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Abstract

This paper analyzes the nonlinear coupled torsicadibl vibration of single-walled carbon
nanotubes (SWCNTSs) based on numerical methods.pasieal differential equations that
govern the nonlinear coupled torsional-radial Milmrafor such nanotube are derived using
doublet mechanics (DM) principles. First, these agiqus are reduced to ordinary
differential equations using Galerkin method arehtBolved using homotopy perturbation
method (HPM) to obtain the nonlinear natural fretpies in coupled torsional-radial
vibration mode. It is found that the obtained frencies are complicated due to coupling
between two vibration modes. The dependence ofdaryrconditions, vibration modes and
nanotubes geometry on the nonlinear coupled tambi@uial vibration characteristics of
SWCNTs are studied in details. It was shown thainblary conditions and maximum
vibration velocity have significant effects on tienlinear coupled torsional-radial vibration
response of SWCNTs. It was also seen that unlikelittear model, as the maximum
vibration velocity increases, the natural frequesaf vibration increase too. To show the
effectiveness and ability of this method, the ressobtained with the present method are
compared with the fourth order Runge-Kuta numeriesults and good agreement is
observed. To the knowledge of authors, the regilten herein are new and can be used as
a basic work for future papers

Keywords: homotopy perturbation method; nonlinear coupleditoral-radial vibration; single-
walled carbon nano-tubes; natural frequency;

I ntroduction

It is known that the mechanical behavior of struesuis divided in two general categories
depending on whether the material phases are blig#d continuously or discretely. If

distribution be continuous, theories are basedlassizal continuum mechanics (CCM) and
don’t contain any scaling effects. This featurenmalty is the most important limitation of CCM

and analyzed by many researchers [1-15]. Becausaanbscale dimensions of carbon
nanotubes (CNTSs), it is hard to implement accuexigeriments to obtain the properties of a
CNT [16, 17]. On the other hand, atomistic methidasmolecular mechanics [18-21] take too
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times and also are costly and time-consuming tdempnt especially for the systems have
large scales.

Most popular approaches to simulate micromechattiesnonlocal theory [22-24], stress
couple theory [6], strain gradient theory [7, 18] 1and stress-driven theory [25-27]. For
example in nonlocal elasticity, it is assumed that stress tensor at a point is a function of
strains at all points in the continuum[28]. It iffefent from the classical continuum theory in
that the latter is based on constitutive relatiwhgh state that the stress at a point is a functio
of strain at that particular point [1]. The nonlotdzory is deductive, in the sense that it employs
field variables of intrinsic macroscopic naturee.(i.the strain and stress tensors), without
explicit connections with the underlying discretatarial microstructure [29]. Also, the total
number of elastic macro-constants in the nonldoabty is considerably large [2]. Mahdavi
Adeli et al [23] studied free torsional vibration behavioraohonlinear nano-cone, based on
the nonlocal strain gradient elasticity theory. AlShishesaz and Hosseini [14] investigated
the mechanical behavior of a functionally gradedaaylinder under a radial pressure using
strain gradient theory.

Another popular theory for analyzing CNTs is molacalynamics (MD). Applying MD, every
single atom or molecule in CNTs is seen as a disamass point and the bonding forces
between each pair of neighboring atoms obey Newtlam/s of motion [2]. This model usually
employs simplifications, such as regularity of et distribution, symmetry and periodicity
[30]. MD simulations are suitable for small scajetems and for short time intervals [31].

In order to overcome to the following limitationgarious important modifications to CCM,
known as higher order gradient continuum theomese suggested to enter micro-structural
features into the theory. One particular theory tes recently been applied to materials with
micro-structure is doublet mechanics (DM). Thisottyeoriginally developed by Granik (1978),
has been applied to granular materials by Fertaal.42]. In DM micro-mechanical models,
solids are represented as arrays of points, pastml nodes at finite distances. This theory has
shown good promise in predicting observed behavi@sare not predictable using continuum
mechanics like Flamant paradox and also dispergaxee propagation.

Carbon nanotubes (CNTs) invented by lijima [32]véhanany exclusive and fascinating
properties. With rapid development in nanotechmnpld@NT have great potential for broad
applications as components in nano-electronic-m@chhsystems (NEMS) which received
increasing interest lately. The SWCNTSs usuallysrgjected to complex and heavy dynamic
loadings caused by different sources. By produdiffgrent states of stress, these loads might
result in excess vibrations. The vibrations of SWIGNextensively disrupt the normal
performance of the system and may result to falimesome cases [33]. Due to the excellent
features and huge applications of CNTs, the prgmisdiction of the dynamic behavior of such
systems is vital. Then, any suggested models sloauithin the real dynamic behaviors of the
system. Two important forms of vibrations that hheen identified for SWCNTs are axial and
torsional vibrations. For example, for the flexil@& T with long distance between supports
and high flexibility its torsional vibrations areuch significant. Furthermore, for determining
the diameter of the CNTs and also in Raman spdtiearadial vibration must be considered.
Then, it is essential to considering the couplifigat between radial and torsional vibration of
a SWCNT, especially for studying stability conditsoof CNTs. It can be seen from the
previous works on the vibration of SWCNTs that mokexisting SWCNTs systems have
focused on the bending [28, 34-36], torsional [2B;39], radial [40, 41] or longitudinal [30,
31, 42] vibrations behavior of the shafts, solaig she coupling effect between the vibrational
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modes were ignored. The coupled vibration of SWCNEs interesting subject because of the
complexity of the equations and the analytical sohs are difficult to obtain.

Single-walled carbon nanotubes (SWCNTs) are tingndgrs made from carbon [18]. A
SWCNT can be described as a single layer of a geaptystal that is rolled up into a seamless
circular cylinder, one atom thickness, usually vatsmall number of carbon atoms along the
circumference and a long length along the cylindeis[43]. The radial vibration is the
characteristic phonon mode of SWCNTs which leadsperiodic increase and decrease of the
tube diameter[44]. In the radial vibration, all lsan atoms move coherently in the radial
direction creating a breathing-like vibration oé tentire tube[44, 45] [e]. This feature is specific
to CNTs and is not observed in other carbon systemis as graphite[45]. The radial frequency
is usually the strongest feature in SWCNT Ramarctspevhich plays a crucial role in the
experimental determination of the geometrical prope of SWCNTs[43, 45]. Radial
frequencies are very useful for identifying a giveaterial containing SWCNTSs, through the
existence of radial vibration modes, and for chi@@ing the nanotube diameter distribution
in the sample through inverse proportionality @ thdial frequency to the tube diameter[43].
Therefore, it is very important to know the behawabradial frequency of different nanotubes,
precisely.

On the other hands, torsional deformation and tifmaare easily seen in nano-electro-
mechanical systems. For efficient design of suchces, the torsional dynamics of the nano-
components are vital[22].

However, most of the researches on the axial asttwal vibration of CNTs have been limited
to the linear theory and the nonlinear regime isaumsidered yet. The coupled vibration of
SWCNTs is an interesting subject because of theptaxity of the equations and the analytical
solutions are difficult to obtain. Among them iggional-radial coupling in the vibrational
behavior of the SWCNT system which is originatezhirthe large deformation of the beam.
The torsional-radial coupled vibration of the SWQNJan lead to severe vibration, and this
energy boosts the amplitude of the vibration ang feads to the reduction of bit life. If not
taken into consideration, the effect of coupledraiion can not only reduce the calculation
accuracy, but also lose some important charadt=rief the CNTs. Therefore, it is important
to establish an accurate model for dynamic chanatits of the coupled vibrations of CNTSs.
For the case of coupled torsional-radial vibratiohthe SWCNT, some nonlinearity can affect
the total response of the system. It should bedntitat in the linear analysis, torsional and
radial vibrations are decoupled and can be stuskparately. The HPM as an efficient semi-
analytical approach introduced by He [46-50] folvew different linear and especially
nonlinear engineering problems such as eigen valaklems. In HPM, it is considered the
solution as sum of a series with infinite termgisat less than three sentences result to good
accuracy of the solution with rapid convergencee Fhries used in HPM is different from
Taylor series as it contains functions rather tteams as is in Taylor series. The method can
be applied to a wide class of integral and diffée¢requations, deterministic and stochastic
problems, linear and nonlinear equations. The nadwvantages of this method to the other
methods are simplicity, high convergence, more teuesults and time saving especially in
the nonhomogeneous and nonlinear equations. The W&d/also applied to study nonlinear
equations appear in science and engineering preemn54].

To the best knowledge of authors, considering géaeneonlinearity effects along with the

coupling of the torsional-radial vibrations on ttignamic behavior of the SWCNTSs is not
studied yet and the present paper tries to consigdr analysis. Considering the complexity of
the practical dynamics of the SWCNT systems, thimparpose of this study is investigating
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and modeling a mechanism for the coupled nonliteraional-radial vibration of the SWCNTSs.
Another goal of this paper is to show the effeaia®s of HPM and its ability and also handling
the nonlinear coupled torsional-radial vibratiorobdain the nonlinear frequency. The structure
of the paper is as follows. In Section 2, a brésfiew to derive the nonlinear equation of motion
for coupled torsional-radial vibration of SWCNTgisen using nonlocal theory. In Section 3,
the equation of motion for SWCNTSs in torsional-gddiibration is solved using HPM and the
natural frequencies are obtained. The obtainedmean natural frequencies are compared with
numerical results in Section 4 to illustrate thdigband accuracy of the proposed method. In
Section 5 a brief discussion and conclusions falow

Derivation of nonlinear equation of motion for coupled torsional-radial vibration of
SWCNTsusing DM

DM is a micro-mechanical theory based on a discresgerial model whereby solids are

represented as arrays of points or nodes at filistances. A pair of such nodes is referred to
as a doublet, and the nodal spacing distancedimteolength scales into the micro-structural
theory. Each node in the array is allowed to hatramslation and rotation, and increments of
these variables are expanded in a Taylor seriegtabe nodal point. The order at which the

series is truncated defines the degree of apprdikimamployed. The lowest order case using
only a single term in the series will not contany dength scales, while using more than one
term will produce a multi length scale theory. Taliswable kinematics develops micro-strains
of elongation, shear and torsion (about the doudnkit). Through appropriate constitutive

assumptions, these micro-strains can be relatedotesponding elongational, shear and
torsional micro-stresses. A pair of such partiglegresents a doublet as shown in Fig. 1.

Corresponding to the doubl@, B)there exist a doublet or branch vectgr connecting the
adjacent particle centers and defining the doublted. The magnitude of this vectgr =|§a|

is simply the particle diameter for particles imtact. However, in general the particles need
not be in contact, and for this case the lengthesgacould be used to represent a more general
micro-structural feature. For example, the intercizdracteristic scale for the crystal lattice

parameter of carbon g, =0.142-hm [1].

Doublet Axis-c

As mentioned, the kinematics allow relative elorgal, shearing and torsional motions
between the particles, and this is used to deweoglongational micro-stregsg, shear micro-
stres<,, and torsional micro-stress, as shown in Fig. 1. It should be pointed out thate
micro-stresses are not second order tensors ingh& continuum mechanics sense. Rather,
they are vector quantities that represent the ielasicro-forces and micro-couple of
interactions between doublet particles. Their dioexs are dependent on the doublet axes which
are determined by the material micro-structure. s€hmicro-stresses are not continuously
distributed but rather exist only at particularmisiin the medium being simulated by DM.
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From Fig. 2, suppose doubles,f,) converts to doubleta(,b,) because of kinematic
translation. The superscript O for vectors indisdte initial state.

0] 0+ Ao,
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Fig. 2 Translations of the doublet noded] A, b, [1 B, [2]

If u(x,t) is the displacement field coinciding with a pddidisplacement, then the incremental
displacement is written as:
Auazu(x+{2,t)—u(x,t) Q)

wherein X is the position vector of particle.

The incremental function in Eq. (1) could be expahth a Taylor series as [2]:

Au =§:M(10D)Xu (2)
a Xl a’

wherein is the Del operator in general coordinates arid the internal characteristic length

scale. As mentioned above, the number of terms usdde series expansion of the local

deformation field determines the order of the agjpnation in DM.

Here,a=1,...n while nis referred to the numbers of doublets. For tlodlem under study, it

is assumed that the shear and torsional micro-aefttons and micro-stresses are negligible
and thus only extensional strains and stresset exis

The extensional micro-strain scalar measygye representing the axial deformation of the

doublet vector, is defined as [2]:
_ 1,84,

‘., 3)(
a
From Fig. 1, it can be written that
0=t (1:2 +%J (4)
l+e, n,

As in linear elasticity, it is assumed that theatiee displacemermua| is small compared to
the doublet separation distangg (|Aua|D n,) so that it may be assumed thgt=17°. In
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nonlinear elasticityz, # z2and the following approximate relations betwesyand t5are
present [31]:

1l =ooy, )=+ 4 (5)

7, %7, =sin(y,) =¢, 6)
whereiny, is the angle between initial and current branchorsc
From Eq. (4)- (6)4> can be obtained as follow

: 1
72 (1+ 2, +¢7)

% (Au, xz2).(Au, x72) (7)

If ¢ obtained from Eq. (7) is substituted in Eq. (Ban be concluded that

1 2 Au, .72
”§(1+2Ea+€;)(AUGXT2).(AU0X12):2_1+€a (H Lj;:”J

(8)

With solving this equation, the micro-strain fomfiaear approximation can be obtained. It is
clear that for linear approximation thati, xz2 =0 and then the linear approximation can be

obtained. Multiplication both side of Eq. (8) wiﬁzh(1+ 2, +¢.)yields

%(AuaXrg).(AuaX12)+(1+6a)(1+Au,7LIS’J=1+ 2, +é? 9)

a

o . : Au, TS . AT
In Eq. (9), ignoring:, in comparison withr, ande, — - in comparison with—"-*-, gives
a a

the following approximate nonlinear micro-strairsjplacements equation as

e, :AL"?wiz(Aua xz0).(Bu, x2) (10)

I70 2,70

One may writer, =7, wherer,, are the cosines of the angles between the directif

micro-stress and the coordinates a®dis the unit vector in Cartesian coordinate. Sgttin
70 =10e ,Au, =Au,e in Eqg. (10), it is concluded that

Au, T
a

_1
fa——z
a

(AuaiAu ToTa ~AUAY, 777 )+ (12)

ai“ajtaj

In DM under such assumptions and neglecting tenper&ffect, the relation between micro-
strain and micro-stress is written in the below][36
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P, = ipbﬁfﬁ (12)
=

Where in p, is axial micro-stress along doublet axes. An eXampthe axial micro-stress is
the interatomic forces between atoms or molecwalestéd at the nodes of a general array such
as a crystalline lattice. In the case of linear hothogeneous inter nodal central interactions.
Eqg. (12) can be interpreted as the constitutiveatgu in the linear and homogeneous DM and
A, is the matrix of the micro-modules of the doublet.

In the homogeneous and isotropic media with laggraction the above relation is simplified
as below [41]:

Ps = Ac, (13)
The relation between micro-stresses and macrosstsas [2, 33]:
n M [— X1 3
™) = 21'21'2 —( ,7”) (rg.D)X ! [ (14)
a=1 Xx=1 X'

In the above equatiorV is the degree of approximation which in the seisgsuncated.
Substituting Eg. (11) into Eq. (13) and the resulh Eq. (14) and neglecting scale effect yields

_ OOAuairgii 0,0 _ 0,0
Umn - A)Tamran n + 2,72 (AuaiAL{viTajTaj A l’!rlA l'é/j Tai Taj ) (15)

a a

This equation is the relation between macro-steeasd displacements in nonlinear regime.
Now, the form of matri){ A] in Eq. (12) containing elastic macro-constantdiane problem
(two-dimensional) is obtained. For this reason,suder Fig. 3. According to Fig. 3, in the
X, — X%, plane, there are only three doublets with equgebnbetween them. The solution for
the scale less condition can be calculated dirdotiyn the associated CCM problem for an
isotropic material. For the plane problems in tlmenbgeneous media[,A] iS a symmetric
matrix of order 3 with the most general form [28]fallow:

a b b
A=/b a b (16)
b b a
X2
r'
9 120° 9
- » x
Al
120° j
120°
73

Fig. 3 Three doublets with equal andld between them [1]

It can be shown that for arg), if Eq. (16) is substituted into Eq. (12) and @astress condition
is considered, the coefficienessandb in matrixA are found to be [2]:
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a:ﬂlum—lqu,b:_‘];u/]_—aj (17)

9" A+2u 9 A+ 2u
where A ,u are Lame’s constants and can be written in terlasticity modulu€k, Poisson
ratio v and shear modulus as below [30]:

VE E

Aerer—r 77—~ U=C=———— 18

(1+v)(1-2) H A ) (18)
One could uséb=0 as a quantitative guide to the applicability oé tsimpler constitutive
relations such as Eq. (13). k=2 (or v:%) in plane stress condition from Eq. (18), it is
concluded thab=0 and
a=A :8?/,1 =E (19)
Now, the coupled torsional-radial governing diffeial equations of motion representing the
vibrational behavior of the SWCNTSs are derivedhis tsection. The shell theory is employed
and the effects of rotary inertia and gyroscopiamants are neglected. Furthermore, the radial,
axial and torsional deformations are taken intamaat, and it is assumed that the amplitude of
the vibration is large, and stretching nonlineawityich is originated from the extension of the
shaft centerline is considered. A shell is a tha@eensional body whose boundary surface has
special features. Before describing such a bodycinvenient to introduce suitable coordinate
systems. Let the points of a regiBrin a Euclidean 3-space be referred to a fixed +igihided

rectangular Cartesian coordinate systefi=1,2,3 and let(6,,6,,6,) be a general curvilinear
system defined by the transformation relations:[38]

x=% (8.6, .6) (20)
The physical components of stress resultentsvn asN; in curvilinear coordinate are given
by [17]
1r N 0°u
a _(az N11),1 + ( & Nn)vz +a, Ny~ a2,1N2; + % tpP f1= pat_zl (21)
1
1r N d°u
a _(az le),l + ( aN, )'2 + A, Ny~ a2,1N2J +I‘_23 +tp f2= pat_zz (22)
2
1r N N 0°u
a_(asz)yl"'(qua)yJ+[%+r_22J+p f3:p?23 (23)
1 2

whereinr, andr, are the radii of curvature of the surfaee,anda, are the magnitudes of the
surface base vectors arfdare body forces.

The physical components of moment result&mswn asN, in curvilinear coordinate are

given by [1]:
1r M —
A (aZMll)’1+(a2Mll)’2+ al,zM 12 az,lM zg +_13+p| T N 1 (24)
a8, - N
1r N —
a_(alez),l-'-(alsz),z"' a1,2N11_ a2’1N2;|+723+p |2= Nz (25)
1r M M —
a_(alea),l-'-(aiM 23),2}_(A+_22j+p|3: N (26)

h P



650 Azimzadeh et al.

Egs. (21)- (26) are the governing equations far #hells in general curvilinear coordinates.
Now, consider a SWCNT of length mean radiu®, Young’s modulus, Poisson’s ratio
and mass density as shown in Fig. 4. In cylindrical coordinate, ttwordinate components
become

6,=26,=06,=r (27)

The radii of curvature and the coefficiemtsanda, in the cylindrical coordinates are written
respectively, as

rL=oo,r,=ra, =1a,=r (28)
The orthogonal axes of coordinate systémﬁ’,z) correspond to the normal, tangent and
binormal (axial) axes in local cylindrical systenf coordinates, respectively. The
displacements of the center of a sample elemengatme normal, tangent and binormal axes
are demonstrated by, , U, andu, correspondingly and the torsional deformationhef tross
section is denoted b§ around thex direction. Here, the radial deformations and taralo

warping are also added to the theory. Substitudfdeq. (27) and (28) into Eg. (21)- (26) yields

E,v
0, ug o p

(Tangent) (Normal)

Al

s 202 420, + 41, =N, (33)

Egs. (29) - (34) are the equations of motion dfia shell in the cylindrical coordinates and
should be solved in order to develop the dynamalyeis of the systemN; and M, are

resultant forces and resultant moments, respegtiaeld are written with the following
equations:
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zZ
1l
—n T

adr i,j =12, (35)

<
1
—— N T N T

zoMdr,i,j=1,2,2 (36)

NIz

It should be noted that SWCNTSs are essentiallydimoensional. So introducing of the stresses
and displacements in SWCNT considered as a thraerdiional solid seems a bit artificial.
But nevertheless, Egs. (29) — (34) are still valitte these equations describe an equilibrium
state of a shell characterized by stress resultarmtsnoment resultants.

In this study, the following assumptions, knownLase’s first approximation, for cylindrical

shells are made [39]:

1. All points that lie on a normal to the middle sudabefore deformation do the same after
the deformation. Then the transverse shear stresg@sand aéf)are assumed to be
negligible.

2. Displacements are small compared to the sheknieiss.

3. The normal stresses in the thickness directhD,W)() are negligible (planar state of stress).

Assuming axisymmetric and homogeneity for the erttibe and that the nanotube vibrates in
radial and torsional modes only such that the esession of the tube is not elastically
deformed and also neglecting body forces, it magdreluded

izﬁzo,uzzo (37)
06 or
Under such assumptions, Egs. (29)- (34) are redtced
N, _ 0%y, (38)
0z ot
Ny _ 0%
— 68 — r 39
r ot? (39)

which are the equations of motion for coupled torai-radial vibration of SWCNTSs.

The nonlinear strain-displacement relation is wntf31]:

& :%(Du+DuT +0u'0u) (40)
whereF is the gradient operator in cylindrical coordinagégen as
V:ie, +lie3+ieZ (41)
or r oo oz
Ou can be written in cylindrical coordinate as [55]:
Dy 12 y) 2
or r\ag  "6) T
_ |2ue 1 (%us dug
Vu= ar r ( a0+ ur) 9z (42)
lauz lauz 6uZJ
ar r 06 0z
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Substituting Eq. (42) into Eqg. (40) and making somanipulations, yields

c, =1[20us _ U 0y, +i0ﬂ 43)
2| o0z r 0z r 0z
1l ,u  uw

£ 25{27+r_§+r_2} (44)

Now, substituting Eq. (43) and (44) into Eq. (1B)ng with using Eg. (42) and the results into
Eqg. (38) and (39) with making some manipulationhwieglecting scale effect yields

0°u, . 1( 0% 0°u 0%y,
Gh 0 L~ o _ r |l=ph 45
{az2 Zr[uT 07° Ueazzﬂ P ot (45)
1 E Ju, 1/, ]|_ .0
1o h|:7+?(ur +U9)}_:0h_a:2 j46

Eq. (45) and (46) are the equations of motion inlinear coupled torsional-radial vibration of
SWCNTs. From these equations, it can be concludaidbecause of nonlinear terms, the two
equations are coupled with together. The fundanhéné&ar equations can be simply calculated
by setting the nonlinear terms to zero. In thisec#se two equations will be decoupled.

Application of HPM for solving nonlinear vibrations of SWCNTs

In this section, the nonlinear governing equatifmmghe coupled torsional-radial vibration of
SWCNTs are solved. The deflection of the nanotgbsubjected to the following boundary
conditions in radial and torsional direction, respesly.

For two clamped (C-C) boundary conditions

u,(z,t)=0at z= OL (47)
For two free (F-F) boundary conditions
ou,(z,t
L =0at z= OL (48)
0z
For clamped-free (C-F) boundary condition
ou,(z,t
u,(z,t)=0at z= 0 96( ): Gt = L 49]
z

Tablel. Common boundary conditions for the torsional dicet

End conditions of beam Mode shape (normal functign)
sin 77 2
Two clamped (C-C) L
cod V¥
Two free (F-F) L
1-co 2
clamped-free (C-F) L

In mathematics, in the area of numerical analyGaerkin methods are a class of methods for
converting a continuous operator problem suchdiferential equation to a discrete problem.
Indeed, it is equivalent of applying the variatiminparameters method to a function space, by
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converting the equation to a weak formulation. A keature of this method is that they rely on
integrals of functions that can readily be evaldaia domains of essentially arbitrary shape.
Galerkin's method provides powerful numerical dolutto differential equations and modal

analysis. Now, the nonlinear equations of motioa solved to obtain the nonlinear natural

frequencies. The separation of variables is usedamsumed thati, (z,t) = ¢(z)U(t) and
u,(z,t)=¢(z)W(t) where ¢(z) and ¢/(z) are the eigenmodes of the tube satisfying the
kinematic boundary conditions an#i(t) andW(t) the time-dependent deflection parameter

of the nanotube, respectively. The base functiomsesponding to the above boundary
conditions are given in Table 1 for torsional mode.

Applying the Galerkin method, the governing equadiof motion are obtained as follows:

G{alU+2—1r(a2+ a) uw}z (50)
E 1 1 w
= {aSW+§ W+ — auﬂ (51)

The above equations are the differential equatadmaotion governing the nonlinear coupled
torsional-radial vibrations of SWCNTSs subjectedte following initial conditions:
du

U (0)= O’E( 0 =U, (52)
W(O)_ d(;/v() Wioax (53)

whereinU,__ andW, ., denote the maximum velocities of oscillation incamferential and

max

radial directlons, respectively. In Egs. (50) aétl)( a,,q,,....a; are as follows:

a.=[¢'(2)¢(2) dzaz=I¢"( 3w( p( dﬂf-fw"( )z de=[p*( )z (54)

a, =~[y*(2) dzas = jw ) dar, = jw ’( ) oa,= jw (55)
. , _ _ U W _ 1

Changing the varlable—ax,V—Qt,a—T ,b—r— and r —\/;, Egs. (50) and (51) can be

transformed to the following nonlinear equation:

2
wzd—+Aa+ Bab=0 (56)
ar?
, d%b
Q a—+Cb+ Db+ Ea =0 (57)
v

wherein w and Q are unknown nonlinear torsional and radial freqies in the coupled
nonlinear torsional-radial vibration of SWCNTs haie be determined. The coefficients
A B,C,D and E are defined by the following equations

a G
A:——l—:af (58)
a, p
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__lata, [1G (59)
2r a, Ap
C:—ﬁ%%:Qf (60)
a, p(l—v )r
__la, 1 \EL (61)
2a, 2°NA p(1-v°)
g=_10 1 ﬁi 62)
2a, 2°N A p(1-v?)

In Egs. (58) and (60)¢ =JA and Q, =/C is the linear, free vibration frequency in the

torsional and radial vibration modes, respectivély.determine unknown natural frequencies,
New HPMs are applied to seek the solutions of E&f). and (57). The following homotopies

with ) andQ, as the initial approximations for the angular freqcies are considered

(1- p)wg(gh aj+ p(af%+ Aar Ba% =0 (63)
2 2
(1- p)95($+ bj+ p(92$+ Cb+ DB+ EéJ =0 (64)

Herep is a parametera=a(z, p), b=b(v, p), w=w(p) andQ =Q(p). Obviously, when
p=0, Eqg. (63) and (64) yields the following linear imanic equations

d?a da(O)
~-+a=0,a(0=0;"=X 65
o2 a=0.a(Q=0—" (65)
d’b ., _ _ - db(0) _

2 b=0b(0=0—"I=Y (66)

It is notable that forp=1, it results the nonlinear Egs. (56) and (57), eesipely. As
embedding parametpraried from 0 to 1, the solutiorss= a(7, p) and w=w( p) along with
b=b(v, p) and Q=Q(p) of the homotopy Eq. (63) and (64) change fromrthitial
approximationsa, (7),w, andh, (v),Q, to the required solutiona(7),w andb(v),Q of Eq.

(56) and (57), respectively. Suppose the solutiokag (56) and (57) to be in the following
forms:

a(r)=a,(r)+ pa(r)+... (67)
w=a)+pw+... (68)
b(v)=hy(v)+ ph(v)+... (69)

Q=0,+pQ,+... (70)
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Substituting the above relations into the Eq. (&6) (57), respectively and equaling the
coefficients of the terms with equal powergothe following linear differential equations are
obtained

dao (0)

O.da‘;°+a0_o aO(O)—O =X

g( ) ( + Baobo) ~0,a,(0) =0, da1(0) —0 (71)
PO 220 4 by = 0,by(0) = 0,22 @ =y
pl: (d 2+ by)+ (025 by Cbo + Dbo + an) =0,b,(0)=0,"22 = (72)
The solution of the initial (zero) approximatiorsisnply given by
a, (7) = Xsin(7) (73)
by, (v) = Ysin[v) (74)

Substituting Egs. (73) and (74) into the first apgmation Eqgs. (71) and (72), respectively, it
is obtained that

ag(‘;zr? +a1j+[—w§Xsin(r)+ AXsiffr)+ BXYsf(r)]=0 (75)
Q§(33}+le+[—QgYsir(v)+ CYsifv)+ DY sfi{v)+ EX sifw)]=0 (76)

Expanding the trigonometric function using Fousere series fosinz(r) in the first period
yields

sin (7 )D— sin(r ) — S|r(3r) (77)

Substituting Eq. (77) into Egs. (75) and (76) aettirig the coefficient ofin(z) to be zero in
order to eliminate the secular terms, it is foumat t

w= A+3 BY (78)
3T

Q=\/C+3£{DY+ EXVZ) (79)

7T

It can also be seen that in contrast to linearesyst the frequencies of the vibration are
dependent on its velocity amplitude which are esglab the initial conditions so that the larger
the amplitude, the more pronounced the discrepdmetyveen the linear and nonlinear
frequencies becomes. This is caused by the nomiiped the system. It should be noted that
if the dependence of the frequency to amplitudeibfation is neglected the linear natural
frequency of the system is obtained. The resultsadestrate that the nonlinear torsional natural
frequency is deviated from the linear part onlythe torsional vibrations amplitude while the
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nonlinear radial natural frequencies are depenalettie torsional and radial vibrations velocity
of the system. Moreover, it can be seen that tisdioal mode number (n) affects the torsional
nonlinear natural frequency. This means that iregandifferent torsional mode numbers can
combine to establish the nonlinear torsional nafueguency.

Considering Egs. (78) and (79), the solution of.E@S) and (76) can be obtained as

3 BXY . 1 .
al(r)zgm{sm(r)—asw(&)} (80)
R

Thus, the first approximate solution of Eqs. (5@ §57) can be written as follows:

a(r)=a(r)+a(r)= Xsir(r)+:—53%[ sir(r)——é sh@Sr)} (82)
b(v) = (v)+ B ()= Ysir(v)+§3ﬂ¥clizz ;?f EXZ)[ sif) - Si(l?,vv):l (83)

\\Now, the error analysis is discussed briefly. Tlnenerical errors enter to the problem during
Egs. (67) - (70). Because, only two terms are ammsd in Egs. (82) and (83) and only one
term in Egs. (78) and (79). It should be pointettbat the governing equation derived from
the HPM principle turns out to be an infinite oréderies. Because it is almost impossible to
analyze the infinite order series, only few termghe infinite series in Eq. (67) - (70) are
retained. It should be added that numerical are etéered to the problem during Eq. (50) and
(51) which in Galerkin method is used.

Results and discussion

In order to validate the presented method, theltsesbtained herein using Galerkin and HPM
methods are compared with the available numeresllts.

To this end, in Fig. 5 nondimensional amplitudevibration for axial and torsional modes are
drawn againt the nondimensional time using fourtteo Runge-Kutta method and presented
method. The sample SWCNT that has been used ifighi® and upcoming figures is Zigzag
(16, 0) and clamped-free boundary condition is mered for it. From this figure, the boundary
condition is assumed to be clamped-free. Fronfignise, it can be seen that the present method
predictions of the nonlinear coupled torsional-shdibration amplitudes are in good agreement
with the fourth-ordered Runge-Kuta numerical resuNow, the dependence of boundary
conditions, vibration modes and nanotubes geontetrihe nonlinear coupled torsional-radial
vibration characteristics of SWCNTSs are studiedetuils for Zigzag (16, 0). It should be added

. w
that one may relate the natural frequencyig related to the angular frequenay) as f :2—
T

. This equations is used in Figs. 5- 10 to givefteguencies infTHz.Throughout this paper,

the mechanical properties of SWCNT are assumed:t®@bisson's ratio =0.2, mass density
p= 2300k—g3 and Young’'s modulug =1.1TPa[1].
m

In this section, comparison between the resultainbt herein using HPM and the available
numerical results are presented to validate thegmted method.



Journal of Computational Applied Mechanics 2021(4%2642-663 657

To demonstrate the accuracy of the obtained asalytsults, the variation of nondimensional
vibration amplitude for torsional mode is plottegrsus the nondimensional time for Zigzag
(16, 0) SWCNT using fourth-order Runge-Kutta metlaod the presented method in Fig. 5.
From this figure, it can be seen that the HPM mtgahs of the nonlinear coupled torsional-
radial frequencies are in good agreement withaheli-ordered Runge-Kuta numerical results.
The boundary condition is assumed to be clampezl-fre

15 T T T

0.5

——Forth order Runge-Kulta
——~HPM {Present method)

-05-

Nondimensional torsional vibration amplitude
(=]

A5 L ! ! L 1 ! !
0 0.5 1 15 2 25 3 35 4

Nondimensional time

Fig. 5 Nondimensional vibration amplitudes for torsionddration versus nondimensional time for Zigzag (16,
0) nanotube withX =Y =1 for clamped-free boundary condition.

Figs. 6 and 7 show the nonlinear natural frequeneggiation versus maximum torsional and
radial vibration velocity for Zigzag (16, 0), respigely. As can be seen from these figures, in
contrast to linear systems, the nonlinear naturadjufencies are a function of maximum
vibration velocity so that the larger the velocityge more pronounced the discrepancy between
the linear and nonlinear frequencies become. In Bjgas the nondimensional maximum
torsional vibration velocity increase, the nonlineadial natural frequency increases while
nonlinear torsional natural frequency becomes earstit means that in coupled nonlinear
vibration of CNTs, the nonlinear torsional natufedquency is independent to maximum
torsional vibration velocity. In Fig. 7, as the wamensional maximum radial vibration velocity
increases, the nonlinear torsional natural frequencreases while there is a minimum point
in the nonlinear radial natural frequency curvenéians that with increasing nondimensional
maximum radial vibration velocity, the nonlineadia natural frequency first decreases and
then increases. This minimum can be obtained bferéiftiating nonlinear radial natural
frequency with respect to nondimensional maximuuialavibration velocity. It should be
noted that in the casB=0 in Eq. (78) and als® =E =0 in Eqg. (79), the results are in an
excellent agreement with those obtained via line&thod according to the formulations
presented in [41, 46].
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Fig. 6 Nonlinearnatural frequencies against nondimensional maxirtareional vibration velocity for Zigzag
(16, 0) SWCNTs withY =1 under clamped-free boundary condition
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Fig. 7 Nonlinearnatural frequencies against nhondimensional maximadial vibration velocity for Zigzag (16,
0) SWCNTs with X =1 under clamped-free boundary condition

Fig. 8 illustrates the nonlinear natural frequesdiariation against to the tube length of Zigzag
(16, 0) SWCNT under different boundary conditiolhig€an be observed that with the increase
of the tube length, the nonlinear torsional natéineduencies of SWCNTs decrease while the
radial one is constant. The decreasing rate fontimdéinear torsional natural frequency is more
apparent for lower lengths. As is expected, thepled CNT has the highest natural frequency
among the selected boundary conditions. It is aésn that as the tube lengpicreases, the

nonlinear torsional natural frequencies tend toreagh the linear ones especially for large
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lengths. It can also be seen that in the same ttonsli nonlinear radial natural frequency is
much higher than the torsional one. This discrepanmore apparent in lower lengths.

Variation of nonlinear natural frequencies versusetdiameter has been plotted in Figs. 9 and
10 for different vibration modes, respectively. geen from these figures, as the tube diameter
increases the nonlinear natural frequencies inere@kis increasing is more apparent in higher

modes of vibration and higher tube diameter. dl$® seen that as the vibration mode increases,
the nonlinear natural frequency increases too.

—e— Torsional and Glamped-Clamped

8- — Torsional and Clamped-Free ]
—8—Radial and Free-Free
6l —2—Radial and Clamped-Free B

Nonlinear natural frequency (THz)

I I | I I
0 0.5 1 15 2 25 3
Tube length {nm)

Fig. 8 Variation of nonlinear natural frequencies agatnbe length for Zigzag (16, 0) SWCNT witX =1 and
Y =1 under various boundary conditions
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Fig. 9 Variation of nonlinear torsional natural frequersciersus tube diameter witK =1 andY =1 for
various modes of vibration
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Fig. 10 Variation of nonlinear radial natural frequenciessus tube diameter witl =1 andY =1 for
various modes of vibration

1. Conclusions

In this paper, a detailed investigation of the mudr coupled torsional-radial vibration of
SWCNTs based on HPM has been presented. The eggiafionotion for nonlinear coupled
torsional-radial vibration of the SWCNT are deriviealsed on nonlocal theory. It is the first
time that nonlocal theory has been used to analyeenonlinear coupled torsional-radial
vibration of SWCNTs. The nonlinearities were orgfed from the large deformations in
interaction of radial and torsional modes. To abttie nonlinear frequency equations in
coupled torsional-radial mode, the HPM has beerd use derive the nonlinear natural
frequencies of SWCNTs with arbitrary end conditiombe significant dependency of these
nonlinear natural frequencies to tube radius, tebgth and the maximum vibration velocity
are studied in different boundary conditions anddenaumbers. To show the accuracy and
ability of this method, the generated results at#dihave been compared with numerical results
and excellent correlation has been achieved. The reaults specifically obtained in this paper
are as follows.
1- Due to the coupling of the torsional and radialratbons and obtaining the nonlinear
natural frequencies in radial and torsional modeshyations, radial and torsional nonlinear
natural frequencies are defined in this analydi® fondependent part of the nonlinear natural
frequencies to the velocity of vibration represehtsnatural frequencies of the linear model
in which the radial and torsional vibrations arealeled.
2-  The nonlinear natural frequencies of the system aitained as the functions of
maximum torsional and radial vibration velocitieigh this phenomenon is due to nonlinear
nature of the system.
3-  The coupling between the radial and torsional vibres appears in the nonlinear higher
order free vibrations of the SWCNT which is origieé from the large deformation terms in
the deriving of the nonlinear differential equasanf the system. This interaction generally
affects the global dynamic behavior of the SWCNT.
4-  The nonlinearity leads to increment of the natfrejuencies comparing with the linear
model such that the nonlinear natural frequenadiesher than its linear counterparts.
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5- As one travels through the free end conditions lmped one, respectively, the
influence of the boundary conditions is shown twéase the natural frequencies. This effect
is more significant for lower tube lengths.

6- For same tube length/diameter, the absolute vafuthe nonlinear radial natural
frequency is higher than of the nonlinear torsioraural frequency. This discrepancy is more
apparent in higher mode numbers.

7-  For equal maximum vibration velocities, the nondineadial natural frequency is higher
than the torsional one. This difference betweenr#ddial and torsional nonlinear natural
frequencies is more evident in higher vibration e®end lower tube length.

8-  As the tube length increase, the natural frequeniéerease. This decreasing is more
apparent in clamped boundary condition. This shibasthe effect of interaction of the radial
and torsional vibrations of the SWCNTs decreasds increase in tube length.

9- As the tube diameter increases, the natural freiesmlecrease. For torsional natural
frequency, this decreasing is more apparent indrigtbration mode while the radial natural
frequency is insensitive to mode number. As the tdiameter increases more, the natural
frequencies converge to single value. This shoassttie effect of interaction of the radial and

torsional vibrations of the SWCNTSs decreases witnaase in tube diameter.
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