تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,500 |
تعداد مشاهده مقاله | 124,084,105 |
تعداد دریافت فایل اصل مقاله | 97,188,551 |
Evaluation of Efficiency of Iron Oxide Nanoparticles (Fe3O4@CNT) in Removal of Malathion in Aqueous Medium Using Response Surface Methodology (RSM) | ||
Pollution | ||
دوره 8، شماره 1، فروردین 2022، صفحه 281-293 اصل مقاله (1006.61 K) | ||
نوع مقاله: Original Research Paper | ||
شناسه دیجیتال (DOI): 10.22059/poll.2021.323942.1090 | ||
نویسندگان | ||
Malektaj Eskandarimakvand؛ Sima Sabzalipour* ؛ Mahboobeh Cheraghi؛ Neda Orak | ||
Department of Environment, Ahvaz Branch, Islamic Azad University, Ahvaz, Iran. | ||
چکیده | ||
Organophosphates are one of the most common pesticides in the world. Among them, one can find malathion that is classified as carcinogenesis, and, as a result, should be appropriately removed since it is highly consumed and possesses a lot of pathogenicity. So far, several processes have been used to remove malathion from aqueous media. The present study investigates its removal by means of Fe3O4 iron oxide nanoparticles. Based on experimental-laboratory studies, using the Response Surface Methodology (RSM), the impact of independent variables such as pH, iron oxide nanoparticle concentration, and contact time on malathion removal efficiency have been investigated. Results show that the pH of the solution is the most important and effective parameter in the process. Optimal conditions of malathion removal based on the appropriate model, obtained from RSM, include 0.4 g/L iron oxide nanoparticles, pH of about 5 (acidic conditions), and contact time of about 1 h with ultraviolet radiation being equal to 82% malathion removal. The process, used in this study, can remove malathion from aqueous solutions according to the so-called conditions, and changing the laboratory conditions can effectively remove it. This process can also be recommended as an economic and scientific method to remove malathion from drinking water. | ||
کلیدواژهها | ||
Modeling؛ Iron oxide nanoparticles؛ Malathion؛ Environment | ||
مراجع | ||
Abdelhameed, R. M., Abdel-Gawad, H. and Emam, H. E. (2021). Macroporous Cu-MOF@ cellulose acetate membrane serviceable in selective removal of dimethoate pesticide from wastewater. J. Of. Env. Che. Eng, 9(2), 105121.
Aghoutane, Y., Diouf, A., Österlund, L., Bouchikhi, B. and El Bari, N. (2020). Development of a molecularly imprinted polymer electrochemical sensor and its application for sensitive detection and determination of malathion in olive fruits and oils. Bio, 132, 107404.
Bacchetta, R., Santo, N., Marelli, M., Nosengo, G. and Tremolada, P. (2017). Chronic toxicity effects of ZnSO4 and ZnO nanoparticles in Daphnia magna. Env. Res, 152, 128-140.
Bownik, A. (2017). Daphnia swimming behaviour as a biomarker in toxicity assessment: a review. Sci. Of. The. Tot. Env, 601, 194-205.
Bozich, J., Hang, M., Hamers, R. and Klaper, R. (2017). Core chemistry influences the toxicity of multicomponent metal oxide nanomaterials, lithium nickel manganese cobalt oxide, and lithium cobalt oxide to Daphnia magna. Env. Tox. And. Che, 36(9), 2493-2502.
Buchman, J. T., Bennett, E. A., Wang, C., Tamijani, A. A., Bennett, J. W., Hudson, B. G. and Haynes, C. L. (2020). Nickel enrichment of next-generation NMC nanomaterials alters material stability, causing unexpected dissolution behavior and observed toxicity to S. oneidensis MR-1 and D. magna. Env. Sci. Nan, 7(2), 571-587.
Ch, P., and Jadhav, U. (2021). A Simple Colorimetric Detection of Malathion Using Peroxidase Like Activity of Fe3O4 Magnetic Nanoparticles. ES. Foo. Agr, 3.
Chakrabarti, S. and Dutta, B. K. (2004). Photocatalytic degradation of model textile dyes in wastewater using ZnO as semiconductor catalyst. J. Of. Haz. Mat, 112(3), 269-278.
Chingombe, P., Saha, B. and Wakeman, R. J. (2006). Sorption of atrazine on conventional and surface modified activated carbons. J. Of. Col. And. Int. Sci, 302(2), 408-416.
Ehrampoosh, M. H., Moussavi S., Ghaneian, M. T., Rahimi, S. and Fallahzadeh, Z. H. (2010). Comparison between tubular and batch reactors in removal of methylene blue dye from simulated textile wastewater using TiO2/UV-C photocatalytic process. J. Of. Yaz. Hea. Sun, 9(1), 1-9.
Gajda‐Meissner, Z., Matyja, K., Brown, D. M., Hartl, M. G., and Fernandes, T. F. (2020). Importance of Surface Coating to Accumulation Dynamics and Acute Toxicity of Copper Nanomaterials and Dissolved Copper in Daphnia magna. Env. tox. And. che, 39(2), 287-299.
Guo, Z., Ma, R., and Li, G. (2006). Degradation of phenol by nanomaterial TiO2 in wastewater. Che. eng. J, 119(1), 55-59.
Hong, P. T. K., and Jang, C. H. (2020). Sensitive and label-free liquid crystal-based optical sensor for the detection of malathion. Ana. bio, 593, 113589.
Jaafarzadeh, N., Ghanbari, F., and Ahmadi, M. (2017). Catalytic degradation of 2, 4-dichlorophenoxyacetic acid (2, 4-D) by nano-Fe2O3 activated peroxymonosulfate: influential factors and mechanism determination. Chem, 169, 568-576.
Jafari, A. J., Kalantari, R. R., Gholami, M., and Esrafili, A. (2012). Photocatalytic removal of aniline from synthetic wastewater using ZnO nanoparticle under ultraviolet irradiation. Ira. J. Of. Hea. And. Env, 5(2), 167-178.
Javid, A., Moghaddas, F., Yosefi, F., Davardoost, F. and Ghodrati, F. (2015). Comparing Efficiency of TiO2 Nano-Particles with TiO2 Nano-Fiber in Removing Reactive Blue 19 by Photo-Catalytic Oxidation Process. J. Of. Hea, 6(3), 245-255.
Kassiri, H., Rabbani, D., Mohebi, F., Dehghani, R. and Takhtfiroozeh, S. (2021). A review on the removal methods of organophosphate insecticide malathion from the environment. J. Of. Ent. Res, 45(1), 145-152.
Khan, K., Khan, P. M., Lavado, G., Valsecchi, C., Pasqualini, J., Baderna, D. and Benfenati, E. (2019b). QSAR modeling of Daphnia magna and fish toxicities of biocides using 2D descriptors. Che, 229, 8-17.
Khan, P. M., Roy, K. and Benfenati, E. (2019a). Chemometric modeling of Daphnia magna toxicity of agrochemicals. Che, 224, 470-479.
Lin, C. C., and Lee, C. Y. (2020). Adsorption of ciprofloxacin in water using Fe3O4 nanoparticles formed at low temperature and high reactant concentrations in a rotating packed bed with co-precipitation. Mat. Che. And. Phy, 240, 122049.
Masudi, A., Jusoh, N. W. C., Jusoh, R., Jaafar, N. F., Jalil, A. A., Firdausi, A. and Hartanto, D. (2020). Equidistant crystal distortion arrangement of copper doped magnetite for paracetamol degradation and optimization with response surface methodology (RSM). Materials Che. And. Phy, 250, 122995.
Mehdipour, M., Ansari, M., Pournamdari, M., Zeidabadinejad, L., and Kazemipour, M. (2020). Selective extraction of malathion from biological fluids by molecularly imprinted polymer coated on spinel ZnFe2O4 magnetic nanoparticles based on green synthesis. Sep. Sci. And. Tec, 1-11.
Nidheesh, P. V., Gandhimathi, R. and Ramesh, S. T. (2013). Degradation of dyes from aqueous solution by Fenton processes: a review. Env. Sci. And. Pol. Res, 20(4), 2099-2132.
Nogueira, D. J., Vaz, V. P., Neto, O. S., da Silva, M. L. N., Simioni, C., Ouriques, L. C. and Matias, W. G. (2020). Crystalline phase-dependent toxicity of aluminum oxide nanoparticles toward Daphnia magna and ecological risk assessment. Env. Res, 182, 108987.
Olaniran, A. O., Singh, L., Kumar, A., Mokoena, P., and Pillay, B. (2017). Aerobic degradation of 2, 4-dichlorophenoxyacetic acid and other chlorophenols by Pseudomonas strains indigenous to contaminated soil in South Africa: Growth kinetics and degradation pathway. App. Bio. And. Mic, 53(2), 209-216.
Parastar, S., Poureshg, Y., Nasseri, S., Vosoughi, M., Golestanifar, H., Hemmati, S. and Asadi, A. (2012). Photocatalytic removal of nitrate from aqueous solutions by ZnO/UV process. J. Of. Hea, 3(3), 54-61.
Prosposito, P., Burratti, L. and Venditti, I. (2020). Silver nanoparticles as colorimetric sensors for water pollutants. Chem, 8(2), 26.
Qhasemi, Z., Yonsi, H. and Zinatizadeh, A. A. (2016). Efficiency of photo catalyst of titanium Nano oxide stabilized on Fe-ZSM-5 zeolite in removing organic pollutants from oil refinery wastewater. Journal of Wat. And. Sew, 27(2), 22-33.
Sagir, M., Tahir, M. B., Akram, J., Tahir, M. S. and Waheed, U. (2021). Nanoparticles and Significance of Photocatalytic Nanoparticles in Wastewater Treatment: A Review. Cur. Ana. Che, 17(1), 38-48.
Soares, O. S. G. P., Pereira, M. F. R., Órfão, J. J. M., Faria, J. L. and Silva, C. G. (2014). Photocatalytic nitrate reduction over Pd–Cu/TiO2. Che. Eng. J, 251, 123-130.
Surendra, B., Raju, B. M., Onesimus, K. N. S., Choudhary, G. L., Paul, P. F. and Vangalapati, M. (2020). Synthesis and characterization of Ni doped TiO2 nanoparticles and its application for the degradation of malathion. Materials Today: Pro, 26, 1091-1095.
Titus, D. and Samuel, E. J. J. (2019). Photocatalytic Degradation of Azo Dye Using Biogenic SnO 2 Nanoparticles with Antifungal Property: RSM Optimization and Kinetic Study. J. Clu. Sci, 30(5), 1335-1345.
Yazdani, M., Bahrami, H. and Arami, M. (2014). Preparation and characterization of chitosan/feldspar biohybrid as an adsorbent: optimization of adsorption process via response surface modeling. Sci. Wor. J, 2014.
Zhang, F., Wang, Z., Song, L., Fang, H. and Wang, D. G. (2020). Aquatic toxicity of iron-oxide-doped microplastics to Chlorella pyrenoidosa and Daphnia magna. Env. Pol, 257, 113451.
Zhou, N., Zhang, Y., Nian, S., Li, W., Li, J., Cao, W. and Wu, Z. (2017). Synthesis and characterization of Zn1-xCoxO green pigments with low content cobalt oxide. J. All. Com, 711, 406-413.
Zhou, Y., Jiang, J., Gao, Y., Ma, J., Pang, S. Y., Li, J. and Yuan, L. P. (2015). Activation of peroxymonosulfate by benzoquinone: a novel nonradical oxidation process. Env. sci. tec, 49(21), 12941-12950.
Zuo, H. G., Yang, H., Zhu, J. X., Guo, P., Shi, L., Zhan, C. R. and Ding, Y. (2019). Synthesis of Molecularly Imprinted Polymer on Surface of TiO 2 Nanowires and Assessment of Malathion and its Metabolite in Environmental Water. J. of. Ana. Che, 74(10), 1039-1055.
Yao, Y., Cai, Y., Lu, F., Wei, F., Wang, X. and Wang, S. (2014). Magnetic recoverable MnFe2O4 and MnFe2O4-graphene hybrid as heterogeneous catalysts of peroxymonosulfate activation for efficient degradation of aqueous organic pollutants. J. haz. mat, 270, 61-70.
| ||
آمار تعداد مشاهده مقاله: 737 تعداد دریافت فایل اصل مقاله: 704 |