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Abstract 

In this article, we propose the gamma kernel estimator for the cumulative distribution 
functions with nonnegative support. We derive the asymptotic bias and variance of the 
proposed estimator in both boundary and interior regions and show that it is free of 
boundary bias. We also obtain the optimal smoothing parameter which minimizes the 
mean integrated square error (MISE). In addition to consistency, we prove the almost 
sure convergence of the proposed estimator and show that it follows the same 
approximate normal distribution as empirical distribution. We presented a simulation 
study to compare the performance of the proposed estimator with other estimators. We 
use the proposed estimator to estimate the cumulative probability distribution function 
of the food expenses for urban households in Iran. 
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Introduction 
For a given i.i.d. sample ��, … , �� from an unknown 

continuous cumulative distribution function (CDF) �(�), the empirical distribution function is defined as ��(�) = �� ∑ �(�
 ≤ �)�
��  where �(∙) is the indicator 

function. Since �
′� are i.i.d. from Strong Law of Large 

Numbers we can deduce that ��(�)
= 1� � �(�
 ≤ �)�


��→ ���(� ≤ �)� = �(�),     �� � → ∞,    �. �. 1, 
and since Var��(� ≤ �)� = �(�)(1 − �(�)) from 

Central Limit Theorem we have ��(�)~% &�(�), �'��(�)(1 − �(�))* ,     �� � → ∞. 
Although ��(�) is a consistent estimator for �(�), 

the empirical distribution is not smooth. As an 

alternative, [1] and [2] introduced Kernel-type 

estimators for distribution estimation, based on 

symmetric kernels. The asymptotic properties of 

Kernel-type estimators have been investigated by [3]. 

Due to the asymptotical superiority of Kernel-type 

estimators over the empirical distribution function [4, 

5], they are popular and commonly used in density and 

distribution estimation. However, they are not efficient 

for that distribution (density) functions which have 

bounded support due to the boundary bias. This problem 

is known as the boundary problem, and several 

approaches have so far been proposed to deal with it in 

regression, density estimation and cumulative 

distribution estimation tasks [6-13]. 

In an effort to solve the boundary problem in kernel 

density estimation, [14] introduced the beta kernel 

density estimator to estimate a density with support on 

[0, 1]. This research was the starting point for using 
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asymmetric kernel functions in nonparametric density 

estimation. [15] developed his method by employing the 

gamma kernel to estimate a density with support on 

[0, ∞ ).  This approach has extended for estimating a 

density with support on [0, ∞) using other asymmetric 

kernels [16-19]. Reference [20] showed uniform weak 

consistency of some asymmetric kernel density 

estimators including gamma, inverse Gaussian and 

reciprocal inverse Gaussian on each compact set in �0, ∞) when the probability density function f is 

continuous on its support. They also showed weak 

convergence of these estimators in ,�. Despite there are 

many studies on using asymmetric kernels for density 

estimation, little study has been done on estimating the 

cumulative distribution function using asymmetric 

kernels. This may be because, unlike symmetric kernel 

estimators, the development of a density function 

estimator with an asymmetric kernel to an asymmetric 

kernel distribution function estimator is not 

straightforward. For example, consider the gamma 

kernel estimator as a probability density function [15]: 

-./ (�) = �'� � 0123�,2(�
)�

�� , 

where 0453�,2(6) = 74 5⁄ 9:; ('7/2)24 5⁄ =>?(1 2⁄ 3�), @ is the smoothing 

parameter and � is the design point. Now, if we want, 

like the symmetric kernel, to estimate the distribution 

function by integrating -./ (�), that is, �A(�) =B -./ (C)1D EC  then it includes the integral B 7F 5⁄ 9:; ('7/2)2F 5⁄ =>?(G 2⁄ 3�)1D EC, which made studying  �A(�) very 

hard if not possible. The same problem exists in all 

asymmetric kernels because in these kernels the design 

point � is embedded in at least one of the kernel 

function parameters. To overcome this difficulty, [21] 

have proposed a new Kernel-type estimator for the 

cumulative distribution function. To estimate a 

cumulative distribution function with non-negative 

support, they proposed to use estimators of the form 

 �H(�) = �'� ∑ B 0(C; �, @)ECJKL�
�� ,                           (1) 

 

where 01,2(C) is an asymetic kernel function on �0, ∞) and � and @ are the desing point and smoothing 

parameter, respectively. They have studied two 

asymmetric kernels, including the Birnbaum-Saunders 

kernel and the Weibull kernel and demonstrated that 

their proposed estimators are free from boundary bias. It 

is easy to verify that �H(�) is a cummulative distribution 

function. For example, for  the Birnbaum-Saunders 

kernel we have  

MNO'P(6; �, √@ ) = R 0O'P(C; �, √@)ECJ
7

= 1 − Φ TTU6� − V�6W √@X W ,
6 > 0 , @ > 0, � > 0, 

 

where Φ(∙) is the standard normal distribution 

function. Then consider that 

 

MNO'P(6; �, √@) = 1 − Φ TTU6� − V�6W √@X W
= 1 − Φ T− TV�6 − U6�W √@X W
= Φ TTV�6 − U6�W √@X W ; 

 

because Φ(−Z) = 1 − Φ(Z). Therefore MNO'P(6; �, √@) is the Birnbaum-Saunders cumulative 

distribution function with respect to � with parameters 6 

and @. The novelty of the estimator (1) is that instead of 

integrating the nonparametric density function 

estimator, it directly estimates the cumulative 

distribution function. 

In this paper, a gamma kernel estimator for 

estimating those distribution functions with support on 

[0, ∞) is introduced. We derive the asymptotic bias and 

variance of the proposed estimator and show that it is an 

asymptotically consistent estimator. We investigate the 

convergence rate of the proposed estimator in both 

boundary and interior regions. We show that, unlike the 

gamma kernel density estimator, having a shoulder in 

the distribution is not a necessary condition for our 

proposed estimator to be unbiased. We also derive an 

optimal bandwidth for the proposed estimator.  

We prove the almost surely convergence of the 

gamma kernel estimator to be the true distribution. 

Furthermore, we establish the asymptotic distribution of 

the proposed estimator. Moreover, we illustrate the 

performance of the proposed estimator in comparison 

with other commonly-used methods via a numerical 

study. In the numerical study, we consider various 

distributions including mixed distributions for which the 

estimation of cumulative distribution functions can be 

difficult. The results are promising and demonstrate the 

usefulness of the gamma kernel estimator. As an 

application, we estimate the probability distribution 

function of the cost of one month of food items for 
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urban households in Iran in 1398 AH (2019 AD). 

The paper is organised as follows. Section 2 is 

devoted to the main theoretical results.  In Section 3, a 

numerical study is conducted to illustrate the 

performance of the gamma kernel estimator. Finally, in 

Section 4, the cumulative distribution of a real data set 

is estimated via gamma kernel estimator.   

Throughout the paper, it is assumed that the CDF �(�) is satisfied in the following assumptions: 

Assumption 1: The cumulative distribution function �(�) is absolutely continuous with respect to Lebesgue 

measure on (0, ∞) and has two first continuous and 

bounded derivatives. 

Assumption 2: The smoothing parameter @ = @� >0 satisfies the condition that @ → 0 �� � → ∞. 

 

Asymptotic properties of the gamma kernel 

distribution estimator 

In this section, it is shown that the gamma kernel 

estimator is asymptotically unbiased and consistent. An 

appropriate smoothing parameter is also obtained by 

minimizing the mean integrated square error. In 

addition, the convergence rate of the proposed estimator 

is examined. Almost sure convergence and asymptotic 

distribution of the proposed estimator is also discussed.  

Suppose that X�, X\, … , X] is a set of continuous 

random variables with an unknown cumulative 

distribution function �(�). Then, the proposed estimator 

is �H.(�) = �'� ∑ MN.�
�� (�
; �, @),                             (2) 

where MN.(6; �, @) = B 0.(C, �, @)ECJ7 , 0.(6; �, @) =74 5⁄ 9:; ('7/2)24 5⁄ =>?(1 2⁄ 3�) ,    6 > 0, � > 0 , @ > 0.  

 

Theorem 1. Suppose that Assumptions 1-2 hold, 

then we have: 

 bias(�H.(�)) ≈ @(-(�) + 12 �-d(�)), (3) 

   

 

var &�H.(�)*
≈ f �'��(�)(1 − �(�)) − �'�g�@/h-(�)      i-      �/�'��(�)(1 − �(�)) + �'�@-(�)(1 − jk(1 + 20))  i- ) 

                                                                                (4) 

 

 

where jk = ?(\k3�)\>=lm?l(k3�)  as @ → 0 and �'�@ → ∞. 
Proof: Since �
′� are identically distributed, we 

have �n &�H.(�)* = �n(MN.(o; �, @)) = �n(1 − M.(o; �, @))= �k(�(o)), 

where �k(�(o)) is the expectation of �(o), when  o~0.(6; �, @). Using Taylor expansion, we have: 

 �k(�(o)) = �(�) + -(�)�(o − �)+ 12 -d(�)�(o − �)\ + p(@), 
so, Equation (3) can be easily verified.  

For the variance term, first consider that (KN\r(T; x, b))= R F(t)(2kr(t; x, b)KNr(t; x, b))dt   (using integral by part)J
D  

                                                                                (5) 

 

and now o~ℊ(6) where ℊ(6) =20.(6; �, @)MN.(6; �, @),   for  6 ≥ 0 (see appendix for 

details). Using the result of Lemma 2 in the appendix, 

we have 

 �(o − �) = @ �1 − Γ(2 � @⁄ + 2)Γ\(� @⁄ + 1)2\1 2⁄ 3��, 
  �(o − �)\ = �@ − 3@\Γ(2 � @⁄ + 2)Γ\(� @⁄ + 1)2\1 2⁄ 3� + @\. 

 

Following [15] define, �2(�) = 2�>?(\1 2⁄ 3�)?l(1 2⁄ 3�)\l4 5⁄ =>. 

[15] proved that �2 is bounded from above by 
2>/l1�>/l\√�  

and 

�2(�) ≈ � 12√h @'�/\�'�/\          i-     �/@ → ∞;
jk@'�                            i-       �@ → 0.  

Therefore when �/@ → ∞ we have 

 �(o − �) = @ − (2�@ + @\)�2(�)= @ − g�@/h + p(@�/\ ),   �(o − �)\ = �@ − 3@� �2�@ + 1� �2(�) + @\
= �@(1 − 3g�@/h) + p(@\) 

and by using Taylor expansion, one gets 

 

�(MN\.(o; �, @)) ≈ �(�) − U�@h -(�)
+ @ �-(�) + �2 -d(�)� + p(@)        (6) 

so, the variance can be simplified as follows: var &�H.(�)*
= f �'��(�)(1 − �(�)) − �'�g�@/h-(�) + p(@�'�)    i-      �/@ → ∞;�'��(�)(1 − �(�)) + �'�@-(�)(1 − jk(1 + 20)) + p(@�'�)     i-       �/@ → 0.

 

It can be seen that the variance of the proposed 
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estimator in the interior points is smaller than the 

variance of the empirical distribution by the amount of −�'�g�@/h-(�). This is our gain from using 

smoothing. The story is different for the boundary 

points where 1 − jk(1 + 20) > 0 for 0 ≤ 2.381. So for � ≤ 2.381@, the variance of the proposed estimator is 

larger than the variance of the empirical distribution (the 

difference is very small), however, outside this small 

region, the variance of the �H(�) is smaller than the 

empirical distribution. [15] showed the same problem 

(increasing in variance near the boundary) in density 

estimation by Gamma kernel, but he also showed that 

this has negligible impact on the integrated variance 

[22] has shown that the gamma kernel probability 

density estimator in [15] has the boundary problem for 

those densities -(�) which do not exhibit a shoulder, 

and whose derivative of -(�) is not zero at � = 0 since 

their MSE values in the boundary points converge to 

zero at the rate p(�'\/�), instead of the usual rate of p(�'�/�). But this is not the case for the proposed 

gamma kernel cumulative distribution estimator. The 

reason is revealed by comparing the bias and variance 

of the proposed estimator in Equations (3) and (4) with 

the corresponding equations in the gamma kernel 

probability density estimator in [15]. As we have just 

seen in the derivation of the bias and variance of the 

proposed estimator, here the expression -d(�) appears 

everywhere with an �-factor and consequently, as � 

approaches zero, -d(�) will vanish.  

The mean square error (MSE) of the proposed 

estimator for �/@ → ∞ is 

��� &�H.(�)* = �'��(�)(1 − �(�)) − �'�U�@h -(�)
+ +@\ �-(�) + 12 �-d(�)�\
+ p(@\ + @�'�), 

and an estimate of the mean integrated square error 

(MISE) for the Gamma kernel estimator can be derived 

as follows (see [23] page 41):  

 ���� &�H.(�)* = R ��� &�H.(�)* E�J
D= �'� R �(�)(1 − �(�))E�J

�
− �'� @�\√h R ��\-(�)E�J

�+ @\ R �-(�) + 12 �-d(�)�\J
D E�+ p(@\ + @�'�). 

 

The optimal smoothing parameter which minimizes 

MISE is 

 

@��7 = &B �>l-(�)E�JD *l� �4√h B �-(�) +JD
�\ �-d(�)�\ E��'\/� �'\/�.                                         (7) 

 

So, the optimal smoothing parameter is p(�'\/�).  
Plugging back @��7 in the MISE we have ������7 &�H.(�)* ≈ �'� R �(�)(1 − �(�))E�J

D
− 34 �B ��\-(�)E�JD ��� (�√h)'��

�4 B �-(�) + 12 �-d(�)�\JD E����

+ p ��'��� 

so, it can be seen that, the optimal MISE of the 

proposed estimator is smaller than the MISE of the 

empirical distribution. 

 

Theorem 2. Suppose that Assumptions 1-2 holds, 

then as � → ∞, 

a.    �H.(�)�.�.�� �(�) 

b.   �H.(�)~%(�(�), �'��(�)(1 −�(�))) 

Proof: The proof is the same as in [24]. For part a, 

consider that Sup1 ¡�H.(�) − �(�)¡≤ Sup1 ¡�H.(�) − �(�H.(�))¡+ Sup1 ¡�(�H.(�)) − �(�)¡. 
 

We have �¡�H.(�) − �(�H.(�))¡ = ∑ ¢
�
�� , where ¢
 = B 0.(£; �, @)E£JKL − � ¤B 0.(£; �, @)E£JKL ¥. Now we 

have �(¢
) = 0, and ¦\ = �(¢
\) = �(�)(1 − �(�))+ @ §-(�) �1 − �(�) − 1√h V1 + �@�
+ �-d(�)(12 − �(�))¨ + p(@\), 

 

since ©¢
ª
���  are independent zero mean random 

variables and |¢
| ≤ 1, by using Bernstein’s inequality 

we have 
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¬ �­� ¢

�


�� ­ > ®�� ≤ 2exp f−1/2 � ®\��¦\ + �®/3�¯. 
 

Thus ¡�H.(�) − �(�H.(�))¡ → 0 almost completely 

and consequently ¡�H.(�) − �(�H.(�))¡ �.�.�� 0.  
This result can also be proofed by using Glivenko–

Cantelli Theorem. Note that   

 �H.(�) = �'� ∑ MN.�
�� (�
; �, @) =B MN.(£; �, @)E��(£) and � &�H.(�)* =B MN.(£; �, @)E�(£) ⇒ �H.(�) − �(�H.(�))= R MN.(£; �, @)(E��(£) − E�(£))
= R(��(£) − �(£))0.(£; �, @)E£ ⇒ Sup1 ¡�H.(�) − �(�H.(�))¡

≤ ‖� − ��‖Sup1 R 0.(£; �, @)E£≤ ‖� − ��‖ �.�.�� 0. 
 

Recalling from Equation (3) that �(�H.(�)) − �(�) 

is bounded by @(-(�) + �-d(�)/2) + p(@), it can be 

concluded that �H.(�) �.�.�� �(�). 
 For part b define ²� = √� ³́µ  in which ¢̅ =�'� ∑ ¢
�
��  and ¦\ = �(¢
\). Since |¢
| ≤ 1 so �(¢
�) =�(¢
\¢
) ≤ �(¢
\) = ¦\, and by using Berry-Esseen 

Bound, we have 

Sup· |¬(²� ≤ Z) − Φ(Z)| ≤ 334 �(¢
�)√�¦� ≤ 334 1√�¦. 
 

For sufficiently large ns, 
�√�µ → 0, ¦\ → �(�)(1 −�(�) and �(�H.(�)) → �(�) and the result follows. 

 

Results 
In this section, the performance of the proposed 

estimators is compared with the Ordinary kernel 

method, the Boundary kernel method [11] and the 

empirical distribution method. Epanechnikov kernel is 

used for both the Ordinary kernel method and the 

Boundary kernel method. The optimal bandwidth 

proposed by [25] and [11] are used for the Ordinary 

kernel method, and the Boundary kernel method, 

respectively. Two hundred samples of two sizes n =200  and n = 500  from eight various distributions 

including 1: Exponential (2), 2: Gamma (0.7,2),        3: 

Gamma (4,2), 4: Half Normal (0,1), 5: Log Normal 

(0,0.75), 6: Weibull (1.5,1.5),                                                                                    

7:  0.6 Gamma (4,0.4)+ 0.4 Normal (6,1), 8:  0.4 Half 

Normal (0,1)+ 0.6 Normal (4,1) are generated. Note that 

distributions 7 and 8 are mixed and estimating their 

cumulative distribution functions can be challenging. 

Then the integrated squared error ���
 = B (�H
(�) −JD�(�))\E� is employed as an error metrics, where �H
(�),i = 1, 2, 3, 4 stands for the proposed estimator, Ordinary 

kernel method, the Boundary kernel method and the 

Empirical distribution method, respectively. In practice, 

the integral is approximated with summation.  

Table 1 shows the mean and standard deviation of 

 

Table 1. The mean and standard deviation of the ISE in 200 estimates of eight distributions for two sample size (n=200, 
500) via four methods 

 Method Gamma kernel Ordinary kernel Boundary kernel Empirical distribution 

Sample size Example Mean Std. Mean Std. Mean Std. Mean Std. 

 1 4.31 3.78 5.90 5.06 4.31 4.03 4.85 3.92 

 2 3.37 2.92 3.74 3.88 3.42 3.38 3.75 3.13 

 3 4.97 4.36 6.02 5.03 5.46 4.60 5.98 4.60 

200 4 2.32 2.42 2.63 1.90 2.29 2.53 2.67 2.16 

 5 4.45 3.86 4.81 4.43 4.56 3.9 4.78 3.91 

 6 1.99 2.16 2.64 2.16 2.03 1.96 2.54 2.05 

 7 2.46 1.70 5.69 3.39 2.41 1.32 2.47 1.38 

 8 2.18 1.60 4.03 2.05 2.03 1.45 2.58 1.48 

 1 1.64 1.34 2.55 1.68 1.65 1.36 1.80 1.35 

 2 1.65 1.58 2.41 1.98 1.67 1.64 1.73 1.60 

 3 2.18 2.13 2.69 2.29 2.18 2.14 2.41 2.14 

500 4 1.25 1.38 1.43 1.45 1.23 1.44 1.45 1.45 

 5 1.74 1.64 2.64 1.76 1.78 1.69 1.85 1.78 

 6 0.84 0.80 1.16 0.96 0.86 0.83 0.97 0.81 

 7 0.93 0.63 2.12 1.53 0.94 0.57 0.97 0.58 

 8 1.25 0.72 6.69 1.52 1.18 0.74 1.37 0.75 
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the ISE for the ten distributions and the two sample 

sizes over two hundred repetitions. As can be seen from 

Table 1, in all cases, the mean and standard deviation of 

the ISE is decreased as the sample size is increased.  

The simulation results show that for the sample size 

n=200 the performance of the proposed Gamma 

estimator is on par with the Boundary kernel method 

and better than the other two methods. For the sample 

size n=500,  the proposed method's performance is 

slightly better than the Boundary kernel method. 

Figure 1 shows plots of 30 estimates of the eight 

distributions via four methods. The true distribution is 

shown in boldface curve and the sample size is n = 200. 

The poor performance of the Ordinary kernel method 

especially for mixed distributions is obvious. The other 

estimators, even for the mixed distributions, show good 

agreement with the actual distribution. However, the 

empirical distribution estimates are not smooth. 

 

Estimation of the probability distribution function 

of the monthly food cost of urban households in Iran 

Household cost analysis is very important issue and 

many studies have been conducted in this field every 

year. Based on the results of these studies, the 

consumption pattern of households would be extracted, 

and by studying the trend of consumption of goods and 

services, justice-oriented economic policies would be 

evaluated, the distribution of income and facilities 

among households would be explained, the 

interrelationships of socio-economic characteristics of 

households would be studied, and finally the number of 

families below the poverty line would be extracted and 

the required information would be provided in national 

and regional accounting. Meanwhile, the cost of food is 

an important and unavoidable part of household 

consumption costs. In recent years, due to economic 

problems and inflation, especially in urban areas, it has 

become very difficult for many Iranian households to 

  

1: Exponential(2) 2: Gamma(0.7,2) 

  
3: Gamma(4,2) 4: Half Normal(0,1) 

 

Figure 1. Plots of 30 estimates of the eight distributions via four methods. The true distribution is shown in boldface curve and 
the sample size is n = 200. 

 



Estimating Cumulative Distribution Function Using Gamma Kernel 

51 

meet these costs, and supportive policies have been 

adopted to support the vulnerable by the government. 

Distributing cost probability can help policymakers to 

determine the amount of subsidy to those in need. In 

this section, the probability distribution function of the 

cost of one month of food items for urban households in 

Iran in 1398 AH (2019 AD) is estimated. The data of 

this section is related to 19827 urban households that 

have been randomly selected from all over the country 

by the Statistics Center of Iran and the information 

about food consumed during one month and the price of 

each unit in Rials using a detailed questionnaire of 

sixty-nine pages has been compiled. Data and 

questionnaires are retrieved from 

https://www.amar.org.ir/. For simplicity, prices are 

divided into ten million Rials (In that year on average, 

every 129183 Rials was equivalent to $1 in U.S. 

currency). Figure 2 shows the histogram of the data. As 

can be seen, the accumulation of a large part of the data 

is near the source and the positive skewness of the data 

is quite obvious. 

Figure 3 demonstrates an estimate of the probability 

distribution function of the monthly household food 

expenses. In addition to the gamma estimator, the 

empirical distribution and the estimates using the 

Ordinary kernel method and the Boundary method are 

also presented. Figure 3 b zooms on the left boundary 

area to show the boundary problem in the Ordinary 

kernel estimation. The gamma estimator shows more 

agreement with the empirical distribution though very 

little. Using the probability distribution function 

estimated by the proposed method, the monthly cost of 

  
5: Log Normal(0,0.75) 6: Weibull(1.5,1.5) 

 
7:  0.6Gamma(4,0.4)+0.4Normal(6,1) 8:  0.4Half Normal(0,1)+0.6Normal(4,1) 

 
Figure 1. Plots of 30 estimates of the eight distributions via four methods. The true distribution is shown in boldface curve and the 
sample size is n = 200. 
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food for 95% of urban households was less than 

18520000 Rials. During that year under review, the 

government subsidized 455,000 Rials for an individual 

in a low-income household per month. If each urban 

household has an average of 4 members, then the 

amount of 1,820,000 Rials monthly subsidy has just 

provided the cost of food 2.48 percent of urban 

households. 
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Figure 2. Histogram of the household food expenses per  
a month in ten million Rials in Iran (1398 AH, 2019 AD). 
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Figure 3. Estimating the cumulative probability 
distribution function of the household food expenses via 
four method. Plot b shows the left boundary in more 
details. 
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Appendix 

Using integral by parts, it is easy to show that �?(k3�) B ¹'1�kE�Jº = ∑ »�¼º½¾! .k¾�D  

Let ² be a gamma random variable with parameters À and Á  

i.e. -(Z) = ÂÃ?(Ä) ZÄ'�¹'Â·. Now, we can deduce that 1 −�(Z) = �?(Ä) B ¹'1�Ä'�E�J·Â = ∑ »�ÅÆ(·Â)½¾! .Ä'�¾�D  

Define  ℊ(Z) = 2-(Z)(1 − �(Z)) =\»�lÅÆ?(Ä) ∑ ·½=Ã�>Â½=Ã¾! .Ä'�¾�D  

Lemma 1. We have 

� Γ(Ç + À)Γ(Ç + 1)2¾3Ä
Ä'�
¾�D= Γ(À)2 .                                                               (È. 1) 

Proof. Since B 2-(Z)(1 − �(Z)) EZJD = 1,  the result 

follows. 

Lemma 2. Let Z be a random variable with distribution ℊ(Z). Then, we have �(²) = 1Á (À − Γ(2α)Γ\(À)2\Ä'�) 
and  �(²\) = 1Á\ (À + À\ − (2α + 1)Γ(2α)Γ\(À)2\Ä'� ) 
. 

Proof.       �(²) = ∑ B \Â½=Ã?(Ä)?(¾3�) Z¾3Ä¹'\·ÂEZJDÄ'�¾�D  

= 2Γ(À) � Γ(Ç + À + 1)Á¾3ÄΓ(Ç + 1)(2Á)¾3Ä3� R (2Á)¾3Ä3�Γ(Ç + À + 1) Z¾3Ä¹'\·ÂEZJ
D

Ä'�
¾�D  

= 1ÁΓ(À) � Γ(Ç + À + 1)Γ(Ç + 1)2¾3Ä
Ä'�
¾�D = 1ÁΓ(À) � (Ç + À)Γ(Ç + À)Γ(Ç + 1)2¾3Ä

Ä'�
¾�D . 

Using Lemma 1, we get �(²)
= 1ÁΓ(À) ÊÀ Γ(À)2
+ � ÇΓ(Ç + À)Γ(Ç + 1)2¾3Ä

Ä'�
¾�D Ë.                                                 (È. 2) 

Define �� = ∑ ¾?(¾3Ä)?(¾3�)\½=Ã .Ä'�¾��  It is easy to show that �� =À ?(Ä)\ − ?(\Ä)\lÃ�>?(Ä). By substituting ��in (A2), the proof is 

complete. Now we turn to �(²\).  

�(²\) = � R 2Á¾3ÄΓ(À)Γ(Ç + 1) Z¾3Ä3�¹'\·ÂEZJ
D

Ä'�
¾�D

= 12Á\Γ(À) � (Ç + α + 1)(Ç + α)Γ(Ç + À)Γ(Ç + 1)2¾3Ä
Ä'�
¾�D  

= 12Á\Γ(À) Ê(À\ + À) Γ(À)2 + � Ç\Γ(Ç + À)Γ(Ç + 1)2¾3Ä
Ä'�
¾�D + (2À

+ 1) � ÇΓ(Ç + À)Γ(Ç + 1)2¾3Ä
Ä'�
¾�D Ë 

= 12Á\Γ(À) f(À\ + À) Γ(À)2 + �\ + (2À
+ 1)��¯,                  (È. 3) 

and 

�\ = � Ç\Γ(Ç + À)Γ(Ç + 1)2¾3Ä
Ä'�
¾�D = � ÇΓ(Ç + À)Γ(Ç)2¾3Ä

Ä'�
¾��

= 12 � (Ç + 1)(Ç + α)Γ(Ç + À)Γ(Ç + 1)2¾3Ä
Ä'\
¾�D  

= 12 � (Ç + 1)(Ç + α)Γ(Ç + À)Γ(Ç + 1)2¾3Ä − 12 ÀΓ(2À)2\Ä'�Γ(À)
Ä'�
¾�D = 12 Ì�\ + (À + 1)�� + À Γ(À)2 Í

− 12 ÀΓ(2À)2\Ä'�Γ(À), 
⇒ �\ = (À + 1)�� + À Γ(À)2 − ÀΓ(2À)2\Ä'�Γ(À). 

By substituting ��and �\ in (A.3) and simplifying it, the 

proof is complete. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


