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ABSTRACT  

In this work, we study the short-term dynamics of the Surface Air Temperature (SAT) using data 

obtained  from a meteorological station in Bogotá from 2009 to 2019  and using  time series. The data 

that we used correspond to the monthly mean of the historical registers of SAT and three  pollutants. 

A descriptive analysis of the data follows. Then, some predictions are obtained from two different 

approaches: (i) a univariate analysis of SAT through a  SARIMA model, which shows a good fit; and  

(ii) a multivariate analysis of SAT and  pollutants  using a SVAR model. Suitable transformations 

were first applied on the original dataset to work with stationary time series. Subsequently, A 

SARIMA model and a VAR(2) with its associated SVAR model are estimated. Furthermore, we 

obtain one-year forecasts for the logarithm of SAT in both models. Our forecasts simulate the natural 

fluctuation of SAT, presenting peaks and valleys in months when SAT is high and low, respectively. 

The SVAR model allows us to identify certain shocks that affect the instant relationships among 

variables. These relations were studied by the impulse-response function and the VAR model variance 

decomposition. Although the statistical methods used in this study are classical, they continue being 

widely used in the environmental field, presenting god fits, and the results obtained in this study are 

consistent with  environmental theories. 
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INTRODUCTION 

 

SAT is an important variable that has been studied in a wide range of environmental 

applications including vector-borne diseases, bionomics, terrestrial hydrology, biosphere 

processes, climate change, among others (Benali et al., 2012). Even, the temporal changes of 

SAT have been used as a prominent indicator of global climate change (Aghelpour et al., 

2019). The spatio-temporal SAT patterns can often be highly variable and complex due to the 

heterogeneity of the environmental factors that control the energy balance of the land-

atmosphere system (Benali et al., 2012). These factors include the presence of certain 

atmospheric pollutants. The atmospheric pollutants that are normally measured in the urban 

atmosphere basically come from vehicles used for transport, from stationary sources of 

combustion (industries) and from waste disposal processes. Some of the most relevant 

atmospheric pollutants are suspended particles, sulfur compounds, nitrogen compounds, 

carbon oxides and photochemical oxidants. However, the presence of pollutants in the 

atmosphere not only affect the behaviour of SAT but they also affect public health. Most air 
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pollutants have effects on human health, although their effects are different. Indeed, some 

studies have revealed that particulate matter (PM) can penetrate the respiratory system via 

inhalation, causing respiratory and cardiovascular diseases, reproductive and central nervous 

system dysfunctions, and cancer (Grivas et al., 2008).  Therefore, many researchers have 

focused on studying SAT and the behaviour of atmospheric pollutants to obtain useful 

information to make forecasts and take control measures. In fact, information on SAT and 

atmospheric pollutant concentrations usually comes from automatic continuous monitoring 

stations. These stations capture records at different frequencies of the pollutant’s 

concentrations and they also record the intensity of meteorological variables. Many 

mathematical and statistical studies have used these data; for instance, through multiple 

regression and interpolation methods, time series methods, geographical information systems 

(GIS) techniques, machine and deep learning methods (see e.g., (Alonso and Renard, 2019, 

Agbazo et al., 2019, Shen et al., 2020)), among others. 

In this work, we will focus on time series techniques. Time series models have been widely 

used in a broad range of scientific applications to forecast variables, including climatology. 

Among the time series models frequently used on environmental studies, we have the 

Seasonal Autoregressive Integrated Moving Average (SARIMA) and the Vector 

Autoregressive (VAR) models (Aghelpour et al., 2019, Wang & Niu, 2009). Thus, the present 

study aims to analyse the individual SAT and the SAT atmospheric pollutants short–term 

dynamics using data reported for one monitoring station of the Bogotá Air Quality 

Monitoring Network (RMCAB, by its acronym in Spanish). This data is assessed by means of 

a descriptive analysis and then it is processed using an univariate and a multivariate time 

series models. For the univariate case, the SARIMA model (Section 2.3.1) is proposed 

according to the seasonal trend of SAT. This model shows a good fit in the errors behaviour 

and it is be able to forecast accurate monthly mean values for logarithm of SAT during all 

2020. For the multivariate case (Section 2.3.2), a VAR model and its structural and 

unrestricted form SVAR are estimated. Thus, SAT is related with atmospheric pollutants by 

means of a restricted VAR(2) model and its associated SVAR model to determine potential 

instantaneous relations among the variables. The unrestricted form of a VAR model identifies 

the structural impacts and stores them in a matrix, which is obtained via data-driven 

identification techniques, such as Changes in Volatility (CV) (Rigobon, 2003). Diagnosis of 

the restricted VAR model has some fit problems, but instant relations between endogenous 

variables identified by the SVAR model are determined. Finally, a forecast from VAR(2) for 

all 2020 is obtained.  

 

MATERIALS AND METHODS 

 

Bogotá  is the capital of Colombia and it is one of the largest cities of Latin America (see 

Figure 1). It is located in the center of the country at an altitude of approximately 2600 

meters. The population in Bogotá for 2020 is now estimated at 10,978,360 and it has an 

annual growth rate of 2.08 (Lozano, 2004). Bogotá also has one of the highest environmental 

deterioration rates of the country. Air pollution has increased dramatically recently, due 

mainly to the uncontrolled increase in the number of vehicles in the city.  Although air 

pollution has been monitored in Bogotá since 1967, it was not until 1990 that the monitoring 

stations were spread widely throughout the city. It has since been reported that the most 

important sources of pollution in Bogotá are automobiles followed by bricks and battery 

plants, among others. The areas with the highest levels of atmospheric pollution are Puente 

Aranda, Carvajal, and Kennedy, which are mostly affected by PM10 and PM2.5. 
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Furthermore, in 1990 the Secretary of Health of the District with the collaboration of the 

Japanese International Cooperation Agency (JICA) identified for the first time the following 

components of air pollution in Bogotá: Sulfur Dioxide (SO2), Nitrogen Oxides (NOx), Total 

Suspended Particles (TSP), Carbon Monoxide (CO), Hydrocarbons (HC), and Ozone (O3).  

Local authorities now face the challenge of supporting the growth and development of the 

city, while at the same time minimizing the adverse effects of the associated air pollution and 

its consequences on health. Permanent surveillance is an important tool in this process. The 

RMCAB currently operates 13 fixed and 1 mobile station throughout the city. The RMCAB 

measures P M using DASIBI 7001 (Met One Instruments, Inc., United States) and 

METONE–BAM 1020 (MetOne Inc., USA) β attenuation particle monitors for PM10 and 

PM2.5, respectively.  

 

 
 

 

Fig 1: A Google Maps view of Colombia (left–hand side) and close–up of Bogota (right– hand side) showing 

the location of the monitoring station Puente Aranda. 
 

The data analysed in this work corresponds to Puente Aranda station (see Figure 1), which 

is one of the 15 stations that are part of the RMCAB that are spatially distributed throughout 

the city. Puente Aranda is one of the most representative stations because it is located in the 

heart of the industrial zone of the city and it is of mixed monitoring (i.e. it covers both air 

quality data and meteorological variables). Hourly records of several pollutants and 

meteorological parameters were obtained from Puente Aranda station from January 2009 to 

December 2019. However, due to the notable absence of records in many of their variables, 

only the measurement of SAT and three air pollutants: PM10, O3 and NO2 with complete 

records greater than 60% were taken. A brief description of those pollutants follows: (a) : 

PM10,  is particulate matter 10 micrometers or less in diameter. Particles in this size range 

make up a large proportion of dust that can be drawn deep into the lungs. The specific effect 

of particles depends on their composition, concentration and the presence of other pollutants, 

such as acid forming gases. (b) O3 is a highly reactive pale-blue gas that is formed in the 

Earth's lower atmosphere, near ground level. Ozone is formed when pollutants emitted by 

cars, power plants, industrial boilers, refineries, chemical plants, and other sources (usually 

NOx and NOx ) react chemically in the presence of daylight UV rays and is usually measured 

in ppb. (c) NO2 is formed as a sub-product from burning fossil fuels and it is a precursor of 

ozone. Breathing air with a high concentration of NO2 can irritate airways in the human 

respiratory system. These exposures over short periods can aggravate respiratory diseases, 
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particularly asthma, leading to delicate respiratory symptoms. Like ozone, NO2 is usually 

measured in ppb. Thus, with this information and by using the R (version 1.1.463) statistical 

software, a new database was generated with the monthly average of each pollutant for each 

year. Subsequently, the monthly series of SAT and pollutants were generated.  

 
RESULTS AND DISCUSSION 

 

A descriptive analysis of the new database generated from the records selected by the Puente 

Aranda station during the specified period of time (with monthly records) was carried out. 

Table 1 contains monthly information on the mean, median, coefficient of variation (CV ), 

and bias for each variable. In general terms, both the mean and median SAT tend to be higher 

in the first months of the year, while CV allows us to identify the data distribution, which is 

more homogeneous when this value is small (i.e. when the variation is less). SAT shows a 

small variation (i.e. the values this variable takes are close each other). Variables with a CV 

greater than 0.3 usually have heterogeneity problems and the presence of atypical data, as 

shown by O3 (see Figure 2 (C)) in the months of April and May.  From Figure 2, we can infer 

about the periodicity of SAT and the average pollutants due to the seasons. A very low 

temperature variation is observed in the month of January compared to other months of the 

year. September is the month with the lowest temperature (13◦C) and February has the highest 

temperature (16◦C). With regard to pollutants, Figure 2 shows the presence of harmful 

concentrations of PM10 (higher than 50g/m3 almost all months) outside the limits established 

by Resolution 2254 of 2017 of the Ministry of Environment and Sustainable Development 

(MADS, by its acronym in Spanish), where it is specified that the maximum permissible  

 
Table 1: Descriptive information of the variables. 

 

 En Feb Mar Ap May    Jun Jul Aug Sep Oct Nov     Dec 

Tmax Mean 14,24 14,55 14,6 14,57 14,58 14,19 13,77 13,84 14,18 14,25 14,28 14,18 

Median 14,08 14,39 14,41 14,49 14,53 14,12 13,91 13,91 14,1 14,28 14,25 14,23 

CV 0,04 0,05 0,05 0,04 0,03 0,02 0,03 0,04 0,03 0,03 0,04 0,03 

Beas 1,24 0,8 0,91 -0,14 0,04 -0,39 -0,98 0,1 0,15 -0,05 -0,3 -0,07 

PM10    Mean 56,1 62,02 59,53 52,76 47,76 39,9 36,61 40,99 46,45 54,34 60,44 57,95 

Median 54,57 61,63 58,42 54,34 46,72 37,97 33,56 39,27 41,81 55 61,11 53,08 

CV 0,19 0,06 0,13 0,11 0,14 0,24 0,28 0,27 0,24 0,16 0,16 0,2 

Beas 0,25 0,01 -0,07 0,24 0,71 -0,1 0,42 0,16 0,88 1,04 0,91 1,12 

O3 Mean 10,5 10,95 9,62 8,23 6,087 6,87 6,97 8,66 9,87 8,42 7,196 7,33 

Median 10,5 10,95 9,62 8,23 6,08 6,87 6,97 8,66 9,87 8,42 7,19 7,33 

CV 0,27 0,24 0,3 0,52 0,49 0,33 0,24 0,21 0,21 0,28 0,31 0,19 

Beas -0,12 0,86 0,31 2,23 1,54 1,37 0,98 -0,09 0,02 0,21 0,15 0,49 

No2 Mean 20,23 20,84 22,44 20,14 17,15 13,66 13,75 16,49 19,49 23,41 22,77 20,14 

Median 20,09 19,73 21,73 21,64 17,3 13,37 12,99 14,88 17,83 24,07 22,11 21,3 

CV 0,23 0,2 0,17 0,22 0,27 0,31 0,35 0,28 0,3 0,26 0,18 0,4 

Beas 0,14 0,19 -0,2 -0,66 0,02 0,14 1,09 0,69 1,24 -0,58 1,06 -0,82 
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annual level of PM10 is 50g/m3, which represents a public-health problem in the sector. 

Finally, from Figure 2, we can identify that the pattern of SAT variation has a behaviour 

similar to PM10 and NO2 because they tend to increase slightly in the first months of the year 

and then decrease at the middle of the year and then register a new peak in October. 

 

To generate the SAT time series, which was used later to do univariate forecasts, we used 

the TSA library of R. Usually, meteorological time series such as SAT are non-stationary.  

 

 
Fig 2: Box–plots for SAT and pollutants. 

 

They do not oscillate around a constant mean (stationary in mean) and they do not make 

this oscillation among a constant interval (stationary in variance). Having said that, our 

original SAT time series was non-stationary, but it is necessary to be stationary to be able to 

generate predictions. Now, The Box–Cox test (Davidson & MacKinnon, 1985) was used to 

determine whether SAT time series was stationary in variance or not, and also to determine its 

possible transformation coefficient, from where it is suggested to use the logarithm of the 

data. To correct the non-stationary mean problem, we used the autoarima function to 

determine the number of differentiations needed. Finally, we determined that the logarithmic 

SAT time series had to be twice differentiated: once for ordinary differentiation and again for 

seasonality. The autoarima function also suggests the order of the SARIMA model which 

would fit the best. Then, the ACF and PACF of logarithms of SAT were obtained, while 

differentiations were applied fitting the model. From Figure 3 (A), we can see that ACF plot 

suggests an AR(5) model due to the exponential decay, being significant up to the fifth lag 

and new peaks every 12 lags; the same order was suggested by the autoarima function. From 

Figure 3 we can see two peaks: one at the first lag and the other near lag 24, indicating 

seasonality.  

Subsequently, a SARIMA model with non-seasonal (5.2.0) and seasonal (2.0.0) parameters 

with 12 cycles per year is proposed (SARIMA(5, 2, 0)×(2, 0, 0)12). Its diagnosis consisted in 

Ljung–Box test, which is usually applied to the residuals of an ARMA(p, q) fit to observe 
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how they are behaving, from where a p-value= 0.53 was obtained, and the references suggest 

a better approximation to the null–hypothesis distribution.  

 

 
Fig 3: ACF and PACF form the logarithm of SAT. 

 

To make forecasts, we used the forecast library of R, which allowed us to generate 

predictions from past records. We graphically show the forecasts of the obtained SARIMA 

model from the behaviour of its residuals, where their normality and non-correlation are 

measured in Figure 4. Additionally, Table 2 shows the logarithm of SAT forecasts for one 

year and Table 3 contains the range of summary measures of the forecast accuracy. To obtain 

raw forecast of SAT, the inverse function of the logarithm must be applied insomuch as the 

logarithm is a reversible function.  

 

 
Fig 4 A. One-year forecast for the logarithm of SAT from the SARIMA model. B. Residuals ACF. C. 

Residuals Qqplot of the residuals. In B and C the normality of the residuals is observed. 

 

 

The values of (3.2)–coefficients are given in Table 3.2.

Table 3.2: Coefficients of equat ion (3.2).

φ1 φ2 φ3 φ4 φ5 Φ1 Φ2

Coefficient -0.968 -0.876 -0.693 -0.498 -0.262 0.141 0.319

Std. Error 0.088 0.115 0.123 0.114 0.086 0.085 0.094

To make forecasts based on model (3.2), we used the forecast library of R, which

allowed us to generate predict ions from past records. We graphically show the forecasts of

the SARIMA model (3.2) from the behaviour of its residuals, where their normality and

non-correlat ion are measured in Figure 3.3. Addit ionally, Table 3.3 shows the logarithm of

SAT forecasts for one year and Table 3.4 contains the range of summary measures of the

forecast accuracy. To obtain raw forecast of SAT, the inverse funct ion of the logarithm must

be applied insomuch as the logarithm is a reversible funct ion.
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Figure 3.3: A. One-year forecast for the logarithm of SAT from model (2.3). B. Residuals

ACF. C. Residuals Qqplot of the residuals. In B and C normality of the residuals isobserved.

Table 3.3: One–year predict ions of the logarithm of SAT from SARIMA model (2.3).
Ene Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

Predict ion 2.64 2.665 2.684 2.666 2.685 2.682 2.68 2.679 2.71 2.72 2.738 2.734
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Table 2: One–year predictions of the logarithm of SAT from SARIMA model. 

 Ene Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Prediction 2.64 2.665 2.684 2.666 2.685 2.682 2.68 2.679 2.71 2.72 2.738 2.734 

 
Table 3: SARIMA model error measurements with out-sample for SAT forecasts 

ME RMSE MAE MPE MAPE MASE ACF1 

6.28 × 10
−5

 0.029 0.024 1.09 × 10
−3

 0.895 0.647 -0.054 

 

With respect to the time series used in this section, we could observe that after using 

logarithm transformations all time series are stationary. However, due to the stability of a 

VAR process, this transformation usually is not needed. Nevertheless, the logarithm was 

applied to obtain forecasts with the same units both in univariate and multivariate cases. 

Subsequently, we proceeded to determine de p order of our VAR(p) model. For this end, we 

used the R function VARselect from vars package, which internally compares among 

possible VAR(p) models with different p order, taking account the least AIC, BIC and FPE 

value for each model. At the end, the p order suggested by the information criteria was 

VAR(1). However, due to the low and insufficient number of lags taken account by VAR(1) 

model, VAR(2) was finally selected. Referring to diagnosis of VAR(2) model, 

heteroscedasticity and no-correlations of residuals were proved, but it is inconvenient because 

of its normality. This model also presents significant problems in its coefficients, possibly due 

to the fact that it is not capable of identifying contemporary structures hidden in the residuals 

by itself. Therefore, unrestricted VAR form (SVAR) is proposed.  

When a shock of SAT occurs, all of the variables respond positively. Then, variables such 

as PM10 increase until the third month and start decaying exponentially. Other variables such 

as NO2 decrease rapidly until obtain a negative response, they then increase until they finally 

attenuate. Whereas, when we see the response of SAT after a shock of itself and the different 

pollutants, it responds positively but it then decreases; in cases as PM10 and O3, SAT 

response decreases enough to get a negative answer between third and seventh month for O3 

and fourth and tenth month for NO2, respectively. Meanwhile, for a shock of NO2, SAT 

responds negatively but it grows and decay quickly for the first tree months and then it has a 

negative response until it attenuates. It is interesting the reaction from O3 when a shock of 

NO2 occurs, because at the beginning the response is negative but it then grows rapidly until 

it reaches stability. This might be explained by the fact that NO2 is a chemical precursor of 

O3, referring that in presence of NO2, O3 tends to form in the environment. Figure 5 shows 

the instantaneous reciprocity observed between pollutants and SAT, where it is clearly 

distinguished that SAT influences the concentration of pollutants.  

Figure 6 shows the FEVD, which consists of determining, graphically, how the systems of 

equations interact within the model (Lütkepohl, 2006). The variance decomposition is useful 

for forecasting errors and for visualizing the instantaneous impact on the relationship between 

the variables due to a shock to itself or to the shock of other variables, so that the FEVD acts 

as a complement to the impulse-response functions. If a variable largely explains its variance 

with its same innovations, then this variable will be of a more exogenous level than the others.  

Thus, the variance decompositions of the four variables forecasts is presented. It can be 

seen that SAT explained around 50% of the forecast variance of itself, the rest appears to be 

explained by the pollutants. Additionally, 70% of PM10 was explained by O3 and itself, and 

by SAT in less measure. The O3 variance forecast mostly depended on NO2 and PM10, and 
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its relationship with its own lags and SAT were almost marginal. Finally, the contribution of 

NO2 in the variation of the other variables was minimal, being the most exogenous variable. 

Although even if one of the pollutants seems to be exogenous, the three pollutants appear to 

be useful in explaining the variation in SAT forecasts.  

Finally, due to the limited scope of SVAR models to generate forecasts, our predictions 

were obtained from the associated VAR model; the results for each variable are shown in 

Figure 7. Likewise, Table 4 shows the results for the logarithm forecasts of SAT via VAR(2) 

model and Table 5 contains its associated range of summary measures of the forecast 

accuracy.  

 

 
Fig 5: Individual impulse–response diagrams obtained from the SVAR model that show the periodicity of 

impulses due to the presence of seasons during the year, and the response variables. 

 

 
Fig 6: FEVD diagrams: the instantaneous influence between variables is observed. 
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Table 4: One-year predictions of the logarithm of SAT from associated VAR(2) model. 

 Ene Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec 

Prediction 2.67 2.69 2.694 2.693 2.694 2.667 2.636 2.64 2.663 2.667 2.669 2.662 

 
Table 5: VAR(2) model error measurements with out-sample for SAT forecasts. 

ME RMSE MAE MPE MAPE MASE ACF1 

2.5 × 10
−17

 0.022 0.017 6.95 × 10
−3

 0.666 0.481 -0.024 

 

 
Fig 7. One-year forecast of the SAT logarithm and pollutants from the VAR(2)  

model associated with SVAR model. 

 

CONCLUSION 

 

In general, no significant variations in SAT were observed over time, which is possibly due to 

the fact that the interval of time worked is small. With respect to the models obtained, the 

SARIMA univariate model was more stable, it presented a good diagnosis, and it adequately 

represents the internal seasonal variation. However, it clearly falls short when it comes to 

establishing relationships of dependency and causality with other factors that affect 

atmospheric dynamics. The multivariate SVAR model generated significant results that 

explain the co-integration between SAT and pollutants. However, the associated VAR(2) 

model presented certain violations of some assumptions of normality in the residual analysis, 

although it presented stability in its structural part. This may be due to the non-linear nature of 

the data. This would indicate that the estimation of a model that fits better could occur, for 

example, in the analysis of the fractal behaviour in meteorological variables; as proposed in 

(Agbazo et al., 2019).  

Regarding the forecasts, both models generated predictions of the logarithm of SAT 

similar to each other. In both cases, the natural fluctuation recorded in SAT from month to 

month is correctly followed, coinciding with the peaks and valleys in the months with high 

and low temperatures, respectively. Nevertheless, because of the precision of the forecasts, 

the VAR(2) model was more accurate in its results. Although direct forecasts could not be 

obtained from SVAR models, it is evident that they are very useful for exploring the implicity 

of certain theoretical restrictions on the dynamic behaviour of our interest variables. Finally, 

in future works it would be interesting to generate this type of analysis at a regional scale, 
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taking into account the geographical distribution of the information collected, which is 

usually how atmospheric dynamics are studied. This could be achieved through the 

implementation of geostatistical methods (GIS systems) with more than one meteorological 

station data, also considering geomorphology and relief, or the implementation of other 

meteorological variables or other atmospheric pollutants to the model.  
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