.1908 0.4576 

Mantari SSL 0.6192 0.5328 0.3771 0.0229 0.1815 0.4782 

Shi SSL 0.6236 0.5121 0.3879 0.0227 0.1927 0.4383 

Touratier SSL 0.6215 0.5151 0.3855 0.0227 0.1922 0.4486 

Ambartsumian SSL 0.6073 0.5032 0.3827 0.0213 0.1881 0.4315 

Reddy SSL 0.6236 0.5121 0.3879 0.0227 0.1927 0.4383 

20« RPIM 

Aydogdu SSL 0.4765 0.5112 0.3522 0.0211 0.1833 0.4739 

Karama SSL 0.4765 0.5112 0.3522 0.0211 0.1799 0.4739 

Mantari SSL 0.4822 0.5193 0.3521 0.0213 0.1749 0.4903 

Shi SSL 0.4811 0.5114 0.3551 0.0212 0.1799 0.4582 

Touratier SSL 0.4776 0.5104 0.3533 0.0211 0.1801 0.4660 

Ambartsumian SSL 0.4660 0.5011 0.3497 0.0202 0.1753 0.4500 

Reddy SSL 0.4784 0.5097 0.3541 0.0211 0.1795 0.4565 

100 RPIM 

Aydogdu SSL 0.4299 0.5100 0.3398 0.0205 0.1802 0.4810 

Karama SSL 0.4299 0.5100 0.3398 0.0205 0.1769 0.4810 

Mantari SSL 0.4371 0.5150 0.3421 0.0207 0.1763 0.4892 

Shi SSL 0.4330 0.5119 0.3410 0.0206 0.1757 0.4650 

Touratier SSL 0.4303 0.5102 0.3400 0.0205 0.1764 0.4736 

Ambartsumian SSL 0.4193 0.5015 0.3359 0.0198 0.1833 0.4519 

Reddy SSL 0.4306 0.5103 0.3401 0.0205 0.1753 0.4645 
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Table 11 - Maximum normalized transverse displacements and stresses for a simply supported 

symmetric square laminate with cross-ply layers (0/90/0/90/0) subjected to a uniformly 
distributed load (UDL). 

a/h Solution ESL Load w  σxx  σyy   τxy  τyz  τxz  

4 RPIM 

Aydogdu UDL 2.3479 0.8921 0.6915 0.0668 0.4472 0.7283 

Karama UDL 2.3479 0.8921 0.6915 0.0668 0.4389 0.7283 

Mantari UDL 2.3015 0.9461 0.6646 0.0664 0.3915 0.7642 

Shi UDL 2.3923 0.8591 0.7111 0.0668 0.4597 0.6984 

Touratier UDL 2.3667 0.8740 0.7010 0.0663 0.4503 0.7128 

Ambartsumian UDL 2.3007 0.8346 0.6961 0.0538 0.4406 0.6794 

Reddy UDL 2.3776 0.8556 0.7091 0.0656 0.4587 0.6959 

10 RPIM 

Aydogdu UDL 0.9585 0.7828 0.5584 0.0427 0.4344 0.8320 

Karama UDL 0.9585 0.7828 0.5584 0.0427 0.4264 0.8320 

Mantari UDL 0.9587 0.8036 0.5459 0.0432 0.4053 0.8635 

Shi UDL 0.9721 0.7768 0.5696 0.0428 0.4307 0.8027 

Touratier UDL 0.9632 0.7784 0.5636 0.0426 0.4292 0.8173 

Ambartsumian UDL 0.9399 0.7597 0.5600 0.0397 0.4176 0.7875 

Reddy UDL 0.9666 0.7742 0.5681 0.0425 0.4298 0.8000 

20 RPIM 

Aydogdu UDL 0.7518 0.7869 0.5154 0.0377 0.4258 0.8677 

Karama UDL 0.7518 0.7869 0.5154 0.0377 0.4179 0.8677 

Mantari UDL 0.7605 0.7986 0.5137 0.0382 0.4074 0.8953 

Shi UDL 0.7592 0.7874 0.5202 0.0380 0.4170 0.8402 

Touratier UDL 0.7536 0.7859 0.5173 0.0377 0.4177 0.8539 

Ambartsumian UDL 0.7348 0.7711 0.5122 0.0361 0.4067 0.8254 

Reddy UDL 0.7550 0.7849 0.5189 0.0377 0.4159 0.8371 

100 RPIM 

Aydogdu UDL 0.6841 0.7914 0.4971 0.0357 0.4241 0.8822 

Karama UDL 0.6841 0.7914 0.4971 0.0357 0.4163 0.8822 

Mantari UDL 0.6953 0.7987 0.5000 0.0361 0.4157 0.8974 

Shi UDL 0.6890 0.7942 0.4988 0.0360 0.4135 0.8530 

Touratier UDL 0.6847 0.7917 0.4974 0.0358 0.4149 0.8688 

Ambartsumian UDL 0.6670 0.7779 0.4915 0.0345 0.4261 0.8314 

Reddy UDL 0.6853 0.7919 0.4977 0.0358 0.4122 0.8522 
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Table 12 - Maximum normalized transverse displacements and stresses for a simply supported 
symmetric square laminate with cross-ply layers (0/90/90/0/90/90/0) subjected to a sinusoidal 

load (SSL). 

a/h Solution ESL Load w  σxx  σyy   τxy  τyz  τxz  

4 RPIM 

Aydogdu SSL 1.5420 0.6195 0.5033 0.0310 0.1214 0.4066 

Karama SSL 1.5420 0.6195 0.5033 0.0310 0.1110 0.4066 

Mantari SSL 1.5102 0.6542 0.5038 0.0313 0.0764 0.4330 

Shi SSL 1.5729 0.5980 0.5049 0.0308 0.1371 0.3860 

Touratier SSL 1.5554 0.6078 0.5036 0.0307 0.1241 0.3959 

Ambartsumian SSL 1.5196 0.5837 0.4951 0.0255 0.1331 0.3763 

Reddy SSL 1.5637 0.5957 0.5033 0.0303 0.1367 0.3846 

10 RPIM 

Aydogdu SSL 0.6123 0.5177 0.3999 0.0223 0.1033 0.4428 

Karama SSL 0.6123 0.5177 0.3999 0.0223 0.1033 0.4428 

Mantari SSL 0.6137 0.5331 0.3962 0.0226 0.0746 0.4614 

Shi SSL 0.6206 0.5127 0.4054 0.0225 0.1238 0.4268 

Touratier SSL 0.6151 0.5143 0.4023 0.0223 0.1137 0.4347 

Ambartsumian SSL 0.6010 0.5022 0.3987 0.0210 0.1208 0.4185 

Reddy SSL 0.6171 0.5110 0.4043 0.0223 0.1235 0.4254 

20 RPIM 

Aydogdu SSL 0.4747 0.5111 0.3743 0.0210 0.1087 0.4560 

Karama SSL 0.4642 0.5008 0.3709 0.0201 0.1149 0.4348 

Mantari SSL 0.4807 0.5196 0.3749 0.0213 0.0733 0.4696 

Shi SSL 0.4792 0.5111 0.3770 0.0211 0.1178 0.4429 

Touratier SSL 0.4757 0.5102 0.3752 0.0210 0.1087 0.4493 

Ambartsumian SSL 0.4642 0.5008 0.3709 0.0201 0.1149 0.4348 

Reddy SSL 0.4765 0.5094 0.3760 0.0210 0.1175 0.4413 

100 RPIM 

Aydogdu SSL 0.4298 0.5100 0.3640 0.0205 0.1079 0.4619 

Karama SSL 0.4298 0.5100 0.3640 0.0205 0.0987 0.4619 

Mantari SSL 0.4370 0.5150 0.3666 0.0207 0.0745 0.4672 

Shi SSL 0.4329 0.5119 0.3653 0.0206 0.1161 0.4489 

Touratier SSL 0.4302 0.5102 0.3642 0.0205 0.1076 0.4559 

Ambartsumian SSL 0.4192 0.5015 0.3595 0.0198 0.1208 0.4360 

Reddy SSL 0.4305 0.5103 0.3643 0.0205 0.1159 0.4484 

 
 
As can be seen, for example in the case of the laminate (0/90/0) from Table 3 to Table 6, the 

solutions obtained for the non-dimensionalized transverse displacements and normal stresses 
computed with the RPIM are considerably close to the correspondent exact solutions, especially 
in Shi’s theory. In the case of the shear stresses, it can be seen that they are in good agreement 
with each other. The percentage errors regarding the correspondent exact solutions are in most 
cases inferior to 7%. The RPIM shows good performance and accuracy in the elasto-static analysis 
of composite plates since the aforementioned conclusions are extensible to other laminates, as can 
be observed in the remaining Tables. Additionally, there cannot be observed numerical errors 
concerning the thickness of the plate when a/h=100, which shows that the RPIM is not vulnerable 
to the shear locking phenomenon.  

 
 



Journal of Computational Applied Mechanics 2021, 52(4): 682-716 710 
 

Table 13 - Maximum normalized transverse displacements and stresses for a simply supported 
symmetric square laminate with cross-ply layers (0/90/90/0/90/90/0) subjected to a uniformly 

distributed load (UDL). 

a/h Solution ESL Load w  σxx  σyy   τxy  τyz  τxz  

4 RPIM 

Aydogdu UDL 2.3146 0.8787 0.7115 0.0642 0.2421 0.7296 

Karama UDL 2.3146 0.8787 0.7115 0.0642 0.2214 0.7296 

Mantari UDL 2.2709 0.9331 0.6959 0.0639 0.1500 0.7658 

Shi UDL 2.3584 0.8459 0.7244 0.0642 0.2749 0.6998 

Touratier UDL 2.3330 0.8606 0.7175 0.0638 0.2483 0.7141 

Ambartsumian UDL 2.2684 0.8224 0.7086 0.0517 0.2640 0.6802 

Reddy UDL 2.3439 0.8425 0.7223 0.0631 0.2743 0.6972 

10 RPIM 

Aydogdu UDL 0.9500 0.7819 0.5887 0.0418 0.2426 0.8170 

Karama UDL 0.9500 0.7819 0.5887 0.0418 0.2219 0.8170 

Mantari UDL 0.9517 0.8045 0.5788 0.0424 0.1599 0.8455 

Shi UDL 0.9629 0.7747 0.5991 0.0420 0.2657 0.7907 

Touratier UDL 0.9543 0.7769 0.5934 0.0418 0.2441 0.8037 

Ambartsumian UDL 0.9309 0.7577 0.5886 0.0389 0.2580 0.7754 

Reddy UDL 0.9574 0.7721 0.5975 0.0417 0.2652 0.7880 

20 RPIM 

Aydogdu UDL 0.7501 0.7861 0.5556 0.0374 0.2407 0.8474 

Karama UDL 0.7501 0.7861 0.5556 0.0374 0.2201 0.8474 

Mantari UDL 0.7594 0.7985 0.5549 0.0379 0.1625 0.8703 

Shi UDL 0.7573 0.7861 0.5603 0.0376 0.2604 0.8245 

Touratier UDL 0.7517 0.7847 0.5573 0.0374 0.2405 0.8358 

Ambartsumian UDL 0.7329 0.7698 0.5511 0.0357 0.2541 0.8095 

Reddy UDL 0.7531 0.7835 0.5589 0.0374 0.2597 0.8214 

100 RPIM 

Aydogdu UDL 0.6851 0.7903 0.5417 0.0356 0.2411 0.8601 

Karama UDL 0.6851 0.7903 0.5417 0.0356 0.2205 0.8601 

Mantari UDL 0.6963 0.7977 0.5451 0.0360 0.1666 0.8700 

Shi UDL 0.6899 0.7932 0.5435 0.0358 0.2594 0.8359 

Touratier UDL 0.6857 0.7906 0.5420 0.0356 0.2402 0.8491 

Ambartsumian UDL 0.6679 0.7768 0.5350 0.0343 0.2670 0.8144 

Reddy UDL 0.6862 0.7908 0.5422 0.0356 0.2587 0.8351 

By observation of Table 14, which shows the percentage errors of the solutions presented in 
Table 3 and Table 4 regarding the 3D-Elasticity solutions, it can be seen the errors for the six 
values presented are lowered as the plate goes thinner. Nevertheless, it is established that, for 
thinner plates, there is no significant advantage of using HSDTs – the FSDT handles sufficiently 
well this kind of problem. For thicker plates, the HSDTs are needed in order to predict better the 
transverse shear stresses. That being stated, it can be observed in Table 14 that the shear stresses 
computed with Mantari’s theory are the ones closer to the 3D-Elasticity solutions. This fact 
supports the idea of Mantari (which was referred in section 3.1) that the errors between the 3D 
Elasticity and the 2D solutions of Mantari are lower in the majority of the calculations than other 
existing high-order shear deformation theories.  

Concerning the laminates (0/90/0) and (0/90/90/0), subjected to uniformly distributed loads and 
the laminates (0/90/0/90/0) and (0/90/90/0/90/90/0) subjected to the two considered types of load, 
the solutions obtained from the RPIM could not be compared with analytical solutions since they 
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are not available, but they are presented in this paper enhancing the state-of-the-art concerning 
these laminates and the used HSDTs.  

In this work, the graphs of the non-dimensionalized normal and transverse shear stresses along 
with the thickness of a laminate were also obtained. For the simply supported square laminate with 
the stacking sequence (0/90/90/0), subjected to a sinusoidal load (and a/h=10), the variation of the 
non-dimensionalized normal and transverse shear stresses across the thickness of the laminate is 
represented in Figure 5. The distribution of the stresses is represented for the HSDTs in study but 
also for the FSDT (RPIM and exact solution). From Figure 5(a) and (b), where it is represented 
the distribution of the normal stresses, it can be concluded that the plots are almost 
indistinguishable, as expected. However, in the distribution of the transverse shear stresses, a more 
consistent comparison can be performed between the HSDTs and the FSDT. As seen in Figure 
5(c) and (d), the FSDT predicts constant shear stresses along with the plate’s thickness, violating, 
as expected, the traction boundary conditions. The same situation does not occur with the HSDTs, 
which provide more realistic distributions of the shear stresses (despite the discontinuities at the 
layer interface). Once again, it is Mantari’s theory the one that predicts the highest shear stresses, 
which leads to solutions closer to the 3D-Elasticity. 

 
 

  
(a) (b) 

  

  
(c) (d) 

 
Figure 5 – Non-dimensionalized stresses for a simply supported symmetric square laminate 

with cross-ply layers (0/90/90/0) subjected to a sinusoidal load (SSL), a/h=4. (a) xxσ  ; (b) yyσ  ; (c) 

yzτ  ; (d) xzτ  . 
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Table 14 – Relative errors (%) for the maximum normalized transverse displacements and 
stresses regarding the 3D-Elasticity exact solutions for a simply supported symmetric square 

laminate with cross-ply layers (0/90/0) subjected to a sinusoidal load (SSL). 

  Relative errors (%) regarding the 3D-Elasticity exact solutions 

a/h ESL w  σxx  σyy   τxy  τyz  τxz  

4 

Aydogdu 3.9 2.3 14.9 3.2 16.7 25.9 

Karama 3.9 2.3 14.9 3.2 16.7 25.9 

Mantari 2.7 -4.8 16.0 1.0 13.7 17.4 

Shi 4.3 7.0 14.6 4.8 20.0 31.7 

Touratier 4.3 4.8 14.7 4.6 18.4 29.0 

Ambartsumian 7.6 9.6 15.7 19.6 23.3 33.3 

Reddy 4.8 7.4 14.7 6.1 20.2 31.9 

10 

Aydogdu - 7.2 10.8 6.6 16.4 27.5 

Karama - 7.2 10.8 6.6 16.4 27.5 

Mantari - 4.4 9.3 4.5 12.3 15.9 

Shi - 8.2 11.6 7.3 20.0 34.7 

Touratier - 7.9 11.3 7.3 18.3 31.3 

Ambartsumian - 10.2 12.4 14.5 23.4 35.8 

Reddy - 8.6 11.8 8.0 20.3 34.9 

20 

Aydogdu - 5.9 7.7 5.1 13.1 29.6 

Karama - 5.9 7.7 5.1 13.1 29.6 

Mantari - 4.3 6.7 3.4 9.3 17.8 

Shi - 5.9 8.0 4.7 16.2 36.9 

Touratier - 6.0 7.9 5.1 14.8 33.5 

Ambartsumian - 7.7 8.4 10.3 19.7 37.9 

Reddy - 6.2 8.1 5.1 16.4 25.5 

100 

Aydogdu 0.6 5.2 5.4 3.8 -4.4 - 

Karama 0.6 5.2 5.4 3.8 -4.4 - 

Mantari -1.2 4.2 4.8 2.8 -9.5 - 

Shi -0.1 4.8 5.2 3.3 -1.3 - 

Touratier 0.5 5.1 5.4 3.8 -2.6 - 

Ambartsumian 3.0 6.6 5.7 7.5 -7.4 - 

Reddy 0.5 5.1 5.4 3.8 -0.9 - 

5 Conclusions  
The RPIM is used in this work for the bending analysis of symmetric cross-ply laminates. The 

accuracy of the RPIM is highlighted when the present solutions are compared to the correspondent 
exact solutions. On the other hand, the robustness is shown by the obtained linear asymptotic 
convergences and stable solutions. The RPIM used in this work is a ‘not truly’ meshless method 
since it uses a background nodal independent integration mesh where the Gauss-Legendre 
quadrature is implemented. However, being a ‘not truly’ meshless method does not decrease its 
accuracy or efficiency. In fact, because RPIM is an interpolator meshless method and uses a 
background lattice to build the integration mesh, it can be combined straightforwardly with the 
FEM, allowing hybrid FEM-meshless analyses - both methods share the same integration scheme. 
Since the nodal connectivity is enforced by the overlap of ’influence-domains’ (which are based 
on radial searches), the method can be extended to more complex analyses of composite plates 
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such as large deformation problems or fracture mechanics. These mentioned problems are more 
easily analysed using the RPIM or other meshless methods since in these methods there are no 
mesh distortions. This later remark gives meshless methods a clear advantage over the FEM. 
However, despite the benefit of using meshless methods can be higher in areas where cracks or 
large deformations are involved, they can still be robust and accurate numerical tools (sometimes 
even more accurate than the FEM) in every other area covered so far by the FEM (several distinct 
linear-elastic solid mechanics analysis [26], [27], [60], [61] were already performed in the 
literature using the RPIM).  

   In this work, symmetric composite laminated plates were subjected to bending and the plate’s 
in-plane displacements were approximated using different High-Order Shear Deformation 
Theories (HSDTs). The results presented in the work mark the first time the RPIM is used in this 
type of analysis. Notice RPIM was used in the past for the bending analysis of plates,  but 
considering the first order deformation theory (FSDT) [27]. HSDTs can describe better the 
kinematics of a plate when compared with the FSDT because they possess transverse shear 
functions capable to represent the nonlinear variation of transverse shear stresses through the 
thickness of the plate. Thus, this work extends the field of application of the RPIM by presenting 
new and accurate numerical solutions that aim to enhance the state-of-the-art concerning plates’ 
theory and computational methods, and proving the great potential of advanced discretization 
techniques like the RPIM.  

Acknowledges 
The authors truly acknowledge the funding provided by Ministério da Ciência, Tecnologia e 

Ensino Superior – Fundação para a Ciência e a Tecnologia (Portugal), under grant 
SFRH/BD/121019/2016, and by project funding MIT-EXPL/ISF/0084/2017. Additionally, the 
authors gratefully acknowledge the funding of Project NORTE-01-0145-FEDER-000022 – 
SciTech – Science and Technology for Competitive and Sustainable Industries, co-financed by 
Programa Operacional Regional do Norte (NORTE2020), through Fundo Europeu de 
Desenvolvimento Regional (FEDER). 

References  
[1] S. H. M. Sadek, J. Belinha, M. P. L. Parente, R. M. Natal Jorge, J. M. A. C. de Sá, and A. 

J. M. Ferreira, “The analysis of composite laminated beams using a 2D interpolating 
meshless technique,” Acta Mech. Sin., vol. 34, no. 1, pp. 99–116, 2018, doi: 
10.1007/s10409-017-0701-8. 

[2] M. M. Khoram, M. Hosseini, A. Hadi, and M. Shishehsaz, “Bending Analysis of 
Bidirectional FGM Timoshenko Nanobeam Subjected to Mechanical and Magnetic Forces 
and Resting on Winkler–Pasternak Foundation,” Int. J. Appl. Mech., vol. 12, no. 08, p. 
2050093, Sep. 2020, doi: 10.1142/S1758825120500933. 

[3] J. C. Steuben, A. P. Iliopoulos, and J. G. Michopoulos, “Discrete element modeling of 
particle-based additive manufacturing processes,” Comput. Methods Appl. Mech. Eng., vol. 
305, pp. 537–561, 2016, doi: 10.1016/j.cma.2016.02.023. 

[4] A. Barati, A. Hadi, M. Z. Nejad, and R. Noroozi, “On vibration of bi-directional functionally 
graded nanobeams under magnetic field,” Mech. Based Des. Struct. Mach., pp. 1–18, Feb. 
2020, doi: 10.1080/15397734.2020.1719507. 

[5] M. Hosseini, M. Shishesaz, and A. Hadi, “Thermoelastic analysis of rotating functionally 
graded micro/nanodisks of variable thickness,” Thin-Walled Struct., vol. 134, no. October 
2018, pp. 508–523, 2019, doi: 10.1016/j.tws.2018.10.030. 

[6] M. Shishesaz, M. Hosseini, K. Naderan Tahan, and A. Hadi, “Analysis of functionally 
graded nanodisks under thermoelastic loading based on the strain gradient theory,” Acta 
Mech., vol. 228, no. 12, pp. 4141–4168, 2017, doi: 10.1007/s00707-017-1939-8. 

[7] M. Gharibi, M. Zamani Nejad, and A. Hadi, “Elastic analysis of functionally graded rotating 



Journal of Computational Applied Mechanics 2021, 52(4): 682-716 714 
 

thick cylindrical pressure vessels with exponentially-varying properties using power series 
method of Frobenius,” J. Comput. Appl. Mech., vol. 48, no. 1, pp. 89–98, 2017, doi: 
10.22059/jcamech.2017.233633.143. 

[8] M. Zamani Nejad, M. Jabbari, and A. Hadi, “A review of functionally graded thick 
cylindrical and conical shells,” J. Comput. Appl. Mech., vol. 48, no. 2, pp. 357–370, 2017, 
doi: 10.22059/jcamech.2017.247963.220. 

[9] N. J. Pagano and H. J. Hatfield, “Elastic Behavior of Multilayered Bidirectional 
Composites,” AIAA J., vol. 10, no. 7, pp. 931–933, 1972, doi: 10.2514/3.50249. 

[10]  a J. M. Ferreira, “Analysis of Composite Plates Using a Layerwise Theory and 
Multiquadrics Discretization,” Mech. Adv. Mater. Struct., vol. 12, no. 2, pp. 99–112, 2005, 
[Online]. Available: http://dx.doi.org/10.1080/15376490490493952. 

[11] L. Iurlaro, M. Gherlone, M. Di Sciuva, and A. Tessler, “Refined Zigzag Theory for 
laminated composite and sandwich plates derived from Reissner’s Mixed Variational 
Theorem,” Compos. Struct., vol. 133, pp. 809–817, 2015, doi: 
10.1016/j.compstruct.2015.08.004. 

[12] E. Reissner, “On the theory of transverse bending of elastic plates,” Int. J. Solids Struct., 
vol. 12, no. 8, pp. 545–554, 1976. 

[13] E. Reissner, “A consistent treatment of transverse shear deformations in laminated 
anisotropic plates,” AIAA J., vol. 10, no. 5, pp. 716–718, 1972, doi: 
http://dx.doi.org/10.2514/3.50194. 

[14] E. Reissner, “The effect of transverse shear deformations on the bending of elastic plates,” 
J. Appl. Mech, vol. 12, pp. A69–A77, 1945. 

[15] R. D. Mindlin, “Influence of Rotatory Inertia and Shear on Flexural Motions of Isotropic, 
Elastic Plates,” J. Appl. Mech., no. 18, pp. 31–38, 1951. 

[16] T. N. Nguyen, C. H. Thai, and H. Nguyen-Xuan, “On the general framework of high order 
shear deformation theories for laminated composite plate structures: A novel unified 
approach,” Int. J. Mech. Sci., vol. 110, pp. 242–255, 2016, doi: 
10.1016/j.ijmecsci.2016.01.012. 

[17] A. J. M. Ferreira, C. M. C. Roque, and P. a. L. S. Martins, “Analysis of composite plates 
using higher-order shear deformation theory and a finite point formulation based on the 
multiquadric radial basis function method,” Compos. Part B Eng., vol. 34, no. 7, pp. 627–
636, 2003, doi: 10.1016/S1359-8368(03)00083-0. 

[18] J.N. Reddy, “Mechanics of laminated composite plates and shells: theory and analysis.” 
CRC Press LLC, Boca Raton, Florida, 2004, doi: 10.1007/978-1-4471-0095-9. 

[19] G. Shi, “A new simple third-order shear deformation theory of plates,” Int. J. Solids Struct., 
vol. 44, no. 13, pp. 4399–4417, 2007, doi: 10.1016/j.ijsolstr.2006.11.031. 

[20] S. A. Ambartsumian, “On the theory of bending of anisotropic plates and shallow shells,” 
J. Appl. Math. Mech., vol. 24, no. 2, pp. 500–514, Jan. 1960, doi: 10.1016/0021-
8928(60)90052-6. 

[21] M. Touratier, “An efficient standard plate theory,” Int. J. Eng. Sci., vol. 29, no. 8, pp. 901–
916, 1991. 

[22] M. Karama, K. S. Afaq, and S. Mistou, “A new theory for laminated composite plates,” 
Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl., vol. 223, no. 2, pp. 53–62, 2009, doi: 
10.1243/14644207JMDA189. 

[23] M. Aydogdu, “A new shear deformation theory for laminated composite plates,” Compos. 
Struct. J., no. 89, pp. 94–101, 2008. 

[24] K. P. Soldatos, “A transverse shear deformation theory for homogeneous monoclinic 
plates,” Acta Mech., vol. 94, no. 3–4, pp. 195–220, 1992. 

[25] N. El, A. Tounsi, N. Ziane, I. Mechab, E. Abbes, and A. Bedia, “A new hyperbolic shear 
deformation theory for buckling and vibration of functionally graded sandwich plate,” Int. 



715                                                                                                                            Rodrigues et al. 

 

 
 

J. Mech. Sci., vol. 53, no. 4, pp. 237–247, 2011, doi: 10.1016/j.ijmecsci.2011.01.004. 
[26] J. Belinha, Meshless Methods in Biomechanics: Bone Tissue Remodelling Analysis. Porto: 

Springer International Publishing, 2014. 
[27] J. Belinha, A. L. Araújo, A. J. M. Ferreira, L. M. J. S. Dinis, and R. M. N. Jorge, “The 

analysis of laminated plates using distinct advanced discretization meshless techniques,” 
Compos. Struct., vol. 143, pp. 165–179, 2016, doi: 10.1016/j.compstruct.2016.02.021. 

[28] R. A. Gingold and J. J. Monaghan, “Smoothed particle hydrodynamics: theory and 
application to non-spherical stars,” Mon. Not. R. Astron. Soc., vol. 181, no. 3, pp. 375–389, 
1977, doi: 10.1093/mnras/181.3.375. 

[29] T. Belytschko, Y. Y. Lu, and L. Gu, “Element-free Galerkin methods,” International 
Journal for Numerical Methods in Engineering, vol. 37, no. 2. pp. 229–256, 1994, doi: 
10.1002/nme.1620370205. 

[30] S. Viana, D. Rodger, and H. Lai, “Overview of meshless methods,” ICS Newsl., vol. 14, no. 
2, p. 4, 2007, [Online]. Available: 
http://scholar.google.com/scholar?hl=en&btnG=Search&q=intitle:Overview+of+Meshless
+Methods#6. 

[31] W. K. Liu, S. Jun, S. Li, J. Adee, and T. Belytschko, “Reproducing kernel particle methods 
for structural dynamics,” Int. J. Numer. Methods Eng., vol. 38, no. 10, pp. 1655–1679, 1995, 
doi: 10.1002/nme.1620381005. 

[32] S. N. Atluri and T. Zhu, “A new Meshless Local Petrov-Galerkin (MLPG) approach in 
computational mechanics,” Comput. Mech., vol. 22, no. 2, pp. 117–127, 1998. 

[33] G. R. Liu and Y. T. Gu, “A point interpolation method for two-dimensional solids,” Int. J. 
Numer. Methods Eng., vol. 50, no. 4, pp. 937–951, 2001. 

[34] G. R. Liu, “A point assembly method for stress analysis for two-dimensional solids,” Int. J. 
Solids Struct., vol. 39, no. 1, pp. 261–276, 2001. 

[35] J. G. Wang and G. R. Liu, “A point interpolation meshless method based on radial basis 
functions,” Int. J. Numer. Methods Eng., vol. 54, no. 11, pp. 1623–1648, 2002. 

[36] L. M. J. S. Dinis, R. M. N. Jorge, and J. Belinha, “Analysis of 3D solids using the natural 
neighbour radial point interpolation method,” Comput. Methods Appl. Mech. Eng., vol. 196, 
no. 13–16, pp. 2009–2028, 2007, doi: 10.1016/j.cma.2006.11.002. 

[37] P. Krysl and T. Belytschko, “Analysis of Thin Plates by the Element-Free Galerkin 
Method,” Comput. Mech., vol. 17, no. 1–2, pp. 26–35, 1995. 

[38] J. Belinha and L. Dinis, “Analysis of plates and laminates using the element-free Galerkin 
method,” Comput. Struct., vol. 84, no. 22, pp. 1547–1559, 2006. 

[39] J. Belinha, “Nonlinear analysis of plates and laminates using the element free Galerkin 
method,” Compos. Struct., vol. 78, no. 3, pp. 337–350, 2007, doi: 
10.1016/j.compstruct.2005.10.007. 

[40] K. Y. Dai, G. R. Liu, K. M. Lim, and X. L. Chen, “A mesh-free method for static and free 
vibration analysis of shear deformable laminated composite plates,” J. Sound Vib., vol. 269, 
no. 3–5, pp. 633–652, 2004, doi: 10.1016/S0022-460X(03)00089-0. 

[41] B. M. Donning and W. K. Liu, “Meshless methods for shear-deformable beams and plates,” 
Comput. Methods Appl. Mech. Eng., vol. 152, no. 1, pp. 47–71, 1998. 

[42] M. Levinson, “An accurate simple theory of the statics and dynamics of elastic plates,” 
Mech. Res. Commun, no. 7, pp. 343–350, 1980. 

[43] M. Aydogdu, “A new shear deformation theory for laminated composite plates,” Compos. 
Struct., vol. 89, no. 1, pp. 94–101, 2009, doi: 10.1016/j.compstruct.2008.07.008. 

[44] S. Xiang, G. Li, W. Zhang, and M. Yang, “A meshless local radial point collocation method 
for free vibration analysis of laminated composite plates,” Compos. Struct., vol. 93, no. 2, 
pp. 280–286, 2011, doi: 10.1016/j.compstruct.2010.09.018. 

[45] A. J. M. Ferreira, “A formulation of the multiquadric radial basis function method for the 



Journal of Computational Applied Mechanics 2021, 52(4): 682-716 716 
 

analysis of laminated composite plates,” Compos. Struct., vol. 59, no. 3, pp. 385–392, 2003. 
[46] A. J. M. Ferreira, “Static analysis of functionally graded plates using third-order shear 

deformation theory and a meshless method,” Compos. Struct., vol. 69, no. 4, pp. 449–457, 
2005, doi: 10.1016/j.compstruct.2004.08.003. 

[47] A. J. M. Ferreira, C. M. C. Roque, R. M. N. Jorge, G. E. Fasshauer, and R. C. Batra, 
“Analysis of Functionally Graded Plates by a Robust Meshless Method,” Mech. Adv. Mater. 
Struct., vol. 14, no. 8, pp. 577–587, 2007, doi: 10.1080/15376490701672732. 

[48] C. Wu and K. Chiu, “RMVT-based meshless collocation and element-free Galerkin 
methods for the quasi-3D free vibration analysis of multilayered composite and FGM 
plates,” Compos. Struct., vol. 93, no. 5, pp. 1433–1448, 2011, doi: 
10.1016/j.compstruct.2010.11.015. 

[49] D. F. Gilhooley and M. A. Mccarthy, “Analysis of thick functionally graded plates by using 
higher-order shear and normal deformable plate theory and MLPG method with radial basis 
functions,” Compos. Struct., vol. 80, no. 4, pp. 539–552, 2007, doi: 
10.1016/j.compstruct.2006.07.007. 

[50] J. R. Xiao, D. F. Gilhooley, and M. A. Mccarthy, “Analysis of thick composite laminates 
using a higher-order shear and normal deformable plate theory ( HOSNDPT ) and a 
meshless method,” Compos. Part B Eng., vol. 39, no. 2, pp. 414–427, 2008, doi: 
10.1016/j.compositesb.2006.12.009. 

[51] L. M. J. S. Dinis, R. M. Natal Jorge, and J. Belinha, “Analysis of plates and laminates using 
the natural neighbour radial point interpolation method,” Eng. Anal. Bound. Elem., vol. 32, 
no. 3, pp. 267–279, 2008, doi: 10.1016/j.enganabound.2007.08.006. 

[52] J. Belinha, L. M. J. S. Dinis, and R. M. N. Jorge, “The Natural Neighbour Radial Point 
Interpolation Method: Solid Mechanics and Mechanobiology Applications,” Fac. Eng. da 
Univ. do Porto, 2010. 

[53] R. L. Hardy, “Theory and applications of the multiquadric-biharmonic method,” Comput. 
Math. Applic., vol. 19, no. 8/9, pp. 163–208, 1990, doi: 10.1017/CBO9781107415324.004. 

[54] M. V. V. Murthy, “An improved transverse shear deformation theory for laminated 
anisotropic plates,” NASA Tech. Pap. 1903, no. November, 1981. 

[55] Z. Kaczkowski, Plates. In Statical calculations. Warszawa (in Polish): Arkady, 1968. 
[56] V. Panc, Theories of elastic plates, 1st ed. Prague: Academia, 1975. 
[57] A. Idlbi, M. Karama, and M. Touratier, “Comparison of various laminated plate theories,” 

Compos. Struct., vol. 37, no. 2, pp. 173–184, 1997, [Online]. Available: 
http://www.sciencedirect.com/science/article/pii/S0263822397800104. 

[58] J. L. Mantari, A. S. Oktem, and C. Guedes Soares, “A new higher order shear deformation 
theory for sandwich and composite laminated plates,” Compos. Part B Eng., vol. 43, no. 3, 
pp. 1489–1499, 2012, doi: 10.1016/j.compositesb.2011.07.017. 

[59] X. Wang and G. Shi, “A refined laminated plate theory accounting for the third-order shear 
deformation and interlaminar transverse stress continuity,” Appl. Math. Model., vol. 39, no. 
18, pp. 5659–5680, 2015, doi: 10.1016/j.apm.2015.01.030. 

[60] D. E. S. Rodrigues, J. Belinha, F. M. A. Pires, L. M. J. S. Dinis, and R. M. N. Jorge, 
“Homogenization technique for heterogeneous composite materials using meshless 
methods,” Eng. Anal. Bound. Elem., 2018, doi: 10.1016/j.enganabound.2017.12.012. 

[61] L. D. C. Ramalho, R. D. S. G. Campilho, J. Belinha, and L. F. M. da Silva, “Static strength 
prediction of adhesive joints: A review,” Int. J. Adhes. Adhes., vol. 96, p. 102451, 2020, 
doi: https://doi.org/10.1016/j.ijadhadh.2019.102451. 

  


