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Abstract

The bending analysis of composite structures islysyerformed using the Finite Element
Method (FEM), which is also used in many fieldsesfgineering. However, other efficient,
accurate, and robust numerical methods can benatiees to FEM’'s widespread use. This work
focus on a meshless discretization technique Ridwial Point Interpolation Method (RPIM) —
which only requires an unstructured nodal distidiutto discretize the problem domain. The
numerical integration of the Galerkin weak form gming the plate’s bending problem is
performed using a background integration mesh. fid@al connectivity is enforced using the
‘influence-domain’ concept which is based on a ahdearch of nodes closer to an integration
point. Thus, in this work, the RPIM is used for firet time to analyse the bending behaviour of
symmetric cross-ply composite laminated platesgusguivalent single layer (ESL) formulations,
following different transverse high-order shearadefation theories (HSDTSs). Varying the plate’s
geometry and stacking sequences, the applied laadthe plate model, several composite
laminated plates are analysed. In the end, the lesssisolutions are compared with analytical
solutions available in the literature. The accuratthe meshless approach is proved and several
new numerical solutions for the bending of symned&timinates are proposed.

Keywords. Symmetric Laminated Plates; High-Order Shear Deé&tion Theories; Meshless
Method; Radial Point Interpolation Method (RPIM).

1 Introduction

Beams [1]-[4], plates and shells are key structimesngineering. The recent progress in
materials’ science made possible the manufactwintipese structures as advanced composite
structures like laminates, sandwich panels or fanatly graded [5]-[8] materials.

In the case of plates, they are three-dimensio82) tructures but can be treated as two-
dimensional (2D) solids since their thickness iscmsmaller than their other two dimensions.
Using mostly composite laminates, the applicatibrihese structures may be found in many
engineering fields, such as aircraft or aerospareponents, in which it is vital to accurately
predict their behaviour and avoid structural faakrTo predict the mechanical behaviour of such
structures, three types of 2D plate models are comlynused and frequently chosen over the
classical 3D elasticity deformation theory [9], wimicannot be generically applied to problems
with more complex geometries. These 2D plate modedsthe Equivalent Single Layer (ESL)
theories, the layerwise (LW) theories (which coesithdependent degrees of freedom for each
layer resulting in accurate results but also companally expensive) [10] and the zig-zag (Z2)
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theories [11] (where the kinematic behaviour iscdégd on the whole laminate, and local
refinement approach acts on the scale of the kyetness [11]). If the plate is thin, simple plate
ESL theories, such as the Classical Plate Theoty?{¢ or the First-Order Shear Deformation
Theory (FSDT) [12]-[15] by Reissner-Mindlin, can bbged to predict, in a satisfactory way, the
stress tensor installed in each point of the p[a&. Nevertheless, the CLPT neglects the
transverse shear strain and in the FSDT the digioib of the transverse shear strain is constant
along with the plate’s thickness, violating thectiran boundary conditions at the top and bottom
surface of plates [16]. Due to this last charasteriof the FSDT, shear correction factors are
required in order to satisfy those conditions. Thbe CLPT and the FSDT can only reasonably
the kinematics of thin composite laminated plated.[Thus, for thick plates, other approaches
have to be taking into account. Despite being ateuplate models, LW and ZZ theories yield
solutions linked to higher computational costs whempared with other solutions proposed in
the literature, such as the ESL formulation follogviHigh-order shear deformation theories
(HSDTSs). These theories can describe better treniatics of a plate since they possess transverse
shear functions capable to represent the nonlip@eabolic variation of transverse shear stresses
through-thickness [16] and, at the same time,[fili& traction boundary condition. The transverse
shear functions used in the HSDTs can have differethematical formulations. In the literature,
it can be found transverse shear functions usingnpmial [18]-[20], trigonometric [21],
exponential [22],[23] or hyperbolic [24], [25] futions.

To analyse the mechanical behaviour of compositéiated plates, it is common to use numerical
approaches. The finite element method (FEM) isntlest used numerical tool in computational
mechanics and particularly in the analysis of cositpolaminates. The FEM discretizes the
problem domain in smaller parts called elementsmdJthis approach, the considered problem can
be analysed in a local perspective and, subsegqudhtt assemblage of the elements can be
performed considering their connectivity (formihgt-EM’s mesh). The field variable in the FEM
is approximated within each element using shapetimms. Unlike the FEM, in meshless methods,
for instance, the concept of mesh is inexistenabse these methods rely only on the position of
a set of nodes discretizing the problem domain.aBse there is no mathematical connection
between nodes, meshless methods can handle hiatioss involving a transitory geometry,
such as crack propagation problem, that often reguie-meshing procedures in the FEM. In
meshless methods, the shape functions have virtaddigher-order, allowing a higher continuity
and reproducibility [26] and the refinement proaexis simplified because nodes can be added or
removed from the initial nodal mesh [27].

Meshless methods were initially proposed in 197ih te introduction of the Smooth Particle
Hydrodynamics Method (SPH) [28], being the firsilgl weak form-based meshless method only
presented in 1994 with the development of the Eterreee Galerkin Method (EFGM) [29]. In
these numerical methods, the field variables apecgmated within an ‘influence-domain’ [26]
which is concentric to an interest point and corga certain number of nodes that contribute to
the interpolation of the field variable at referiaterest point. The overlap of ‘influence-domains’
assures the nodal connectivity [26], being the ewal integration performed using a background
integration mesh. If the integration mesh is inde@nt of the nodal distribution, the meshless
technique is called a ‘not truly’ meshless meth®@l].[ Nevertheless, this characteristic does not
decrease the accuracy or efficiency of the method.

The most relevant shape functions used in meshiesisods are the Taylor approximation, the
moving least-square approximation, the reproduckegnel approximation, the hp-cloud
approximation function, the polynomial interpolatjothe parametric interpolation, the radial
interpolation and the Sibson interpolation [26]e$& functions need to verify the compact support
property, which requires a domain of applicabityd outside this domain the function assumes
zero values. Concerning the type of shape functimesl in the meshless methods, they can be
divided into two different categories: the approaimand interpolant meshless methods. The first
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ones produce smoother solutions and, because tothieamajority of meshless methods, such as
the SPH and the EFGM, use approximation functi&@.[Other very popular approximant
meshless methods are the Reproducing Kernel RaNlethod (RKPM) [31] and the Meshless
Local Petrov-Galerkin Method (MLPG) [32]. Despiteetapproximants meshless methods can
produce smoother solutions, they do not verify g ad¢tractive and useful numerical property: the
Kronecker delta property. Field functions posseagdie Kronecker delta property make simpler
the numerical imposition of the essential and ratlioundary conditions. Because of that, some
meshless methods (such as the Point Interpolatethdd (PIM) [33], the Point Assembly Method
[34], the Radial Point Interpolation Method (RPINB5] or Natural Neighbour Radial Point
Interpolation Method (NNRPIM) [26],[36]) use interdation functions, which verify the
Kronecker delta property. The RPIM is a more comptersion of the PIM, using both the
polynomial basis function and radial basis func{iBBF), allowing the construction of stable and
more robust interpolation shape functions. Thihésmeshless method studied in this work and it
uses the Galerkin weak formulation for the defaritof the discrete system of equations.
Although the FEM is the most used numerical to@lrtalyse composite laminated plates, several
studies in the literature aim to combine distinetsiness formulations with several plate theories.
For instance, the EFGM was first applied to thedomganalysis of thin plates assuming the CLPT
[37] and later it was formulated by Belinbaal based on the FSDT for the linear and nonlinear
analysis of isotropic plates and laminates [38)].[3he Third-Order Shear Deformation Theory
(TSDT) of Reddy [18] was also applied to the EFG)VOai et al. [40] for static and free vibration
analysis of shear deformable laminated compos#tepl The RKPM was also used for the static
analysis of plates and shells [41] using the FSbnsidering several high-order shear
deformation theories (developed by Levinson [42ydégdu [43], Karama [22] and Touratier
[21]), a meshless local radial point collocationtimoel based on multiquadric radial basis function
(MQ-RBF) was proposed by Xiargt al. [44] for the study of the static response of igpit,
sandwich and laminated plates. The same meshleg®dneas considered by the same authors
[44] but based on inverse multiquadric RBFs forftiee vibration of laminated composite plates
considering the FSDT. Ferreied al, in several papers, considered the FSDT [45]thed’ SDT
[46] [47] [17] and a global meshless approach udigfs. The MLPG was also used in the
analysis of thick laminated composite and functilyngraded plates using a higher-order shear
and normal deformable plate theory (HOSNDPT) [48][[50]. The EFGM, RPIM, NNRPIM
and NREM were recently compared in a study by rBelet al.in which the authors analysed the
bending behaviour of composite laminate platesguaimd the FSDT [27], [51].
Despite the mentioned extensive applications ofness methods in the analysis of composite
laminates, the RPIM has not been used yet in thdysis of composite laminated plates using
HSDTSs. In comparison with other meshless approadhesRPIM is a rather simple numerical
method whose programming simplicity resembles &kl because the integration scheme is the
same for both. Thus, the RPIM can be viewed aglaareced discretization technique that can be
programmed as easily as the FEM, while having tbeementioned advantages that FEM does
not have, and potentially providing smoother anderaxcurate results than the well-established
FEM. Thus, this work focuses, for the first timetlie literature, on the combination of the RPIM
with bending of symmetric laminates following diéat HSDTs. Therefore, this work contributes
with new accurate numerical solutions for this kafdnalysis, expanding the range of application
of meshless methods, in particular the RPIM.

2 TheRPIM formulation for a 2D linear elastic problem

In the meshless methods, such as the RPIM, thd daiabution does not form a mesh because
there is no previous information regarding the igpaelationship between each node. In these
numerical methods, the nodal connectivity is erddrby an overlap rule of ‘influence-domains’

which completely differs from the FEM formulatiowhere the nodal connectivity is ensured at
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the element level by the interaction between nadiesljacent elements.

In this section, the generic procedure of a meshlegthod is introduced. After that, the
formulation of the RPIM is presented using key-apts of the method: nodal connectivity,
interpolation functions, numerical integration ahd meshless discrete system of equations.

2.1 Meshless standard procedure

Most of the meshless methods, such as the RPINpwioh standard procedure. After the
description of the problem (with the essential awadural boundary conditions), the problem
domain is discretized using a nodal mesh (whichlsregular or irregular). Generally, irregular
meshes present a lower accuracy. Neverthelessima problems where the locations of the stress
concentration are expectable (crack propagatioleshclamped boundaries, etc.), it is necessary
to have a higher nodal density in those locatieviich will lead to better results. Thus, it is
essential to choose a correct nodal density fordtkeretization and the best nodal distribution
possible (without increasing significantly the cartgtional cost) since these discretization
parameters influence the method performance. Aalanbed distribution of the nodes could lead
to less accurate results [52]. After the nodal rdiszation, a background integration mesh is
constructed. In the case of the RPIM, this integramesh is nodal independent which ensures the
characteristic of ‘not truly’ meshless method af RPIM. After the definition of the integration
mesh, the nodal connectivity can be imposed usiagoncept of ‘influence-domains’ [52]. The
next step is to obtain the field variables, apprated within the ‘influence-domains’. Consider a

variable fieldu(X,) obtained at an interest poiRt within the problem domain and interpolated
using the nodal values of the nodes inside théugmice-domain’ of the correspondent interest

point, x. Thus, the equation of interpolation can be defias :U(X,) =Z?ﬂ¢j (X)) U, where
n is the number of nodes within the ‘influence-domaf the interest point, U, is the value of

the variable field in each node within the ‘infloendomain’ andd, () is the shape function of
the nodej obtained using only th@ nodes inside the ‘influence-domain’ and calculaaedhe
interest pointx, [52].

After the determination of the interpolation fumcts, the system of equations can be arranged

in a local system of discrete equations and assahibto a global system of equations. To obtain
the displacement field, it can be used, for instatttte Gauss elimination method [52].

2.2 Nodal connectivity

In the RPIM, the nodal connectivity between eacdens achieved with the overlap of the
‘influence-domains’, created following the nodalsatietization and the definition of the
background integration mesh. In the 2D problemdyaed in this work, the ‘influence-domains’
for each interest point can be concentric areds thé interest point (such as circles — Figure)1 (a
— or rectangles with a predefined size). On thertiland, they can have a certain number of nodes
that are closer to the interest point, as showfignre 1 (b). The shape and size of an ‘influence-
domain’ may vary depending on the position of thterest points, the nodal distribution and the
nodal density. For example, for a variable siz8ugnce-domain’, it may occur that an ‘influence-
domain’ with the same shape has a different nurabeodes within it if the nodal distribution is
irregular. On the opposite side, for a fixed sinfluence-domain’, it is common that the shape of
each domain is different. The recommendations efliferature [26] lead to the necessity of
‘influence-domains’ with the same number of nodesde (for 2D problems, it is recommended
between 9 and 16 nodes per ‘influence-domain’ [3&hich allows the construction of shape
functions with the same degree of complexity.
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(b)

Figure 1 - (a) Fixed size ‘influence-domaim’, & ). (b) Variable size ‘influence-domain’ (
r,£r,).

2.3 Numerical integration

In the RPIM, the differential equations of the Ghile weak form are integrated using the Gauss-
Legendre quadrature. Since this work is relatethéoanalysis of square plates, the background
integration mesh is composed of quadrilateral ¢edtsparametric quadrilateral shape) and in each
cell are placed the Gauss integration points.

This numerical approach to solve the integro-défeial equation ruling the problem does not
assure the designation of a "truly" meshless meb®wuse the integration scheme neglects the
nodal distribution to construct the integration meBhus, the numerical integration performed in
RPIM follows the same procedure as in FEM.

2.4 RPI shape functions

The RPIM uses interpolation functions based onctirabination of multiquadric (MQ) radial
basis functions (RBF) [35] [53] with polynomial k&gunctions. Consider the interpolation of
u(x, ), at the integration point, , using:

. u(x)=R'(x)a(x)+p(x) b(x) ()
with,
R(Xl):{Rl(Xl)’ R(x), - F%(N)}T 2
p(x)={p (%) P(%), — Pa(x)} 3)
a(x)={a(x) a(x). - a(x)} @)
b(x)={b (%), b (%), b (%)} (5)

wheren is the number of nodes within the ‘influence-domaf x,, R (X, )is the RBF,a (X, )

and b, (x,) are non-constant coefficients @} (x,) and p,(x ), the polynomial basis,
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respectively, withm being the basis monomial number. The RBF dependg othe Euclidian

distance between the interest point, and the neighbour nodex,, given by

I =|>g—x,|:\/(>q -x)*+(y -y)’>. The MQ-RBF used in this work is given by

R( ;i):[ﬁ+ cz]p, being ¢ and p shape parameters that are considered fixed as

R(x )=
c=1.42 and p=1.03, according to the literature [26].
An extra requirement needs to be satisfied if aympmihial basis function is used [26]:

Zi”:lpj(xi)q(x):oa p'(x)a(x)=0, j={1,2,..m}, which combined with equation (1)

results in the system (6),

ug| _[ R(Ox)  p(x)[Jalx)] o alx)
RIS el S ivelt ©
withu, ={u, u,,...,u}". Matrix R has dimensionsr{xn] and it is defined ag, = R( b ) :
R(t) R(r) ... R(p)

R(rnl) R( rnz) R(rnn)
The polynomial matrixp, has dimensions nxm],
o :{1,x,y,x2, Xy, ¥ , } , i={ 1,2,..5 andm the chosen monomial number.
pl(xl) p2 (Xl) pm (Xl)
Pi(X,) Po(X5) o Pn(X5)
— 1 : 2 2: 2 N : 2 (8)

being each Iline defined as

pl(xn) pZ(Xn) pm(Xn)
For instance, iim=1, p has dimensionsr{x1] and p,(x)={1} . Matrix G in equation (6) is
a symmetric matrix since the distance is direcfiomdependent. Solving equation (6) in order to

the non-constant coefficients,
{a(x. )} e{*] o
b(x) 0
and substituting (9) in (6) , the interpolation ¢tions can finally be obtained,
T T ) Us
u(x)={R(x). P (x)} G {O}:M) u

where vectorp(X,) ={c|>1(xI ) 0,(%,),....9, (X )} is the interpolation function calculated at the

(10

interest pointx; .

2.5Weak form and meshless discrete system of equations

In the RPIM, the discrete system of equations taiabd from the Galerkin weak form written
for a generic solid with domaif2 and boundary,
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[ 8eToda =] &u'b dQ+.fr‘6uTTd' (11)

being € the strain tensorg the stress tensoy the displacements vectds, the body forces
and ' JQ the traction boundary where the external forteare appliedde¢ is the virtual strain
tensor andu the virtual displacement. Considering the stréssrsrelation,0 =Cc€ (wherec is

the constitutive matrix), and the linear relatioetvbeen strains and displacemengss Lu,
equation (11) can be rewritten,

[8u'B cBudQ = su"HbdQ+[ du'HT dr (12)
Q Q r

where the deformation matrixB, is defined as:B=ZT:lL¢j(x,), with  &(x,)=Bu.

Additionally, H represents a diagonal matrix containing the shapetion component of a node
j inside the ‘influence-domain’ ok, : H(X)=¢;(X)!, being | an identity matrix with
dimension[5x5]. Removing the virtual displacemedti from equation (12), the discrete system
of equations is obtained for an elasto-static bl

[ B'cBdQu=[ HbdQ+| HT dr (13)

which can be written a& i =F , with K:IQBTCB dQ andF = J'QHbdQ+J'rHt_dr.

The procedure to obtain the meshless discretersysteequations is here briefly explained. A
more detailed explanation can be found in thedttae [26], [27], [51].

3 High-Order Shear Deformation Theories

Higher-Order Shear Deformation Theories (HSDTs) ev@roposed to respond to some
insufficiencies of the CLPT and the FSDT. Despiéing computationally more demanding, the
HSDTs yield non-constant shear strains along wlih plate’s thickness and they fulfil the
condition of zero shear stresses on the bottont@gmthces of the laminated plate. In this section,
the generalized displacement fields are preserst@ekll as the transverse shear functions used in
each studied HSDT. Additionally, is it presented #iress-strain relations and, in the end, the
matrices of the discrete system of equations aerméined.

3.1 Generalized Displacements Field and TransverseiShenctions

The displacement field produced on a plate sulbjetdea generic load can be written in a
generalized form considering any equivalent sintger theory. Thus, accounting five
independent field variables (i.e. five generalidesplacement functions of the mid surface of the

plate -Uy(X ¥), (% Y, W(x ¥,@Q (x Yandg,(xy)),

uxy 9= y(x y- 2D, tztﬁcpx( Xy L ”}

0X
V(% Yy, 2= ¥(x 9~ ffwg%y% ( rtﬁcpy( X Mav“f,; ﬂ 14

w(xy, 2= w(xy
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The in-plane displacements, and v, presented in equation (14) depend on a transebiesar
function, f (z), which assumes a different form for each equivtadamgle layer theory. Iff (z) = z
, it is obtained the displacement field of the FSB/File the equivalent is obtained for the CLPT
if f(z)=0. The shear transverse functions are chosen sathtth shear stresses assume zero
values at the top and bottom surfaces of the fiage f'(h/2)= f'(~h/2)= 0, being h the
thickness of the plate).

In Figure 2 and Table 1, the transverse shearifumebdf the seven HSDTSs studied in this work
are presented. The displacement field related¢b EISDT can be obtained by simply substituting
the correspondent transverse shear function intiequg.4).

0.5

0.3 - 7

-0.5 <
-0.15 -0.1 -0.05 0 0.05 0.1 0.15

f(2)
Reddy —— Shi —— Ambartsumian

Aydogdu —— Karama —— Touratier
Mantari - --FSDT

Figure 2 - Distribution of the functiori(z) for different HSDTs along with the normalized
thickness z/h.

The first three theories shown in Table 1 defireevariation of the in-plane displacements along
with the thickness of a plate as polynomial funegiomore specifically as cubic functions. They
are the third-order shear deformation theory (TSDfTRReddy [42], [54] [18], the TSDT of Shi,
[55], [56], [12] [19] and the TSDT of Ambartsumi§20]. These three TSDTs can be written in a
standard form, which simplifies their computatio'rnablementation

. — 422 —
Reddy :f (z)—z(l——thj 3h2 =kz k%, kD k
t@)=241-% 25,52 _ o0 e
Shl.f(z)—4z(1 3th kA kL ke D s (15)
W Z)_H
Ambartsumianf £ ¥ = {7——3J——8 e kz+ kK 7, Jr—D g_——
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Table 1 - HSDTs selected for the bending analgdisomposite laminated plates using the

RPIM.
HSDT f (z) f'(z)
2 2
Levinson [42], Murthy [54] 2(1—4—sz 1_4_22
and Reddy [18] 3h h
Kaczkowski [55], Panc
[56], Reissner [12] and Shi 5—2[1—4—22j E_E
[19] 41 3K 4 K
. z(h? 272 h2 Z2
Ambartsumian [20] —| - -
2\ 4 3 8 2
2 2
z z
_ [;]2 _{ﬁ] 2 ‘Z(TJ
Aydogdu [23] h o M@ _ 4( Ej G @ =3
za "M@ g=3 h
2 oz} oz
Karama [22] -2[%] e 2[ﬁ] _ 4_22 Z(FJ
e h2
. h . (nz} S{TIZJ
Touratier [21] —Ssin| — cos —
T h h
h ) % O{EJ nz %+e¥ hj[E T_flIZj_
Mantari [58] —{Sin(Fj w2 g —:l
Tt

By changing the constantg and k, in the function f (z) = k z+ k 2, the transverse shear

function is driven to one of the three TSDTs. leadlakes a look on those constants, it can be
concluded that Shi's formulation is very similarReddy’s model because the coefficients of the
linear and cubic terms are identical. On the otieand, Ambartsumian’s theory has a smaller

coefficient of the third-order term and, becauséhet, it is not expected a similar solution to the

previous mentioned theories. From Figuks tor! Reference source not found., it can be seen

that the distribution of Ambartsumian’s transveshear function,f (%) , Is almost equal to zero

D%D [—%%} , Which is also the case of the CLPT (whérng) = 0). Thus, despite being a

HSDT, Ambatsumian plate theory is very similarite CLPT, meaning that the solutions obtained

from this theory, in particular for the shear ste=s will not be as accurate as the solutions rduxai
from the other selected HSDTSs.

Another selected HSDT is the Touratier [21] modglal predicts the variation of the in-plane
displacements along with the thickness of the plasea trigonometric function (it is a
Trigonometric Shear Deformation Theory - TRSDT)oliife takes a look on the expansions [22],
[57] of the transverse shear stress function preghdsy Touratier (notice that all available
functions f (z) that can be found in literature can be explicbproximated in form of a unified
polynomial form, as noted and studiedNguyen et al[16]),
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Touratier :f (z):(%j si{%j: 2 1.64%+ o.sxé— o.19é+ o.ozéy a6

it becomes clear that, by comparison to Reddy dmth8ories, the coefficients of the linear and
cubic terms are also very similar. Neverthelesgjratier's HSDT possesses terms with order
higher than the third, which will lead to slighthygher results for the transverse shear stresses
when compared with the referred TSDTSs.

Karama [22] and Aydogdu [23] proposed Exponentiaéé8 Deformation Theories (ESDT)
using exponential expressions as transverse shpeatidns. The two models are similar, as the
following expressions denote,

z 2
)

In(a)

Aydogdu:f )=

2
4 g
Karamaf ¢ )= ze™® = ze'M
Karama theory is a particular case of Aydogdu’s etachena = e. This assumption allows,
in computational terms, to study both ESDTs asnglsione, using the dependence @n
parameter. The optimal value of the parametewas studied by Aydogdu [23]. His research
concluded that assumirg = 3 leads to closer solutions to the 3D Elasticityuiohs of Pagano
and Hatfield [9]. Since the value efis approximately equal t8, Karama and Aydogdu models
are not only formally similar but also mathematig@&quivalent. Observing the expansions of the
transverse shear stress function proposed by Karemmzidering only the odd powers (

f(2)= 2@ = 22 3/ A+2 %/ h-1.3332%/ h 0.667% /% .) it can be concluded that,

in comparison with the TRSDT of Touratier, the dménts of successive high-order terms are
decreasing more slowly, making the Karama modelgpsed in 2009 [22]) stronger than the one
by Touratier (dated from 1991 [21]).

Mantari [58] proposed a series of different tramseeshear functions which are combinations of
exponential and trigonometric functions. The thestydied on this work was proposed in 2012
and has the following generic expression,

Mantari : f (z)=1—rl( sir‘(%) emo{%j +1hznﬂ e ( (19

In the equation (18)m is a parameter optimized by Mantari in order forthisory to be closer
to the 3D Elasticity solutions. Mantari proved thiais situation is achieved fdm=%. This

17)

considerably lowers the errors between 3D Elagtiaitd 2D solutions than any other existing
HSDTSs, according to Mantari. Notice thatif=0, Touratier model can be reproduced as a special
case.

3.2Stress-strain relations

The component of the strain along with the plaiekihess,e_,, is considered to be zero in ESL
formulations. Thus, the strain tensor written ine thVoigt notation is given by

€ ={sxx € YV Yy yXZ}T, which can be divided in two components: the iangl deformations,

g :{sxx €y yxy}T and the shear component,e,z{yyz yxz}T . Considering the displacement field
(14) and its partial derivatives, the generalizeedis field is established
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du/ dx (19)
g = ov/dy =
{au/c?yﬂ?v/ax}
ou, / 9x 0*w, / 0x* o, / Ox
= v, /0y +[f(2-340°woy + () og/oy
0u, / 0y +0v,/ 0x 0°w, / 0x0y 0@, / dy +0q,/ 0x

y={au/az+aw/a _f .(Z)E{awo/axw} 20

ov/0z+ow/ 0y ~ ow, /9y +q,

The strain field in a plate will also be differesgnsidering the different HSDTs proposed by
each researcher mentioned in Table 1, and can taneld substituting the transverse shear
function and its derivative in equations (19) a@d)(

Considering the compliance matris, which relates the strains with the stresses shah

. T
€ =slo, with oz{crXX O, T,yT,,T Z} ,

e S B
E E

B S
E E

1
s=| 0 0 — 0 0 (2 ]_)
GlZ
o o o = o
G23
O 0 0 0 Gi
L 31 |

where, for a generic layer of a composite lamimdtEigure 3,E is the Young modulus along
with the fibres’ direction,E, the Young modulus along with the transverse dioecty;; is the
Poisson ratio used to characterize the deformatimin directionj when a force is applied in
directioni andG; is the shear modulus characterizing the variagiogle between directions
and j. Direction3 is assumed as the cross thickness direction daee.
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Figure 3 — (a) Composite layer distribution andespondent global coordinate system Oxyz.
(b) Local coordinate system O123.

From the compliance matrix presented in equatids, ([ is possible to define the constitutive
matrix, ¢ = s*, which is defined for a local coordinate systeae3 associated with each layer of
the laminate. - Figure 3(b). This matrix needseaadransformed to the global coordinate system,
applying the equation of coordinates transformati@sulting in the transformed constitutive

matrix, C -
C, = T'cT 22

where the matrixl depends on the angle of the layer,

co$6 sirt6 ~ sin(@) 0 0o |
SiFe codf sin(@) 0 0
T=| sinBlto® - si®cB co— <A 0 0 23
0 0 0 co® - Sif
| 0 0 0 sirb cof |

The linear relation between the stress and thengtiaeach layeik is defined by the Hooke’s

law, o=c, €.

3.3Matrix form of the discrete system of equations

To fully define the discrete system of equationzresented in the equation (14), the matrices
used in that equation must be determined. Sinage tisea different transverse shear function for
each plate theory studied, the deformation matx, will also be different. The deformation

matrix can be determined usigy(X,)=L(2 H(X,), where the differential operator is a function

of z and, consequentially, the deformation matrix @spends on the coordinae The matrix
of interpolation functions has dimensiorss<[5n] since there are five independent field variables,

with n being the number of nodes within the ‘influencerdn’ of the interest poin¥,. The
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differential operator can be deducted using thealinrelation between strains and displacements,
€ =L(2u, with u :{uo,vo, \A(),([;,(R/}T, denoted in equations (19) and (20),

L(9=

2 (10-32 10
0 (% (f(z)_ayz 0
£ Y gy 02
0 0 f'(Z)a% 0
_o 0 f'(z)aix )

0
0
f(2—
()ay

f(z)aﬂX

f'e)

(24)

0

For instance, using the generic transverse shewtifin for the TSDTs — presented in the
equation (15) - the deformation matrix associ&ettie TSDTs selected can be defined as follows,

o ¥l

B(x)=

o Qo

0

o Pl &l

(kz+k 2- % (hzﬂef)a% °
0 0 0
s (kz+ k2
z(klmf—;%y (tgzﬂsi)a% (k2 K Hex) )
(k1+3k222)a% 0 (k+3%.2)
(SN

which can be divided in a sum of submatrices inddpat of the coordinate and affected by
a distinct expressions dependent on the variahle

B(X) =By (%) +Bys (X,) +kyzB,(x,) +3K ZB,(x )+ k B {x )+ (kz ¥B (X)

(26)

The deformation sub-matrices used in the equaBibpdre presented by the following equations:
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00, (x) O 0 00
0Xx
0 3. (x) 0 0 0
i dy
Bow (X)) = a6 (x) 06 (x) 0 0 0 i={1, 2, ..n} 27)
oy ox
0 0 0 0O
0 0O 00 0
0 0 0 0 0 |
00 0 0 0
00 0 0 0
Bis(x)=|0 0 3 () 0 ko &)|i={12.n) )
LY
00k16¢i(>q) kg () 0
j ox |
000 ) O ]
194
000 0 a9 &)
i oy
Bi)%0 0 0 o () o )| LE2) @9)
oy 0X
00O 0 0
000 O 0 |
0 0 0 0 0 |
00 0 0 0
00 0 0 0
BL(x)=0 0 ap x) O ¢ &) i={L2.n} 30)
oy
00 x)dK) O
L ()4 i
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00 9 (x) 0 (&) O |
e 16)4
00 &p(x) O &)
s 2% o |
Ba00%0 0 g x) 00 0) agg)| | iLE &1
2 |
XAy oy ox
00 0 0 0
00 O 0 0 |
(00 &9 (x) 0 0
X
00 &% (x) 00
BL (), o 62?2(&) o ol i={L2.n} 32
oxoy
00 0 00
00 0 00
and,
Bo(})=Ba (X)*+Bg(X) (33

Using the obtained deformation matrix, the stiffh@satrix can finally be obtained using the
integration scheme presented in subsection 2.3

K=|B'cBdQ = Zcq [Zj B'(X) ¢ B(x)dz} (34)

k=l

wherenQ is the number of integration point), is the weight of each integration poixt, n,
is the number of layers of the laminated plage, and z, are the coordinates along with the axis

z (see Figure 3(a)) of bottom and top faces oflalger i andc, is the transformed constitutive
matrix of the layelii . Substituting equation (26)into equation (34),stifness matrixKk can also
be obtained considering as a sum of sub-matrikgs, with m, n={0,1, 2,3,}1:

4 4
K=>" > K (35
m=0 n=0

being m andn the indexes of the deformation sub-matrices. Thegdure to obtain the matrices

_159’ @MJ (2)B" (% )]@ [@(2)3 ()f)} d: is exemplified forK ,, and Ky,
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nQ n % nQ
Ko =2, @ Dkzl [ BOG) & (By(x,) dz:% & B (X ) Eo,[B (X ) 36)
- ™ Za =
nQ n % . nQ ]
Kol:I l&emkzl j Bo(X.)EJ‘kERlQEBl(x)dzzlzl: @ B (%), B{X) @7
B = Za =

N (&, -
Where the homogenized matiGx is obtained withG; =ZK;J.ZK (2)[¢ [{2) dz. Thus, matrices

Gy and G, are homogenised constitutive matrices, calculbieelquations (38) and (39):

n % n
=Y, | &= (7-2,)& 39
k=1 Z4 k=1
n % n zkz Z 2
o Jameomd (23000
k=1 7, k=1
The process to obtain the matricks,, uses the homogenisation of the constitutive medric

Due to the consideration that the deformation saltrices do not depend on the material, they can
be moved outside of the integral in equation (3#)s procedure reduces the computational effort
because the homogenised constitutive matrices easeparately determined and they do not

depend on the integration poirk, . Following the described procedure, the other realrices
Kmn €an be calculated. Changing the transverse slueatidn in equatior(24), the stiffness

matrix associated to the other selected HSDTs easbkained.
The discrete system of equations is fully definétth the determination of the force vector, given

by the sum of the vector of the body forcé‘;s?J.AH(X){ f, f, f,0 qT dA, with f,, f, and
f, being the body forces along y and z directions, respectively, and the vector of theemal

surface forcesf, :LH (X){O Op O (}\T dA, where p, is an external solicitation on the plate

along the axisz.

4 Numerical examples

In this section are presented the obtained refultsymmetric cross-ply laminates. Firstly, a
convergence study is presented. Then, the solufmmthe non-dimensionalized displacements
and stresses are obtained for different lamindes-dimensionalized maximum stresses along
with the thickness for various laminates are alatcudated and represented in graphs for
comparison purposes. Over the sub-sections, sesengbarisons are made, especially between
the results obtained and the solutions from tleedture, but also between the selected HSDTs.

4.1 Generic laminate geometry and introduction to piheblem

The generic laminate geometry is presented in Ei§@a), beinga,b and h the dimensions of
the composite plate, and the coordinate systentdiasgin at the geometrical centre of the plate.

The considered material properties of each lamilegter are:E =25 GP¢, E,=1GPa,v,, = 0.25,

G, = G;=5GPaand G,,= 2 GPa.

The composite plates are considered to be simplgated and the loads applied are uniformly
distributed transversal loads (UDL) and sinusoiddistributed transversal loads (SSL), according

to equation (40), wherg, is the nominal load,
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a(x )= q
e ) o TY @0
a(x, y) = q)sm( 3 j sm( bj

The numerical solutions obtained from the RPIM fa tlifferent HSDTs are compared, when
available, with the solutions proposed by the éditere. The solutions obtained for the maximum
central transverse displacements and stressesimalized considering the equations (41).

W=W(A,z)[—l% frxxzoxx(A,z)GL =0 A, NELE
%

‘ o CH qO&
@1
- _ h - _ h - h
Ly _TXY(B’ Z)qu_ﬂi Ty =1 yz(C- Z)Bq)_[a Tt ngv Z)Bq_Ela

The letters A, B, C and D are points of the planeywith the following coordinatesA = {0, 0}
,B={-a/2,-b/2},C ={0,-b/2} andD ={a/ 2,0} . The z coordinate where the variables
are calculated depends on the analysed laminatads, Tor each composite laminate, Table 2
shows the height (measured on theoordinate axis) where these six variables are aafairn
the mentioned Table 2, all the layers of the crosdgmhinates have the same thickness. Thus, the
thickness of each layer is given by the total thiclenef the plate divided by the number of layers.
The only exception is the cross-ply laminate with ghacking sequence (0/90/0/90/0) where
hy=h,=h="h/6 andh, =h, = h/4.

Table 2 - z coordinate where the non-dimensionaktrarse displacement and stresses are

computed.
W _xx EW ?Xy _yz _XZ
h/2 h/6 0 0
(0/90/0) 0 (k=3) k=2 -hi2 k=2) k=2
h/2 hi/4 0 0
(0/90/90/0) 0 k=4)  (k=3) ~hi2 k=3) (k=3
h/2 h/3 h/s 0
(0/90/0/90/0) 0 k=5) k= 4) -hi2 (k= 4) (k=3)
h/2 5h/14 h/14 0
(0/90/90/0/90/90/0) 0 K=7) (k= 6) - hi2 (k= 5) (k = 4)

4.2 Convergence study

In order to select the discretization to be used inh&urtanalysis, a convergence study is
performed. A constant polynomial basis function iscum the RPIM formulation, as suggested
by the literature [51]. Regarding the ‘influence-domaiimsthis work only fixed size ‘influence-
domains’ are considered, obtained from a regularIrdideretization.

The limitation of the computer processor (about 18@6Qrees of freedom) was not an
obstacle in attempting to yield a converged solutibhe highest discretization analysed is
composed of 2601 nodes (corresponding ts@+ 1)x (50+ 1) nodal mesh). In Figure 4 are
presented the solutions for the maximum normalizedstense displacement of a simply
supported square laminate, (0/90/90/0), subjectedsiawsoidal transverse load, and computed
with seven equivalent single layer theories. Thpldisements are represented as a function of the
number of nodes. From the convergence study preseititedn be concluded that a nodal
distribution with 1089 nodes3@3x 33 nodal mesh) allows to achieve an acceptable coauderg
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solution for all the studied plate theories. Deshitd fact, it was observed that the Ambartsumian
theory has a dissimilar way to converge when compardtktother theories. Instead of beginning
with small displacements for the first step of conesige, it begins with a value near the final
converged central transverse displacement. This balrasé@ms to confirm the conclusion made
in sub-section 3.1, where it was stated that thetisoki obtained from the Ambartsumian theory
are predicted to be dissimilar from the remaining HSDUs to the shape of its transverse shear
function.

0.5000

0.4000

0.3000

0.2000

0.1000

Normalized central displacement

0.0000
1 10 100 1000
Number of Nodes
--&-- Reddy —o— Shi —— Ambartsumian
—— Karama --8-- Aydogdu --x- Touratier
—e— Mantari

Figure 4 —Convergence study for a composite laminsqedre plate with the stacking
sequence (0/90/90/0) square plate, with a/h=100¢stég to a sinusoidal load (SSL). Central
transverse displacement as function of the number asncdmputed with RPIM.

4.3 Bending analysis of symmetric cross-ply laminates

The nodal distribution obtained from the convergeradyswas used for the analysis of several
composite laminates with different thicknesses amjested to two types of loads. The solutions
obtained using the RPIM were computed for seven higbtshear deformation theories (Reddy,
Shi, Ambartsumian, Karama, Aydogdu, Touratier and eiantieories). The obtained results are
presented from Table 3 to Table 13, where it cabed the maximum normalized displacements
and stresses for symmetric cross-ply laminates wighfollowing stacking sequences: (0/90/0),
(0/90/90/0), (0/90/0/90) and (0/90/90/0/90/90/0). In thokables are also presented, when
available, the exact analytical solutions for theespondent HSDTs as well as the 3D-Elasticity
solutions. Those solutions were consulted in [2B}ii@ Aydogdu’s solutions, in [58] for Mantari
and Karama'’s solutions, in [18] for Reddy’s exact 8ohy in [59] for Shi’s solutions and, finally,
in [21] for Touratier's solutions. Ambartsumian sotuits could not be found for composite
laminated plates. The 3D Elasticity solutions of &agand Hatfield were obtained in [18].
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Table 3 - Maximum normalized transverse displacememdsstresses for a simply supported
symmetric square laminate with cross-ply layers (0/90iBjested to a sinusoidal load (SSL),

a/h={4,10}.
a/h Solution ESL Load w T, ;W 7XV ?VZ T,
Exact Aydogdu SSL 1.9856 0.781 0.509 0.0524 0.197 2280
Karama SSL 1.944 0.775 0.502 0.0516 0.191 0.22
Mantari SSL 1.9434 0.823 0.497 0.0536 0.201 0.245
Shi SSL 1.9227 0.7337 0.5021 0.0498 0.2085 0.2856
Touratier SSL - - - - - -
Ambartsumian SSL - - - - - -
Reddy SSL 1.9218 0.7345 - - 0.1832 -
4 Elasticity SSL 2.006 0.755 0.556 0.0505 0.2172 28D.
RPIM Aydogdu SSL 1.9269 0.7374 0.4734 0.0489 0.1809 0.2089
Karama SSL 1.9269 0.7374 0.4734 0.0489 0.1809 80.20
Mantari SSL 1.9519 0.7915 0.4671 0.05 0.1874 0.233
Shi SSL 1.9206 0.7019 0.475 0.0481 0.1738 0.1926
Touratier SSL 1.9204 0.7184 0.4742 0.0482 0.1772  .200B
Ambartsumian SSL 1.8537 0.6823 0.4686 0.0406 6166 0.1881
Reddy SSL 1.9097 0.6988 0.4742 0.0474 0.1733 20.19
Exact Aydogdu SSL 0.7336 0.578 0.275 0.0284 0.111 .28
Karama SSL 0.723 0.576 0.272 0.0281 0.108 0.272
Mantari SSL 0.7342 0.588 0.276 0.0288 0.115 0.314
Shi SSL 0.7133 0.5681 0.2687 0.0277 0.1167 0.3693
Touratier SSL - - - - - -
Ambartsumian SSL - - - - - -
Reddy SSL 0.7125 0.5684 - - 0.1033 -
10 Elasticity SSL - 0.59 0.288 0.0289 0.1228 0.357
RPIM Aydogdu SSL 0.718 0.5474 0.257 0.027 0.1026 2588
Karama SSL 0.718 0.5474 0.257 0.027 0.1026 0.2588
Mantari SSL 0.7409 0.5643 0.2612 0.0276 0.1077 0az3
Shi SSL 0.7126 0.5414 0.2545 0.0268 0.0982 0.2331
Touratier SSL 0.7136 0.5434 0.2556 0.0268 0.1003 .2432
Ambartsumian SSL 0.6904 0.5299 0.2524 0.0247 @094 0.2292

Reddy SSL 0.7087 0.5395 0.2541 0.0266 0.0979 28.23
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Table 4 - Maximum normalized transverse displacememdsstresses for a simply supported
symmetric square laminate with cross-ply layers (0/90iBjested to a sinusoidal load (SSL),
a/h={20,100}.

a/h Solution ESL Load w T, —W —Xv —yz T,
Exact Aydogdu SSL 0.511 0.548 0.206 0.0232 0.0877 .29
Karama SSL 0.508 0.548 0.205 0.0231 0.086 0.285
Mantari SSL 0.5113 0.551 0.206 0.0233 0.09 0.331
Shi SSL 0.505 0.5458 0.2042 0.023 0.0919 0.3881
Touratier SSL - - - - - -
Ambartsumian SSL - - - - - -
Reddy SSL - - - - - -
20 Elasticity SSL - 0.552 0.21 0.0234 0.0938 0.385
RPIM Aydogdu SSL 0.5038 0.5197 0.1939 0.0222 0.0815 0.2709
Karama SSL 0.5038 0.5197 0.1939 0.0222 0.0815 00.27
Mantari SSL 0.5161 0.5282 0.196 0.0226 0.0851 @B31
Shi SSL 0.5043 0.5196 0.1933 0.0223 0.0786 0.2428
Touratier SSL 0.5027 0.5188 0.1934 0.0222 0.0799 .25
Ambartsumian SSL 0.4889 0.5094 0.1923 0.021 0.0753 0.2392
Reddy SSL 0.5015 0.5179 0.193 0.0222 0.0784 0.287
Exact Aydogdu SSL 0.435 0.5389 0.181 0.0214 0.0791 0.3003
Karama SSL 0.435 0.538 0.18 0.0213 0.078 0.289
Mantari SSL 0.4353 0.539 0.181 0.0214 0.081 0.337
Shi SSL 0.4351 0.5389 0.1805 0.0214 0.0828 0.3948
Touratier SSL - - - - - -
Ambartsumian SSL - - - - - -
Reddy SSL 0.4342 0.539 - - 0.075 -
100 Elasticity SSL 0.4337 0.5384 0.1804 0.0213 0.0703 -
RPIM Aydogdu SSL 0.4312 0.5105 0.1706 0.0205 0.0734 0.2753
Karama SSL 0.4312 0.5105 0.1706 0.0205 0.0734 58.27
Mantari SSL 0.4388 0.5158 0.1717 0.0207 0.077 q131
Shi SSL 0.434 0.5124 0.171 0.0206 0.0712 0.2459
Touratier SSL 0.4314 0.5107 0.1706 0.0205 0.0721 260
Ambartsumian SSL 0.4209 0.5027 0.1702 0.0197 6075 0.2397

Reddy SSL 0.4317 0.5108 0.1707 0.0205 0.0709 50.24
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Table 5 - Maximum normalized transverse displacememdsstresses for a simply supported
symmetric rectangular (b=3a) laminate with cross-plyrsy@/90/0) subjected to a sinusoidal

load (SSL).
ah Solution ESL Load w Ty Eyy ?Xy Tyz T,
Exact Karama SSL 2.6838 1.0970 0.1040 0.0272 0.0360 0.2980
Mantari SSL 2.6841 1.1180 0.1030 0.0274 0.0360 02m3
Touratier SSL 2.6660 1.0340 0.1030 0.0268 0.0355 .2850D
Reddy SSL 2.6410 1.0360 0.1030 0.0263 0.0348 0.272
4 Elasticity SSL 2.8200 1.1000 0.1190 0.0281 0.0334 0.3870
RPIM Karama SSL 2.6575 1.0262 0.0959 0.0259 0.0328 0.2863
Mantari SSL 2.7189 1.1085 0.0994 0.0265 0.0326 2183
Touratier SSL 2.6428 0.9987 0.0957 0.0256 0.0324 274D
Reddy SSL 2.6213 0.9700 0.0952 0.0252 0.0320 0.261
Exact Karama SSL 0.8768 0.7040 0.0400 0.0117 0.0180 0.3190
Mantari SSL 0.8800 0.7080 0.0400 0.0118 0.0180 2603
Touratier SSL 0.8700 0.6980 0.0401 0.0116 0.0172 .3020
Reddy SSL 0.8620 0.6920 0.0398 0.0115 0.0170 0.286
10 Elasticity SSL 0.9190 0.7250 0.0435 0.0123 0.0152  0.4200
RPIM Karama SSL 0.8695 0.6571 0.0373 0.0113 0.0161 0.3071
Mantari SSL 0.9044 0.6817 0.0393 0.0116 0.0163 5813
Touratier SSL 0.8634 0.6518 0.0371 0.0112 0.0159 .290B
Reddy SSL 0.8567 0.6465 0.0369 0.0111 0.0157 2.275
Exact Karama SSL 0.5997 0.6440 0.0290 0.0092 0.0140 0.3230
Mantari SSL 0.5994 0.6450 0.0290 0.0092 0.0140 293
Touratier SSL 0.5960 0.6420 0.0290 0.0091 0.0141 .305D
Reddy SSL 0.5940 0.6410 0.0289 0.0091 0.0139 0.288
20 Elasticity SSL 0.6100 0.6500 0.0299 0.0093 0.0119 0.4340
RPIM Karama SSL 0.5930 0.6002 0.0269 0.0088 0.0133 0.3104
Mantari SSL 0.6114 0.6129 0.0281 0.0090 0.0134 6403
Touratier SSL 0.5916 0.5990 0.0268 0.0088 0.0131 .293B
Reddy SSL 0.5901 0.5978 0.0268 0.0088 0.0130 8.277
Exact Karama SSL 0.5080 0.6200 0.0250 0.0083 0.0130 0.3230
Mantari SSL 0.5083 0.6240 0.0250 0.0083 0.0130 3103
Touratier SSL 0.5070 0.6240 0.0253 0.0083 0.0131 .306D
Reddy SSL 0.5070 0.6240 0.0253 0.0083 0.0129 0.289
100 Elasticity SSL 0.5080 0.6240 0.0253 0.0083 0.0108 0.4390
RPIM Karama SSL 0.5032 0.5817 0.0234 0.0080 0.0118 0.3110
Mantari SSL 0.5154 0.5903 0.0243 0.0081 0.0118 6293
Touratier SSL 0.5036 0.5818 0.0234 0.0080 0.0117 .293B

Reddy SSL 0.5040 0.5820 0.0235 0.0080 0.0116 a.277
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Table 6 - Maximum normalized transverse displacemamisstresses for a simply supported
symmetric square laminate with cross-ply layers (0/9Q/B)ested to a uniformly distributed

load (UDL).
a/h Solution ESL Load w G, Fyy ?Xy ?yz T,
Aydogdu ubL 2.9242 1.0535 0.6940 0.0959 0.4179 2635
Karama uDL 2.9242 1.0535 0.6940 0.0959 0.4179 ®352
Mantari uDL 2.9715 1.1385 0.6907 0.0967 0.4242 0638
4 RPIM Shi UDL 2.9065 0.9993 0.6905 0.0951 0.4069 0.3286
Touratier ubL 2.9098 1.0242 0.6922 0.0949 0.4122 3399
Ambartsumian ubDL 2.7917 0.9667 0.6787 0.0784 0.3885 0.3198
Reddy ubDL 2.8892 0.9948 0.6892 0.0936 0.4058 0.3275
Aydogdu ubL 1.0984 0.8177 0.3257 0.0528 0.3136 44
Karama uDL 1.0984 0.8177 0.3257 0.0528 0.3136 446
Mantari uDL 1.1335 0.8405 0.3331 0.0539 0.3267 8%1
10 RPIM Shi uDL 1.0898 0.8101 0.3207 0.0525 0.3019 0.4030
Touratier ubL 1.0913 0.8125 0.3230 0.0524 0.3075 4284
Ambartsumian ubDL 1.0536 0.7919 0.3182 0.0479 0.2916 0.3960
Reddy ubL 1.0836 0.8074 0.3201 0.0520 0.3011 4.0188
Aydogdu ubL 0.7751 0.7849 0.2235 0.0429 0.2862 046
Karama uDL 0.7751 0.7849 0.2235 0.0429 0.2862 m467
Mantari uDL 0.7938 0.7965 0.2270 0.0436 0.3004 0%4
20 RPIM Shi UDL 0.7759 0.7851 0.2224 0.0430 0.2756 0.4189
Touratier ubL 0.7734 0.7838 0.2228 0.0428 0.2805 4416
Ambartsumian ubDL 0.7514 0.7694 0.2216 0.0404 0.2685 0.4126
Reddy ubDL 0.7716 0.7826 0.2220 0.0427 0.2747 0.4177
Aydogdu ubL 0.6655 0.7732 0.1865 0.0391 0.2747 847
Karama uDL 0.6655 0.7732 0.1865 0.0391 0.2747 @473
Mantari uDL 0.6770 0.7803 0.1883 0.0394 0.2914 984
100 RPIM Shi UDL 0.6699 0.7759 0.1871 0.0394 0.2648 4.2310
Touratier ubL 0.6659 0.7734 0.1866 0.0392 0.2693 4415
Ambartsumian ubDL 0.6492 0.7612 0.1868 0.0375 0.2765 4.1451

Reddy uDL 0.6663 0.7736 0.1867 0.0392 0.2638 0.4228
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Table 7 - Maximum normalized transverse displacememdisstresses for a simply supported
symmetric square laminate with cross-ply layers (0/90)%bjected to a sinusoidal load
(SSL), a/h={4,10}.

a/h Solution ESL Load w S, Sy Ty T, T,
Exact Aydogdu SSL 1.9590 0.7040 0.6360 0.0465 @260 0.2320
Karama SSL 1.9190 0.6690 0.6370 0.0459 0.2530 60.22
Mantari SSL 1.9210 0.7400 0.6350 0.0480 0.2690 5402
Shi SSL 1.8947 0.6645 0.6316 0.0441 0.2984 0.2306
Touratier SSL 1.9098 0.6823 0.6342 0.0450 0.2460 .2162
Ambartsumian SSL - - - - - -
Reddy SSL 1.8937 0.6651 0.6322 0.0440 0.2389 @.206
4 Elasticity SSL 1.9540 0.7200 0.6630 0.0467 0.2920 0.2190
RPIM Aydogdu SSL 1.9046 0.6662 0.6007 0.0434 0.2392 0.2146
Karama SSL 1.9046 0.6662 0.6007 0.0434 0.2392 46.21
Mantari SSL 1.9340 0.7134 0.6017 0.0445 0.2529 41312
Shi SSL 1.8940 0.6361 0.5987 0.0426 0.2267 0.1966
Touratier SSL 1.8961 0.6500 0.5994 0.0428 0.2328 .2051
Ambartsumian SSL 1.8264 0.6186 0.5878 0.0355 6219 0.1914
Reddy SSL 1.8828 0.6330 0.5972 0.0412 0.2262 0.195
Exact Aydogdu SSL 0.7340 0.5520 0.3960 0.0273 @167 0.3030
Karama SSL 0.7240 0.5530 0.3930 0.0272 0.1630 40.29
Mantari SSL 0.7300 0.5610 0.3950 0.0280 0.1770 3503
Shi SSL 0.7156 0.5454 0.3885 0.0268 0.1923 0.3069
Touratier SSL 0.7206 0.5488 0.3906 0.0270 0.1581 .278¥
Ambartsumian SSL - - - - - -
Reddy SSL 0.7149 0.5456 0.3888 0.0268 0.1530 0.264
10 Elasticity SSL 0.6627 0.4989 0.3614 0.0241 0.1292 0.1670
RPIM Aydogdu SSL 0.7190 0.5241 0.3709 0.0261 0.1547 0.2792
Karama SSL 0.7190 0.5241 0.3709 0.0261 0.1547 90.27
Mantari SSL 0.7371 0.5385 0.3749 0.0266 0.1664 2ah3
Shi SSL 0.7150 0.5198 0.3683 0.0259 0.1454 0.2516
Touratier SSL 0.7155 0.5210 0.3693 0.0259 0.1498 .264B
Ambartsumian SSL 0.6921 0.5085 0.3631 0.0240 @141 0.2469

Reddy SSL 0.7110 0.5179 0.3674 0.0258 0.1451 6.250
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Table 8 - Maximum normalized transverse displacememdisstresses for a simply supported
symmetric square laminate with cross-ply layers (0/90)%bjected to a sinusoidal load
(SSL), a/h={20,100}.

a/h Solution ESL Load w G, Eyy Tey T, T,
Exact Aydogdu SSL 0.5120 0.5400 0.3060 0.0230 @134 0.3260
Karama SSL 0.5090 0.5410 0.3060 0.0229 0.1310 60.31
Mantari SSL 0.5110 0.5430 0.3060 0.0230 0.1420 6203
Shi SSL 0.5069 0.5391 0.3054 0.0228 0.1541 0.3299
Touratier SSL 0.5083 0.5400 0.3048 0.0229 0.1272 .2989
Ambartsumian SSL - - - - - -
Reddy SSL 0.5060 0.5393 0.3043 0.0228 0.1230 6.282
20 Elasticity SSL 0.5128 0.5430 0.3080 0.0230 0.1560 0.3280
RPIM Aydogdu SSL 0.5053 0.5128 0.2886 0.0220 0.1243 0.3000
Karama SSL 0.5053 0.5128 0.2886 0.0220 0.1243 00.30
Mantari SSL 0.5045 0.5122 0.2882 0.0220 0.1206 83m2
Shi SSL 0.5062 0.5132 0.2882 0.0221 0.1175 0.2692
Touratier SSL 0.5045 0.5122 0.2882 0.0220 0.1206 .283®
Ambartsumian SSL 0.4904 0.5028 0.2848 0.0209 0114 0.2648
Reddy SSL 0.5034 0.5115 0.2876 0.0220 0.1171 a.268
Exact Aydogdu SSL 0.4350 0.5380 0.2700 0.0213 @120 0.3360
Karama SSL 0.4350 0.5380 0.2700 0.0213 0.1180 40.32
Mantari SSL 0.4350 0.5390 0.2710 0.0210 0.1280 7203
Shi SSL 0.4352 0.5386 0.2708 0.0214 0.1389 0.3388
Touratier SSL 0.4352 0.5385 0.2707 0.0213 0.1149 .306B
Ambartsumian SSL - - - - - -
Reddy SSL 0.4343 0.5387 0.2708 0.0213 0.1120 @.289
100 Elasticity SSL 0.4337 0.5382 0.2704 0.0213 0.1008 0.1780
RPIM Aydogdu SSL 0.4312 0.5102 0.2558 0.0205 0.1128 0.3081
Karama SSL 0.4312 0.5102 0.2558 0.0205 0.1128 80.30
Mantari SSL 0.4387 0.5152 0.2574 0.0207 0.1232 5263
Shi SSL 0.4341 0.5120 0.2565 0.0206 0.1071 0.2758
Touratier SSL 0.4315 0.5103 0.2559 0.0205 0.1097 .291%
Ambartsumian SSL 0.4206 0.5019 0.2539 0.0198 3114 0.2685

Reddy SSL 0.4317 0.5104 0.2559 0.0205 0.1067 8.275
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Table 9 - Maximum normalized transverse displacememdsstresses for a simply supported
symmetric square laminate with cross-ply layers (0/90)%bjected to a uniformly distributed

load (UDL).
ah Solution ESL Load w T o, Ty T, T,
Aydogdu UDL 2.8897 0.9351 0.8886 0.0865 0.4981 2037
Karama ubDL 2.8897 0.9351 0.8886 0.0865 0.4981 @372
Mantari ubDL 2.9411 1.0075 0.8858 0.0874 0.5188 o1
4 RPIM Shi ubL 2.8673 0.8909 0.8861 0.0854 0.4763 0.3446
Touratier uDL 2.8731 0.9109 0.8871 0.0853 0.4870 3515
Ambartsumian uDL 2.7516 0.8624 0.8667 0.0692 0.4577 0.3342
Reddy uDL 2.8496 0.8868 0.8839 0.0839 0.4753 0.3433
Aydogdu uDL 1.1116 0.7880 0.5232 0.0495 0.3850 5249
Karama ubL 1.1116 0.7880 0.5232 0.0495 0.3850 @495
Mantari ubDL 1.1389 0.8069 0.5281 0.0506 0.4120 4%6
10 RPIM Shi ubL 1.1056 0.7832 0.5192 0.0492 0.3637 0.4478
Touratier uDL 1.1062 0.7842 0.5209 0.0492 0.3738 4705
Ambartsumian UDL 1.0682 0.7651 0.5115 0.0451 0.3527 0.4391
Reddy uDL 1.0993 0.7805 0.5180 0.0488 0.3627 0.4464
Aydogdu UDL 0.7908 0.7861 0.3929 0.0405 0.3447 53
Karama ubL 0.7908 0.7861 0.3929 0.0405 0.3447 ®532
Mantari ubDL 0.8072 0.7967 0.3960 0.0412 0.3721 PB1
20 RPIM Shi ubDL 0.7924 0.7872 0.3921 0.0406 0.3259 4.7834
Touratier uDL 0.7896 0.7854 0.3922 0.0405 0.3345 5082
Ambartsumian uDL 0.7669 0.7708 0.3876 0.0383 0.3180 0.4706
Reddy uDL 0.7880 0.7847 0.3913 0.0404 0.3247 0.4768
Aydogdu UDL 0.6791 0.7873 0.3400 0.0369 0.3304 @154
Karama ubL 0.6791 0.7873 0.3400 0.0369 0.3304 546
Mantari ubDL 0.6906 0.7944 0.3420 0.0373 0.3626 562
100 RPIM Shi ubL 0.6837 0.7901 0.3410 0.0372 0.3127 0.4886
Touratier uDL 0.6796 0.7876 0.3402 0.0370 0.3207 5165
Ambartsumian uDL 0.6622 0.7744 0.3378 0.0355 0.3267 4.7735

Reddy UDL 0.6800 0.7878 0.3403 0.0370 0.3115 0.4879
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Table 10 - Maximum normalized transverse displacemand stresses for a simply supported
symmetric square laminate with cross-ply layers (0/90/0)9subjected to a sinusoidal load

(SSL).
a/h Solution ESL Load w S, Fyy Txy Tyz T,
Aydogdu SSL 1.5645 0.6297 0.4864 0.0322 0.2186 B41
Karama SSL 1.5645 0.6297 0.4864 0.0322 0.2145 8.412
Mantari SSL 1.5324 0.6648 0.4793 0.0324 0.1939 9143
4 RPIM Shi SSL 1.5951 0.6077 0.4931 0.0321 0.2238 0.3912
Touratier SSL 1.5778 0.6178 0.4894 0.0320 0.2196 401
Ambartsumian SSL 1.5409 0.5927 0.4840 0.0266 0.2169 0.3817
Reddy SSL 1.5858 0.6052 0.4917 0.0316 0.2232 0.3898
Aydogdu SSL 0.6186 0.5183 0.3827 0.0227 0.1944 ®.45
Karama SSL 0.6186 0.5183 0.3827 0.0227 0.1908 6.457
Mantari SSL 0.6192 0.5328 0.3771 0.0229 0.1815 8247
10 RPIM Shi SSL 0.6236 0.5121 0.3879 0.0227 0.1927 0.4383
Touratier SSL 0.6215 0.5151 0.3855 0.0227 0.1922 4486
Ambartsumian SSL 0.6073 0.5032 0.3827 0.0213 0.1881 0.4315
Reddy SSL 0.6236 0.5121 0.3879 0.0227 0.1927 0.4383
Aydogdu SSL 0.4765 0.5112 0.3522 0.0211 0.1833 0?47
Karama SSL 0.4765 0.5112 0.3522 0.0211 0.1799 0.473
Mantari SSL 0.4822 0.5193 0.3521 0.0213 0.1749 aB49
20« RPIM Shi SSL 0.4811 0.5114 0.3551 0.0212 0.1799 0.4582
Touratier SSL 0.4776 0.5104 0.3533 0.0211 0.1801 466D
Ambartsumian SSL 0.4660 0.5011 0.3497 0.0202 0.1753 0.4500
Reddy SSL 0.4784 0.5097 0.3541 0.0211 0.1795 0.4565
Aydogdu SSL 0.4299 0.5100 0.3398 0.0205 0.1802 1048
Karama SSL 0.4299 0.5100 0.3398 0.0205 0.1769 0.481
Mantari SSL 0.4371 0.5150 0.3421 0.0207 0.1763 9248
100 RPIM Shi SSL 0.4330 0.5119 0.3410 0.0206 0.1757 0.4650
Touratier SSL 0.4303 0.5102 0.3400 0.0205 0.1764 473B
Ambartsumian SSL 0.4193 0.5015 0.3359 0.0198 0.1833 0.4519

Reddy SSL 0.4306 0.5103 0.3401 0.0205 0.1753 0.4645
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Table 11 - Maximum normalized transverse displaceshand stresses for a simply supported
symmetric square laminate with cross-ply layers (0/90/0)9subjected to a uniformly
distributed load (UDL).

a/h Solution ESL Load w G, Fyy Txy Tyz T,
Aydogdu uDL 2.3479 0.8921 0.6915 0.0668 0.4472 8372
Karama ubL 2.3479 0.8921 0.6915 0.0668 0.4389 @728
Mantari ubL 2.3015 0.9461 0.6646 0.0664 0.3915 0276
4 RPIM Shi ubDL 2.3923 0.8591 0.7111 0.0668 0.4597 0.6984
Touratier uDL 2.3667 0.8740 0.7010 0.0663 0.4503 7128
Ambartsumian uDL 2.3007 0.8346 0.6961 0.0538 0.4406 0.6794
Reddy uDL 2.3776 0.8556 0.7091 0.0656 0.4587 0.6959
Aydogdu uDL 0.9585 0.7828 0.5584 0.0427 0.4344 2083
Karama ubL 0.9585 0.7828 0.5584 0.0427 0.4264 @832
Mantari ubL 0.9587 0.8036 0.5459 0.0432 0.4053 B536
10 RPIM Shi ubDL 0.9721 0.7768 0.5696 0.0428 0.4307 0.8027
Touratier uDL 0.9632 0.7784 0.5636 0.0426 0.4292 813
Ambartsumian uDL 0.9399 0.7597 0.5600 0.0397 0.4176 0.7875
Reddy uDL 0.9666 0.7742 0.5681 0.0425 0.4298 0.8000
Aydogdu uDL 0.7518 0.7869 0.5154 0.0377 0.4258 V86
Karama UDL 0.7518 0.7869 0.5154 0.0377 0.4179 867
Mantari ubDL 0.7605 0.7986 0.5137 0.0382 0.4074 539
20 RPIM Shi ubL 0.7592 0.7874 0.5202 0.0380 0.4170 0.8402
Touratier UDL 0.7536 0.7859 0.5173 0.0377 0.4177 8589
Ambartsumian uDL 0.7348 0.7711 0.5122 0.0361 0.4067 0.8254
Reddy uDL 0.7550 0.7849 0.5189 0.0377 0.4159 0.8371
Aydogdu UDL 0.6841 0.7914 0.4971 0.0357 0.4241 288
Karama ubDL 0.6841 0.7914 0.4971 0.0357 0.4163 @882
Mantari ubL 0.6953 0.7987 0.5000 0.0361 0.4157 7489
100 RPIM Shi ubL 0.6890 0.7942 0.4988 0.0360 0.4135 0.8530
Touratier uDL 0.6847 0.7917 0.4974 0.0358 0.4149 8688
Ambartsumian uUDL 0.6670 0.7779 0.4915 0.0345 0.4261 0.8314

Reddy uDL 0.6853 0.7919 0.4977 0.0358 0.4122 0.8522
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Table 12 - Maximum normalized transverse displacemand stresses for a simply supported
symmetric square laminate with cross-ply layers (0/90/90/90/0) subjected to a sinusoidal

load (SSL).
a/h Solution ESL Load w ©, Fyy ?Xy ?yz T,
Aydogdu SSL 1.5420 0.6195 0.5033 0.0310 0.1214 66.40
Karama SSL 1.5420 0.6195 0.5033 0.0310 0.1110 6.406
Mantari SSL 1.5102 0.6542 0.5038 0.0313 0.0764 343
4 RPIM Shi SSL 1.5729 0.5980 0.5049 0.0308 0.1371 0.3860
Touratier SSL 1.5554 0.6078 0.5036 0.0307 0.1241 395®
Ambartsumian SSL 1.5196 0.5837 0.4951 0.0255 0.1331 0.3763
Reddy SSL 1.5637 0.5957 0.5033 0.0303 0.1367 0.3846
Aydogdu SSL 0.6123 0.5177 0.3999 0.0223 0.1033 B44
Karama SSL 0.6123 0.5177 0.3999 0.0223 0.1033 8.442
Mantari SSL 0.6137 0.5331 0.3962 0.0226 0.0746 1BL46
10 RPIM Shi SSL 0.6206 0.5127 0.4054 0.0225 0.1238 0.4268
Touratier SSL 0.6151 0.5143 0.4023 0.0223 0.1137 4347,
Ambartsumian SSL 0.6010 0.5022 0.3987 0.0210 0.1208 0.4185
Reddy SSL 0.6171 0.5110 0.4043 0.0223 0.1235 0.4254
Aydogdu SSL 0.4747 0.5111 0.3743 0.0210 0.1087 6045
Karama SSL 0.4642 0.5008 0.3709 0.0201 0.1149 8.434
Mantari SSL 0.4807 0.5196 0.3749 0.0213 0.0733 IB46
20 RPIM Shi SSL 0.4792 0.5111 0.3770 0.0211 0.1178 0.4429
Touratier SSL 0.4757 0.5102 0.3752 0.0210 0.1087 4493
Ambartsumian SSL 0.4642 0.5008 0.3709 0.0201 0.1149 0.4348
Reddy SSL 0.4765 0.5094 0.3760 0.0210 0.1175 0.4413
Aydogdu SSL 0.4298 0.5100 0.3640 0.0205 0.1079 1946
Karama SSL 0.4298 0.5100 0.3640 0.0205 0.0987 0.461
Mantari SSL 0.4370 0.5150 0.3666 0.0207 0.0745 ™46
100 RPIM Shi SSL 0.4329 0.5119 0.3653 0.0206 0.1161 0.4489
Touratier SSL 0.4302 0.5102 0.3642 0.0205 0.1076 455%
Ambartsumian SSL 0.4192 0.5015 0.3595 0.0198 0.1208 0.4360
Reddy SSL 0.4305 0.5103 0.3643 0.0205 0.1159 0.4484

As can be seen, for example in the case of the Emi(©/90/0) from Table 3 to Table 6, the
solutions obtained for the non-dimensionalized trars¥ displacements and normal stresses
computed with the RPIM are considerably close to tireespondent exact solutions, especially
in Shi's theory. In the case of the shear stresseahitbe seen that they are in good agreement
with each other. The percentage errors regarding tirespmndent exact solutions are in most
cases inferior to 7%. The RPIM shows good performandeaccuracy in the elasto-static analysis
of composite plates since the aforementioned comiasre extensible to other laminates, as can
be observed in the remaining Tables. Additionallgréhcannot be observed numerical errors
concerning the thickness of the plate when a/h=10@;wshows that the RPIM is not vulnerable
to the shear locking phenomenon.
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Table 13 - Maximum normalized transverse displacesnand stresses for a simply supported
symmetric square laminate with cross-ply layers (0/90/90/90/0) subjected to a uniformly
distributed load (UDL).

a/h Solution ESL Load w o, G T T T

XX yy Xy yz Xz
Aydogdu uDL 2.3146 0.8787 0.7115 0.0642 0.2421 %672
Karama uUDL 2.3146 0.8787 0.7115 0.0642 0.2214 @729
Mantari uDL 2.2709 0.9331 0.6959 0.0639 0.1500 8876
4 RPIM Shi uDL 2.3584 0.8459 0.7244 0.0642 0.2749 0.6998
Touratier uDL 2.3330 0.8606 0.7175 0.0638 0.2483 7141
Ambartsumian uDL 2.2684 0.8224 0.7086 0.0517 0.2640 0.6802
Reddy uDL 2.3439 0.8425 0.7223 0.0631 0.2743 0.6972
Aydogdu uDL 0.9500 0.7819 0.5887 0.0418 0.2426 81
Karama uDL 0.9500 0.7819 0.5887 0.0418 0.2219 m817
Mantari uDL 0.9517 0.8045 0.5788 0.0424 0.1599 8584
10 RPIM Shi uDL 0.9629 0.7747 0.5991 0.0420 0.2657 0.7907
Touratier uDL 0.9543 0.7769 0.5934 0.0418 0.2441 8087
Ambartsumian uDL 0.9309 0.7577 0.5886 0.0389 0.2580 0.7754
Reddy uDL 0.9574 0.7721 0.5975 0.0417 0.2652 0.7880
Aydogdu uDL 0.7501 0.7861 0.5556 0.0374 0.2407 ™84
Karama uDL 0.7501 0.7861 0.5556 0.0374 0.2201 @847
Mantari uDL 0.7594 0.7985 0.5549 0.0379 0.1625 087
20 RPIM Shi uDL 0.7573 0.7861 0.5603 0.0376 0.2604 0.8245
Touratier uDL 0.7517 0.7847 0.5573 0.0374 0.2405 8388
Ambartsumian uDL 0.7329 0.7698 0.5511 0.0357 0.2541 0.8095
Reddy uDL 0.7531 0.7835 0.5589 0.0374 0.2597 0.8214
Aydogdu uDL 0.6851 0.7903 0.5417 0.0356 0.2411 0186
Karama uDL 0.6851 0.7903 0.5417 0.0356 0.2205 @860
Mantari uDL 0.6963 0.7977 0.5451 0.0360 0.1666 0,7
100 RPIM Shi uDL 0.6899 0.7932 0.5435 0.0358 0.2594 0.8359
Touratier uDL 0.6857 0.7906 0.5420 0.0356 0.2402 8491
Ambartsumian uDL 0.6679 0.7768 0.5350 0.0343 0.2670 0.8144
Reddy uDL 0.6862 0.7908 0.5422 0.0356 0.2587 0.8351

By observation of Table 14, which shows the percen&agers of the solutions presented in
Table 3 and Table 4 regarding the 3D-Elasticity sohgj it can be seen the errors for the six
values presented are lowered as the plate goes thiNeeertheless, it is established that, for
thinner plates, there is no significant advantaiges;ng HSDTs — the FSDT handles sufficiently
well this kind of problem. For thicker plates, the HSDAre needed in order to predict better the
transverse shear stresses. That being stated, litecabserved in Table 14 that the shear stresses
computed with Mantari’s theory are the ones closerhto 3D-Elasticity solutions. This fact
supports the idea of Mantari (which was referred in sedid) that the errors between the 3D
Elasticity and the 2D solutions of Mantari are lowethe majority of the calculations than other
existing high-order shear deformation theories.

Concerning the laminates (0/90/0) and (0/90/90/0)jestxd to uniformly distributed loads and
the laminates (0/90/0/90/0) and (0/90/90/0/90/90/0)esuiéd to the two considered types of load,
the solutions obtained from the RPIM could not be parad with analytical solutions since they
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are not available, but they are presented in thisrpapleancing the state-of-the-art concerning
these laminates and the used HSDTs.

In this work, the graphs of the non-dimensionalized nband transverse shear stresses along
with the thickness of a laminate were also obtaiRedthe simply supported square laminate with
the stacking sequence (0/90/90/0), subjected touaaidal load (and a/h=10), the variation of the
non-dimensionalized normal and transverse shear sdrassess the thickness of the laminate is
represented in Figure 5. The distribution of the streissepresented for the HSDTs in study but
also for the FSDT (RPIM and exact solution). From Feghbi(a) and (b), where it is represented
the distribution of the normal stresses, it can be loded that the plots are almost
indistinguishable, as expected. However, in theiligtion of the transverse shear stresses, a more
consistent comparison can be performed between thelTbl8bd the FSDT. As seen in Figure
5(c) and (d), the FSDT predicts constant shear stratweg with the plate’s thickness, violating,
as expected, the traction boundary conditions. Theesatuation does not occur with the HSDTSs,
which provide more realistic distributions of the shetaesses (despite the discontinuities at the
layer interface). Once again, it is Mantari's theory dhe that predicts the highest shear stresses,
which leads to solutions closer to the 3D-Elasticity.

----- FSDT Reddy —— Shi ------Ambarstumian ~—— Karama
Aydogdu  ----- Touratier —— Mantari ——FSDT - Exact --o-- Reddy - Exact
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Figure 5 — Non-dimensionalized stresses for a simgiyparted symmetric square laminate
with cross-ply layers (0/90/90/0) subjected to a sirdeddbad (SSL), a/h=4a) G,, ; (b) G, ; ()
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Table 14 — Relative errors (%) for the maximum normalizadsverse displacements and
stresses regarding the 3D-Elasticity exact solutiona simply supported symmetric square
laminate with cross-ply layers (0/90/0) subjected smasoidal load (SSL).

Relative errors (%) regarding the 3D-Elasticity exact solutions

a/h ESL w S, Sy Ty Ty, T,
Aydogdu 3.9 2.3 14.9 3.2 16.7 25.9
Karama 3.9 23 14.9 3.2 16.7 25.9
Mantari 2.7 -4.8 16.0 1.0 13.7 17.4
4 Shi 4.3 7.0 14.6 4.8 20.0 31.7
Touratier 4.3 4.8 14.7 4.6 18.4 29.0
Ambartsumian 7.6 9.6 15.7 19.6 23.3 33.3
Reddy 4.8 7.4 14.7 6.1 20.2 31.9
Aydogdu - 7.2 10.8 6.6 16.4 27.5
Karama - 7.2 10.8 6.6 16.4 275
Mantari - 4.4 9.3 4.5 12.3 15.9
10 Shi - 8.2 11.6 7.3 20.0 34.7
Touratier - 7.9 11.3 7.3 18.3 313
Ambartsumian - 10.2 124 145 234 35.8
Reddy - 8.6 11.8 8.0 20.3 34.9
Aydogdu - 5.9 7.7 5.1 13.1 29.6
Karama - 5.9 7.7 5.1 13.1 29.6
Mantari - 4.3 6.7 3.4 9.3 17.8
20 Shi - 5.9 8.0 4.7 16.2 36.9
Touratier - 6.0 7.9 51 14.8 33.5
Ambartsumian - 7.7 8.4 10.3 19.7 37.9
Reddy - 6.2 8.1 51 16.4 25.5
Aydogdu 0.6 5.2 5.4 38 4.4 -
Karama 0.6 5.2 5.4 3.8 -4.4
Mantari -1.2 4.2 4.8 2.8 -9.5 -
100 Shi -0.1 4.8 5.2 3.3 -1.3 -
Touratier 0.5 51 5.4 3.8 -2.6
Ambartsumian 3.0 6.6 5.7 7.5 -7.4
Reddy 0.5 5.1 5.4 3.8 -0.9

5 Conclusions

The RPIM is used in this work for the bending analysfi symmetric cross-ply laminates. The
accuracy of the RPIM is highlighted when the presehit®ns are compared to the correspondent
exact solutions. On the other hand, the robustreesfiown by the obtained linear asymptotic
convergences and stable solutions. The RPIM usddsmiork is a ‘not truly’ meshless method
since it uses a background nodal independent integramesh where the Gauss-Legendre
quadrature is implemented. However, being a ‘not trulgshtess method does not decrease its
accuracy or efficiency. In fact, because RPIM is anrjpuiator meshless method and uses a
background lattice to build the integration mesitaih be combined straightforwardly with the
FEM, allowing hybrid FEM-meshless analyses - bothhroé$ share the same integration scheme.
Since the nodal connectivity is enforced by the apedf 'influence-domains’ (which are based
on radial searches), the method can be extendedte complex analyses of composite plates
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such as large deformation problems or fracture mechaniese mentioned problems are more
easily analysed using the RPIM or other meshlessadstklince in these methods there are no
mesh distortions. This later remark gives meshlesthode a clear advantage over the FEM.
However, despite the benefit of using meshless metbadde higher in areas where cracks or
large deformations are involved, they can still deugi and accurate numerical tools (sometimes
even more accurate than the FEM) in every other arexed\so far by the FEM (several distinct
linear-elastic solid mechanics analysis [26], [27]0][6[61] were already performed in the
literature using the RPIM).

In this work, symmetric composite laminated platese subjected to bending and the plate’s
in-plane displacements were approximated using diftetdigh-Order Shear Deformation
Theories (HSDTs). The results presented in the work nharkirst time the RPIM is used in this
type of analysis. Notice RPIM was used in the pasttlie bending analysis of plates, but
considering the first order deformation theory (FSDT) [2HEDTs can describe better the
kinematics of a plate when compared with the FSDGabse they possess transverse shear
functions capable to represent the nonlinear variabiotransverse shear stresses through the
thickness of the plate. Thus, this work extends ild bf application of the RPIM by presenting
new and accurate numerical solutions that aim to mrehéhe state-of-the-art concerning plates’
theory and computational methods, and proving thet gregential of advanced discretization
techniques like the RPIM.
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