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1. Introduction
Atherosclerosis is the most prevalent type of 

cardiovascular disease (CVD) often leading to a 
brain or heart attack[1]. Atherosclerosis is caused 
by the constant development of plaques in the 
arterial wall and then their separation, developing 
inflammation in the endothelial and its malfunction 
[2]. The atherosclerotic plaque is made of lipids, 
macrophages, inflamed endothelial, foam, and 
vascular smooth muscle cells with many other 
elements that amass over time, results in calcification 
and thrombus development. Figure 1 Shows 
the Process of Athersclerosis plaque formation.
Leukocytes express proinflammatory cytokines 
when they are engaged to the endothelium followed 
by the infiltration of monocytes and their maturation 

into macrophages located in the vascular wall, which 
incorporate lipids and become foam cells. The injury 
of endothelium are sometimes are caused by these 
plaques. When injury is happened, the endothelial 
cells release inflammatory phenotype and attract 
macrophages to the injured site, thereby secreting 
linkage molecules. Attachment of monocytes 
and leukocytes to the injured endothelium causes 
extravasation into the tissue area just after the 
chemokines are produced. Then, monocytes evolve 
into macrophages, which are expert phagocytes 
employed to absorb extra lipids at the injury site [3]. 

Many atherosclerotic biomarkers and features 
assist in vascular-targeted drug distribution during 
the disease development. Several studies have 
assessed drug transporters’ capability to carry 
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imaging agents and medicines to the vascular 
area in atherosclerosis. Endothelial cells and 
macrophages are the two cell targets owing to 
their unique secretion of inflammatory reagents 
(E-selectin (endothelial-leukocyte adhesion 
molecule 1), ICAM, P-selectin (Granule Membrane 
Protein), and VCAM-1) and qualities (‘leaky’ 
vasculature displayed by endothelial lining). The 
accumulated lipids damage the tissue, thereby 
releasing proinflammatory chemokines. Several 
enzymes oxidize these lipids.

Commonly, stenting and nanocarriers are 
two ways to treat atherosclerosis[5]. Although, 
both the drug-loaded stent and the pristine metal 
stent lead to restenosis and stent thrombosis to a 
certain range[6]. In order to use nanocarriers for 
the treatment of atherosclerosis, nanocarriers 
should be biocompatible and not toxic. Therefore, 
some treatments are needed to produce a non-
toxic, biocompatible nanocarrier such as coating 
nanoparticles with natural cells [7].

Nanocarriers are divided into three main 
groups: Targeting, Imaging and Therapeutic 
nanocarriers. This review focuses on Targeting and 
Imaging. Targeting nanocarriers are also divided 
into passive and active groups. Passive one uses the 
body’s certain biophysical features of the illness to 
pinanoparticlesoint nanocarriers. However, active 
one changes the external structure of nanocarriers 
to include ligands to biochemical signs 
overexpressed in or exclusive to the plaque area.

Application of bio-nanoparticles to advance 
the specific delivery of therapeutic or imaging or 
targeting molecules to atherosclerotic plaques 
get more complicated and more effective every 
day[8].  Recent studies determine that biomimetic 
nanoparticles can attain lasting blood circulation 
[9], have more active immune avoidance and better 

aiming than traditional nanoparticles [10]. Besides, 
biomimetic nanoparticles are more likely regarded 
as “self ” and establishing better biocompatibility 
against traditional nanoparticles [11]. The 
nanoparticles cores’ surface can show ligands for 
steering different basic tissues, cells, and receptors 
of atherosclerotic plaques. Besides, these drug 
delivery systems can effectively carry phospholipid 
bilayers from natural cells to nanocarriers without 
harming active surface proteins [12]. In this review, 
we discuss the materials used for drug delivery in 
atherosclerosis approaches. At first, we discussed 
nanocarriers into two main groups: Targeting and 
Imaging. After that, we divided the materials used 
for each group and in a combination, we divided 
materials into five groups (Liposomes, Polymeric 
materials, magnetic materials, metalic materials, 
Mesoporous silica-based materials). We described 
every of these materials below.

2. Advanced  nanocarriers for atherosclerosis 
therapy

Biomimetic Nanocarriers technology has been 
gradually and increasingly applied in treating 
CVDs. They can be categorized into three types of 
the whole cell, cell membrane, and vesicles-based 
Nanocarriers (Figure 2) [13]. Encapsulation and 
carrying celastrol within a nano-carrier increase 
its solubility in water and change its biological 
distribution and half-life in the serum [14]. Nano-
vessels can enhance the discrimination power of 
encapsulated goods by aiming at definite cells or 
tissues [15]. Lastly, nanocarriers can encapsulate 
more than one loading at the same time, allowing 
the combined transfer of different reagents to 
precise cells [16]. These advantages can remarkably 
lower the dosage of medicines, lessen toxicity, and 
increase protection [17].

Fig. 1- Atherosclerosis initiation and development process (ICAM-1: Intercellular Adhesion Molecule-1, VCAM-1: Vascular cell 
adhesion protein Molecule-1, LDL: Low-Density Lipoprotein) [4].
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2.1. Targeted nanocarriers
So far, efficacious policies for restricting 

nanocarriers to atherosclerotic plaque have 
employed passive or active aiming [1,18]. In 
atherosclerosis, passive targeting uses the enhanced 
vascular permeability and retention (EPR) of vessel 
endothelium due to chronic and local inflammation. 
This feature is found in plaque microvasculature, 
too [19,20]. Quick angiogenesis after the vasa 
vasorum through plaque development result in 
these microvessels, inhibiting pericyte employment 
and the resulting vessel solidity [21,22]. In the late 
stage of atherosclerosis, passive targeting uses 
the faster blood velocity at contracted points of 
exceedingly blocked vessels, leading to greater local 
shear stress [23].

On the other hand, active targeting changes 
nanocarriers’ superficial features to include 
ligands to biochemical signs overly expressed or 
certain to the plaque area (Figure 3). These cues 
are proteins seen on injured endothelium, foam 
cells, and oxidized lipids aimed by antibodies, 
oligonucleotides, and peptides [1,18,24]

2.1.1. Polymeric nanocarriers
Polymeric nanocarriers are one of the promising 

nanocarriers for drug delivery systems (Table 1). 
Polymeric nanocarriers are so famous, because 
of their capacity to be surface-modified and be 
copolymerized or even can be conjugated with 
targeting agents and delivery of the encapsulated 
agents[26]. Natural or synthetic polymers can 
be used to produce polymeric nano particles. A 
polymerization reaction of monomer units can 
result in polymeric nanosystems. Under certain 
conditions, they can be structured and assembled 
with a nanometric size (10–100 nm) [27,28]. The 
most applicable natural polymer for atherosclerosis 
carrier is Chitosan. Synthesis polymers are more 
common to be used in the fabrication of polymeric 
nanoparticless. Some synthetic polymers are 
poly(lactic-co-glycolic) acid, poly(ethylene glycol), 
and poloxamer. The hydrophilic poly(ethylene 
glycol) (PEG) is  an FDA-approved that has lots of 
properties such as  reduction protein absorption, 
increasing half-life of the serum, and also it has little 
immunogenicity[29]. In the following section, some 
experimental progresses in producing Polymer 

Fig. 2-  Contemporary design of atherosclerotic nanomedicines, 
They can be categorized into three types of the whole: 
Liposomes, Micelles and Lipid nanoparticles [8].

Fig. 3-  Surface functionalizing of nanocarriers by biological ligands for active targeting purposes[25].
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based nanocarries are mentioned in Table 1.

2.1.1.1. PEG-based nanocarriers
Poly(ethylene glycol) is a synthetic most used 

polymer [30] in biological applications because of 
its great properties. Here are some experiments 
using PEG-based nanocarriers for Atherosclerosis.

The small hydrophobic molecule of nuclear 
factor kappa-light-chain-enhancer of activated 
B cells (NF-κB) inhibitor celastrol was put into 
poly(ethylene glycol)-b-poly(propylene sulfide) 
(PEG-b-PPS) micelles by Allen et al. [17]. PEG-b-
PPS micelles displayed excellent packing efficacy, 
little polydispersity, and no shape variations 
upon packing. Celastrol within these nanovessels 
considerably decreased cell toxicity versus free 
celastrol. Further, celastrol-loaded micelles 

effectively decreased Tumor Necrosis Factor Alpha 
(TNF-α) excretion after Lipopolysaccharides 
(LPS) stimulus of RAW 264.7 cells and lowered 
neutrophils and inflammatory monocytes in the 
atherosclerotic plaques of Low Density Lipoprotein 
Receptor Knockout Mouse (ldlr-/-). This decrease 
in inflammatory cells corresponded to the decrease 
in plaque area, signifying that these nanovessels 
can work as an anti-inflammatory treatment for 
atherosclerosis. Also, Mishra et al. [31] encapsulated 
Glycosylceramide synthase inhibitor (D-PDMP) 
within poly ethylene glycol  and sebacic acid. The 
dwelling time of D-PDMP in vivo was increased by 
polymer-encapsulation from < 1 hour to > 4 hours 
(up to 48 h or longer). Polymer encapsulation 
increased in vivo endurance that it resulted in 
increasing hinder with atherosclerosis and cardiac 

Table 1-  Polymeric nanocarriers characteristics and their target for atherosclerosis therapy
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Table 1. Polymeric nanocarriers characteristics and their target for atherosclerosis therapy. 
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hypertrophy in apoE/ Apolipoprotein E Knockout 
mice (apoE-/-)  who were nourished by a diet with 
high fat and cholesterol.

Ma et al. [32] evaluated the transfer of microRNA 
(miR)-146a and miR-181b with an E-selectin-
targeting multistage vector (ESTA-MSV) so that 
to suppress atherosclerotic plaques in the injured 
endothelium. They used polyethylene glycol-
polyethyleneimine nanoparticles to cover Cyanine 
5 (Cy5)-conjugated miR-146a and miR-181b and 
loaded Cy5-conjugated miR-146a and miR-181b 
into ESTAMSV microparticles. Both miRs were 
undergone downregulation in TNF-α-treated 
endothelial cells. 

Wu et al. [17] used the block copolymer micelles 
of poly(ethylene glycol) and poly(propylene 
sulfide) loaded with Andrographolide to decrease 
inflammation and the amount of Reactive oxygen 
species (ROS) to cure atherosclerosis. Because of 
the ROS-responsive property of PEG-PPS, the 
micelle works like a stimuli-responsive drug carrier 
to promptly discharge the encapsulated drug, and 
also the micelle ingests ROS at the pathologic sites; 
also, the release of pro-inflammatory cytokines are 
lowered, and oxidative stress is controlled.

2.1.1.2. PLGA-based nanocarriers
Poly(lactic-co-glycolic acid) (PLGA) is one 

of the best developed polymers for biological 
applications[33]. Due to its biodegradability, good 
interaction with biological materials, possibility 
to target nanoparticles to exact organs or cells, 
PLGA is so successful to be used nanocarriers. 
Some examples of using PLGA as nanocarriers for 
Atherosclerosis is mentioned below.

Gaytan group [34] prepared a combined 
polymer/ High Density Lipoprotein (HDL) 
nanoparticle comprising a lipid/apolipoprotein 
cover that put in a nutshell a poly(lactic-co-glycolic 
acid) (PLGA) core. This new HDL-like nanoparticle 
(PLGA–HDL) exhibited natural HDL features, 
such as favored taken by macrophages and a decent 
cholesterol efflux ability, with a characteristic PLGA 
nanoparticle sluggish discharge profile. In vivo 
studies (with an ApoE knockout mouse model) 
of atherosclerosis displayed an obvious buildup 
of PLGA–HDL nanoparticles in the plaques, 
colocalized with macrophages. This biomimetic 
stage mixes the aiming ability of HDL biomimetic 
nanoparticles with the typical flexibility of PLGA-
based nanocarriers.

Zhang et al. [35] established this method using 

platelet membrane-coated PLGA nanoparticles 
to attack atherosclerotic lesions in ApoE-/- mice. 
The multivalent attachment relations of platelet 
membranes were long-established by colocalizing 
the nanoparticles to stimulated endothelium, 
macrophages, and collagen type IV. Furthermore, 
the platelet-PLGA nanoparticles were displayed to 
attach to stimulated endothelium in atherosclerosis-
prone sites, showing their potential to target 
atherosclerosis at early and final disease stages.

Song et al. [36] stretched the platelet-PLGA 
nanocarrier approach to transfer rapamycin, 
an immunosuppressant, to sluggish plaque 
development. However, platelet-membrane 
coatings have many restrictions that may impede 
clinical application, such as uneven coating, set 
to set inconsistency, scalability, and the risk of 
denaturing endogenous membrane proteins, which 
could cause an autoimmune response [37].

2.1.1.3. Chitosan-based nanocarriers
Chitosan is a natural widely available polymer 

that is able to enhance bioavailability [50]. It can 
also be used into nanocarriers for Atherosclerosis 
applications. Some usage of Chitosan as 
nanocarriers are in the following paragraphs.

Hong et al. [51] did the encapsulation of 
(-)-Epigallocatechin gallate (EGCG) (chief 
bioactive ingredient in green tea) into self-
assembled nanoparticles of chitosan and aspartic 
acid  and the efficiency of EGCG against rabbit 
atherosclerosis was considerably increased by 
integrating EGCG into the nano-formulation.

Gao et al. [52] developed a macrophage 
membrane which was coated with ROS-responsive 
nanoparticles used for the biomimetic drug 
delivery system. This membrane shuns the removal 
of nanoparticles from the reticuloendothelial 
system and directs nanoparticles to the 
inflammatory areas. There, the ROS-receptiveness 
of nanoparticless allows precise payload release. 
Besides, the combined effects of pharmacotherapy 
and cytokines confiscation from this biomimetic 
medicine transfer system results in better cure of 
atherosclerosis. ROS responsive nanoparticles were 
organized through self-assemblage of amphiphilic 
oxidation-sensitive chitosan oligosaccharide.

Yin et al. [53] made hydrophobically-modified 
glycol chitosan (HGC) nanoparticles to target 
activated endothelial cells. HGC nanoparticles 
amplified aiming specificity toward activated 
endothelial cells. Therefore, HGC nanoparticles 
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are attuned toward Red Blood cells, platelets, and 
endothelial cells. In addition, HGC is employed to 
detect stimulated endothelial cells at atherosclerotic 
lesions and bring medicines.

Yu et al [54] investigated the effect of Chitosan-
oligosaccharides (COS) on atherosclerosis in 
apolipoprotein  E. This experiment resulted in 
decreasing of cholesterol and TG in non-high 
density lipoprotein. 

2.1.2. Liposome nanocarriers
Liposome nanoparticles as drug carriers are used to 

gain discerning localization of active drug in injured 
areas [55], and one of their use is in Atherosclerosis 
and they are used as noninvasive in vivo imaging 
of atherosclerotic plaques or early atherosclerotic 
lesions, which allows the active transfer of drugs, 
genes, cells, and contrast agents. Liposomes can 
be altered for different purposes, for instance, 
Liposomes can be PEGylation, in this process, 
PEG molecules will be attached to the surface of 
Liposomes. This process, expand Liposomes’ chance 
to target the plaques[3]. Many pioneering strategies 
for the aiming of plaques by liposomes have been 
explored. These strategies grasp the different stages 
in the progression of atherosclerosis and some of 
them are mentioned below. 

Benne et al. [56] encapsulated GW3965 (a 
promising therapeutic compound that increases 
plasma and liver lipid amounts) in liposomes 
and activated by the cyclic peptide Lyp-1. These 
liposomes demonstrate favored in vitro uptake by 
foam cells and higher amassing in atherosclerotic 
plaques in mice versus non-aimed liposomes, 
as shown by in vivo imaging. Furthermore, 
Kelley et al. [57] prepared biomimetic liposomes 
made of synthetic liposomes hybrid by platelet 
membranes (P-Lipo) for aiming atherosclerosis. 
P-Lipo has the multivalent aiming features derived 
from membranes of platelets and the benefits of 
synthetic liposomesas drug carriers. Using an 
atheroprotective medicine, rapamycin, as the model 
drug, P-Lipo strongly subdued atherosclerosis 
development compared with all treatments without 
causing systemic toxicity.

On the other hand, Li et al. [58] developed an 
anti-inflammatory cytokine interleukin-10 (IL10) 
transfer system to ease atherosclerosis plaque 
inflammation effectively. The targeted transfer of 
IL10 to the atherosclerotic plaques was realized by 
cyclic arginine-glycine-aspartate motif peptides 
(cRGD) conjugated liposomes (IL10-cRGD-Lip). 

The in-vitro analysis obviously advocates that IL10-
cRGD-Lip endures the release of IL10 and could 
considerably decrease ROS .

Huang et al. [59] fabricated anti- Intercellular 
Adhesion Molecule-1 (ICAM-1 ) antibody with 
liposomes for guided transfer of a water-insoluble 
liver X receptor (LXR) agonist (T0901317) to 
prevent Vascular smooth muscle cells (VSMC) 
production. With the help of a confocal laser 
scanning microscope and flow cytometry, the 
aiming precision of the anti-ICAM-T0901317 
liposomes was assessed, and it showed the stronger 
inhibition effect of VSMC creation than free 
T0901317.

Li et al. [60] altered liposomes using an aiming 
ligand (E-selectin-binding peptide) to deliver 
both Arsenic-tioxide and Curcumin to impaired 
Endothelial Cells (EC) and overexpressing 
E-selectin. Employing reverse transcription 
quantitative polymerase chain reaction, flow 
cytometry, and immunofluorescence staining, the 
molecules contributed to the hang-up of connection 
(E-selectin and (ICAM-1)) and inflammation (IL-
6 and monocyte chemotactic protein 1 (MCP-1)) 
in aortic ECs were assessed. The antiatherosclerosis 
properties of liposomes which is co-loaded with 
Ato and Cur were estimated in vivo using (ApoE-/-) 
mice. This treatment decreased foam cell formation 
and the excretion of inflammatory factors (IL-6 
and MCP-1) by hindering monocyte transfer into 
the intima.

Benne group [61] developed anionic phospho-
lipid 1,2-distearoyl-sn-glycero-3-phosphoglycerol 
(DSPG)-liposomes encapsulating an LDL-derived 
peptide antigen. This material was experiment-
ed on atherosclerotic mice and it showed that the 
plaques became stabilized and the plaque forma-
tion was decreased to 50%.

2.2. Imaging
Molecular imaging empowers the study of 

lesions at the cellular and molecular levels and 
precise diagnosis of the atherosclerotic plaque. In 
the previous few decades, magnetite (Fe3O4), a 
magnetic iron-oxide nanoparticle  for magnetic 
resonance imaging (MRI), has drawn considerable 
attention because of its excellent biocompatibility 
[62–66]

2.2.1.Magnetic nanoparticles
Magnetic nanoparticles are a group of materials 

that have made great strides in the field of MRI 
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imaging in recent years, both for diagnosis and 
treatment. Magnetic nanoparticles are being 
considered as a new generation to help improve 
MRI imaging by enhancing contrast[67–69].This 
is caused by their exclusive physical features and 
performance at the cellular and molecular altitudes 
and biological interfaces. They are also used for 
targeted and topical drug delivery. As a result, this 
fact has attracted the attention of researchers for 
the first time in the past decades. An important 
challenge in the development of these magnetic 
nanoparticles is their function in the body 
environment. These materials are usually detected 
and cleared by the reticuloendothelial system (RES) 
before reaching the target tissue or site. In addition, 
there are many biological barriers in the way of 
their final delivery[70]. The morphology, charge 
and surface chemistry indicate that these particles 
can be used intravenously or other methods must 
be used. These physical and chemical properties of 
particles determine their biological distribution as 
well as their function in the body.

There are several methods that can be used to 
reduce the delay in the operation of magnetic 
nanoparticles and also increase their presence time 
in the bloodstream, thus increasing the likelihood 
that they will reach the target tissue, including 
these methods Particle size reduction or grafting 
nonfouling polymers can be mentioned .Recently, 
a new generation of magnetic nanoparticles has 
been introduced which can facilitate MRI imaging 
contrast. For instance, performing better in drug 
delivery and targeted drug delivery have been 
detected. The nucleus and functional ligands are 
used in the composition of carriers to improve 
the diagnosis and delivery of the drug. The use of 
certain materials and compounds such as doped 
iron oxide nanocrystals or metal alloys that are 
nanoparticles or nanocomposites can improve 
imaging by amplifying the signal in the background 
and magnetic moments[71][72].

The use of suitable coatings such as silica 
nanoparticles or gold nanoparticles allows us to 
use even a toxic nucleus in a drug carrier. Due to 
the fact that these coatings can be self-assembled 
monolayers )SAMS(, they provide more complete 
and better coverage for the core[73].

2.2.1.1. Properties of magnetic nanoparticles
The influences of magnetic fields on the tissues 

of the human body, as well as the possibility of 
controlling, detecting and accessing magnetic 

materials while they are inside the body, have 
long been studied for use in medicine The reason 
that magnetic nanoparticles have been considered 
for imaging is that they can provide descriptive 
images with high contrast and resolution. This 
high imaging power can help diagnose malignant 
and healthy tissues. In addition, if a lesion such 
as vascular plaque is detected, a change in the 
external magnetic field can cause the drug-carrying 
nanoparticles to accumulate in the area[68]. One 
of the most widely used methods for coronary 
artery imaging to diagnose or treat coronary artery 
disease is MRI. The MRI technique has evolved as 
a powerful non-invasive method for diagnosis. It is 
based on the use of a magnetic field that generates 
magnetic alignments of protons in the direction of 
the field. When radio frequency is transmitted, the 
direction of magnetization changes, followed by 
the change in the direction of the field.

2.2.1.2. Magnetic Fe2O3 Nanoparticles
Magnetic Fe2O3 nanoparticles are composed of 

a core of magnetite (Fe3O4) or gamma-Fe2O3 and 
an appropriate cover of polymeric, metallic and 
ceramic materials, such as liposome, mesoporous 
silica and chitosan (figure 4). Superparamagnetic 
Iron Oxide Nanoparticles (SPIO) and Ultrasmall 
superparamagnetic iron oxide nanoparticles 
(USPIO) are among colloidal Fe2O3 magnetic 
nanoparticless that have been broadly researched 
for their biomedical applications caused by their 
outstanding biocompatibility and easy production 
[74,75]. 

A variety of synthesis, processes produce iron 
oxide nanoparticles. These processes range from 
wet chemistry solution-based [77] to unusual 

Fig. 4-  Schematic of a magnetic nanoparticle with different 
coatings for drug delivery and imaging [76].
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techniques like laser pyrolysis or chemical vapor 
deposition. Presently, SPIO and USPIO have 
clinical applications as contrast agents in MRI. 
They are predominantly made by an liquid co-
precipitation technique along with the coating 
material [78]. In hydraulic systems, controlling 
the amount of pH of the solution and the coating 
material affects the formation of particles and 
their properties. They need to further improve the 
surface engineering of SPIONs to minimize toxicity 
and improve biocompatibility[79]. SPIONS are 
able to be conjugated with antibodies in order to 
binding with Vascular cells and integrating with 
anti-inflammatory drugs (Figure 5) [66]. When 
magnetic particles of iron oxide are placed in an 
external magnetic field, the particles align their 
magnetic orientation with the direction of the 
magnetic field, which increases the flux. After 
removing the magnetic field, Brownian motion is 
sufficient to generate random magnetic moments. 
Hence their magnetic properties are lost. This 
property is referred to superparamagnetism, 
which only some nanometer-sized magnetic 
materials have. In fact, it depends on the size of the 
particles[80].

Due to their excellent magnetic properties as 
well as their corresponding surface properties, 
nanometer iron oxide is broadly employed for 
biomedical usage like targeted drug transfer, 
hyperthermia and also MRI imaging. 

Another reason why we use nanometer iron 
oxide is to increase their biosensitive properties 
such as biocompatibility. Some properties such as 
hydrodynamic diameter, surface charge and density 
of the coating are important in determining the 
viability of nanoparticles in medical applications. 
These parameters strongly affect the possibility 
of interaction as well as their ability to maintain 
superparamagnetic behavior[81].

Fig. 5- Schematic diagram of Fe3O4  nanoparticles functionalized with rapamycin and profilin1 antibody [66].

2.2.2. Metallic nanoparticles
Chemical instability for materials such as cobalt, 

nickel, and iron causes them not to receive much 
attention in biological applications. These magnetic 
nanoparticles, which oxidize rapidly in the presence 
of water, oxygen, or moisture, must be coated 
with materials such as gold or silica to improve 
properties such as reducing toxicity[82]. Although 
these nanoparticles generally have complex 
synthesis methods, researching them continues due 
to their unique benefits. Among these materials, 
iron oxide nanoparticles have very high magnetic 
properties, which are called superparamagnetism. 
These iron oxide nanoparticles are able to maintain 
their magnetic properties in larger particle sizes 
compared to their oxide part[83].

In a study by Peng et al. They showed that Fe3O4 
can have better resistance to deep oxidation having 
crystalline structure than having an amorphous 
structure and a better protective layer was 
established. after the nanoparticles were obtained 
by heat degradation, the formation of an oxide layer 
and its amount and thickness were controlled by the 
oxygen transfer method.Fe/Fe3O4 nanoparticles 
have a 4-nm central radius and 2.5-nm oxide 
thickness. The magnetic account of nanoparticles 
verified that the particles have superparamagnetic 
property and a Ms of 102.6 emu/g Fe [84].

Metalic nanoparticles generally using ceramic 
coatings, polymers, liposomes and dendrimers, etc. 
can have better biocompatibility and also help in 
targeted drug delivery (Table 2).

2.2.2.1. Gold nanoparticles 
CT )Computed Tomography) scan is one of the 

best and most common methods for coronary artery 
imaging, which is also a non-invasive method[93]. 
Modern CT scanners allow you to take high-speed 
and comfortable images with good resolution of 
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the heart and coronary arteries, and can also reduce 
errors related to the movement of the heart muscle 
and breathing[94].The use of X-rays and CT scans 
has received a lot of attention due to the fact that 
cell imaging has recently become a favorite of 
researchers. It has been observed that the ability to 
image cells labeled by gold nanoparticles with high 
resolution and scale of a cell is very important[95]
[96]. Imaging techniques such as Single-photon 
emission computerized tomography (SPECT) and 
MRI have problems with the movement of the heart 
muscle and chest to the respiratory tract, which has 
been eliminated in CT imaging. Therefore, gold 
nanoparticles can give us hope for non-intrusive 
imaging and monitoring of monocyte buildup 
in atherosclerotic plaques. Gold nanoparticles 
have been studied for medical uses because of 
their ability to  regulate  particle shape, size, 
biocompatibility and unique physical properties. 
The mentioned properties of gold nanoparticles 
make us more inclined to use them in biomedical 
applications, and adding a factor to them can give 
much more desirable properties. For example, 
by adding polyethylene glycol (PEG) coatings to 
gold nanoparticles, they can be prevented from 
being absorbed by the reticuloendothelial system, 
which increases their shelf life in the bloodstream, 
resulting in greater efficiencies for targeted drug 

delivery. Gold nanoparticles are useful both as a 
blood pool and as a contrast enhancer in CT[97,98].

3. Mesoporous silica-based nanocarriers 
Mesoporous silica is a mineral polymer 

nanomaterial with a pore size of 2 to 50 nm and 
many outstanding features like extraordinary 
specific surface area, evenly adaptable pore size, 
and excellent drug-carrying ability, outstanding 
biocompatibility, and easy modification of the 
surface. Based on how the mesoporous is ordered, 
it is categorized into disordered mesoporous silica 
and ordered one. This research centers on the 
ordered one because of its too ordered channel 
construction, even pore size spreading, and many 
mesoporous forms appropriate for drug transfer. In 
1992, Kresge et al., the Mobil Company scientists, 
introduced an ordered mesoporous substance called 
MCM-41. The pore structure of this nanomaterial 
has a two-dimensional hexagonal arrangement with 
even particle and pore size that can be endlessly 
accustomed in the range of 2–10 nm. By adjusting 
the production conditions, different forms of 
mesoporous silica are continuously produced. [99].

The drug bearing ability of mesoporous silica 
nanoparticles make it as a great candidate for 
overwhelming the drug resistant tumors. This 
fascinating ability introduced mesoporous silica 
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as an useful agent for diagnosis and therapy of 
atherosclerosis.They are able to track macrophages 
for plaque’s imaging,whose are principal part of 
atherosclerosis plaque.They also could be utilized 
as nanocarriers for targeting[100].For instance,The 
aza-dibenzocyclooctyne polymerized PEGylated 
mesoporous silica nanoparticles (DBCO-MSNs) 
were developed by Jeong et al. using biological 
orthogonal F-18 tagging to chase macrophage cells 
by Positron Emission Computed Tomography (PET) 
[101]. The results indicated that [102] F-DBCO-
MSNs tagged macrophage cells (RAW264.7) 
could stay and amass at the atherosclerotic plaque 
and be checked by PET images. Such DBCO-
functionalized MSNs can offer a novel way for the 
diagnosis of Atheroscelorosis with PET imaging. Ji et 
al. invented anti-CD68 receptor-targeted Fe-doped 
hollow silica nanoparticles (CD68-Fe-HSNs). 
It is a double-modal US/MRI contrast to detect 
macrophages of aorta ventralis atherosclerotic 
plaques in ApoE-/- mice [103]. Besides, the CD68-
Fe-HSNs were eco-friendly, though they were 
mineral mesoporous nanosystems. This shows 
their capacity for drug transfer and AS theranostic. 
Because AS is an inflammatory disease, the 
extraordinary appearance of inflammatory agents 
can also be utilized as targets for AS tracking. Xu 
et al. developed mesoporous silica nanoparticles 
that were able to aim vascular cell adhesion 
molecule 1 (VCAM-1) released by endothelial 
cells [104]. VHPKQHR peptide-modified 
magnetic mesoporous nanoparticles (FITC-VHP-
Fe3O4@SiO2) were built by joining fluorescein 
isothiocyanate (FITC) into Fe3O4@SiO2 and 
adjusting VHPKQHR (Val-His-Pro-Lys-Gln-His-
Arg) peptide on their surface. In vitro fluorescence 
imaging and in vivo magnetic resonance imaging 
displayed that FITC-VHP-Fe3O4@SiO2 were able 
to pinanoparticlesoint atherosclerotic plaque areas. 
In this article, the authors did not intend for drug 
transfer, but they showed the likelihood of future 
precise transfer of drugs by MRI guided with FITC-
VHP-Fe3O4@SiO2 for AS [100]

For the example of targeting silica mesoporous 
nanocarriers ,Pham et al[105] developed a 
nanocarrier system based on mesoporous silica 
,loaded with Rosuvastatin and coated hyaluronic 
acid (HA), poly (l-lysine hydrochloride) (PLL), 
and methoxy-poly (ethylene glycol)-block-
poly (l-glutamic acid sodium salt) (PGA).This 
carrier was also surface modified with CD9, an 
overexpressed protein by plaques macrophages for 

separating imflammatory cells. The results showed 
that the drug is fully sheltered in mesoporous silica 
while hyalororonic acid coating allowed release of 
CD9 antibody via its degradation.The prescence 
of PLL and PGA coating helped the stability of 
mesoporous silica. This nanocarrier system helped 
the plaque destruction via hindering the senescence 
process of cells by  using loaded drug and surface-
conjugated antibody. 

4. Conclusion and future prospectives
Nowadays, atherosclerosis is one of the major 

issues for cardiac infarction and causes a lot of death 
annually. Several invasive (such as endovascular 
surgery) and noninvasive methods have been used 
for atherosclerosis therapy. Noninvasive methods 
including medicine therapy and targeted therapy 
have been utilized for alleviating the symptoms. 
Seeking into literature, targeted therapy with 
nanocarriers attracted lots of attention in recent 
years. In this review, we concentrated on novel 
metallic, polymeric, magnetic, silica based and 
liposome based nanocarriers for atherosclerosis 
therapy and their theranostic approaches. In 
near future, these fresh methods will be replaced 
the common therapy methods and will decrease 
the morality rate of people suffering from 
atherosclerosis disease.

The futuristical insights include using various 
coating and surface modifications on nano-
carriers for effective targeting and imaging of 
atherosclerosis.Developing of novel compsite or 
core-shell system for multiple aims of utilizing 
nanocarries would be another perspective. .Using 
less cytoxic materials also could be considered in 
designation of nanocarries.
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