تعداد نشریات | 161 |
تعداد شمارهها | 6,532 |
تعداد مقالات | 70,500 |
تعداد مشاهده مقاله | 124,084,813 |
تعداد دریافت فایل اصل مقاله | 97,188,953 |
Modelling the Effect of Temperature Increments on Wildfires | ||
Pollution | ||
دوره 8، شماره 1، فروردین 2022، صفحه 193-209 اصل مقاله (978.37 K) | ||
نوع مقاله: Original Research Paper | ||
شناسه دیجیتال (DOI): 10.22059/poll.2021.327346.1139 | ||
نویسندگان | ||
Amir Hossein Sadat Razavi؛ Majid Shafiepour Motlagh* ؛ Alireza Noorpoor؛ Amir Houshang Ehsani | ||
Department of Environmental Engineering, School of Environment, College of Engineering, University of Tehran, P.O.Box 14155-6135, Tehran, Iran | ||
چکیده | ||
Global fire cases in recent years and their vast damages are vivid reasons to study the wildfires more deeply. A 25-year period natural wildfire database and a wide array of environmental variables are used in this study to develop an artificial neural network model with the aim of predicting potential fire spots. This study focuses on non-human reasons of wildfires (natural) to compute global warming effects on wildfires. Among the environmental variables, this study shows the significance of temperature for predicting wildfire cases while other parameters are presented in a next study. The study area of this study includes all natural forest fire cases in United States from 1992 to 2015. The data of eight days including the day fire occurred and 7 previous days are used as input to the model to forecast fire occurrence probability of that day. The climatic inputs are extracted from ECMWF. The inputs of the model are temperature at 2 meter above surface, relative humidity, total pressure, evaporation, volumetric soil water layer, snow melt, Keetch–Byram drought index, total precipitation, wind speed, and NDVI. The results show there is a transient temperature span for each forest type which acts like a threshold to predict fire occurrence. In temperate forests, a 0.1-degree Celsius increase in temperature relative to 7-day average temperature before a fire occurrence results in prediction model output of greater than 0.8 for 4.75% of fire forest cases. In Boreal forests, the model output for temperature increase of less than 1 degree relative to past 7-day average temperature represents no chance of wildfire. But the non-zero fire forest starts at 2 degrees increase of temperature which ends to 2.62% of fire forest cases with model output of larger than 0.8. It is concluded that other variables except temperature are more determinant to predict wildfires in temperate forests rather than in boreal forests. | ||
کلیدواژهها | ||
Wildfires؛ Climate change؛ Temperature؛ Modeling | ||
مراجع | ||
Abatzoglou, J. T. and Kolden, C. A. (2013). Relationships between climate and macroscale area burned in the western United States. International Journal of Wildland Fire, 22(7); 1003-1020.
Abatzoglou, J. T. and Williams, A. P. (2016). Impact of anthropogenic climate change on wildfire across western US forests. Proceedings of the National Academy of Sciences of the United States of America, 113 (42); 11770-11775.
Aponte, C., De Groot, W. J. and Wotton, B. M. (2016). Forest fires and climate change: Causes, consequences and management options. In International Journal of Wildland Fire, 25(8); i-ii.
Bergado., J. R., Persello, C., Reinke, K. and Stein, A. (2021). Predicting wildfire burns from big geodata using deep learning. Safety Science, 140; 1-14.
Catry, F. X., Rego, F. C., Bação, F. L. and Moreira, F. (2009). Modeling and mapping wildfire ignition risk in Portugal. International Journal of Wildland Fire, 18(8); 921-931.
Davis, R., Yang, Z., Yost, A., Belongie, C. and Cohen, W. (2017). The normal fire environment—Modeling environmental suitability for large forest wildfires using past, present, and future climate normals. Forest Ecology and Management, 390; 173-186.
Dennison, P. E., Brewer, S. C., Arnold, J. D. and Moritz, M. A. (2014). Large wildfire trends in the western United States, 1984-2011. Geophysical Research Letters, 41; 2928-2933.
Dey, D. C. and Schweitzer, C. J. (2018). A Review on the dynamics of prescribed fire, tree mortality, and injury in managing oak natural communities to minimize economic loss in North America. In Forests, 9(8); 461.
Duane, A., Kelly, L., Giljohann, K., Batllori, E., McCarthy, M. and Brotons, L. (2019). Disentangling the Influence of Past Fires on Subsequent Fires in Mediterranean Landscapes. Ecosystems, 22; 1338–1351.
Elia, M., D'Este, M., Ascoli, D., Giannico, V., Spano, G., Ganga, A., Colangelo, G., Lafortezza, R. and Sanesi, G. (2020). Estimating the probability of wildfire occurrence in Mediterranean landscapes using Artificial Neural Networks. Environmental Impact Assessment Review, 85; 106474.
Flannigan, M., Cantin, A. S., De Groot, W. J., Wotton, M., Newbery, A. and Gowman, L. M. (2013). Global wildland fire season severity in the 21st century. Forest Ecology and Management, 294; 54-61.
Flannigan, M., Krawchuk, M. A., De Groot, W. J., Wotton, B. M. and Gowman, L. M. (2009). Implications of changing climate for global wildland fire. In International Journal of Wildland Fire, 18(5); 483-507.
Hamadeh, N., Karouni, A., Daya, B. and Chauvet, P. (2017). Using correlative data analysis to develop weather index that estimates the risk of forest fires in Lebanon & Mediterranean: Assessment versus prevalent meteorological indices. Case Studies in Fire Safety, 7; 8-22.
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz‐Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P., Biavati, G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy. S., Hogan, R., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., Rosnay, P., Rozum, I., Vamborg, F., Villaume, S. and Thépaut, J., (2020). The ERA5 global reanalysis. Quarterly Journal of Royal Meteorological Society, 146; 1999-2049.
Hessl, A. E. (2011). Pathways for climate change effects on fire: Models, data, and uncertainties. In Progress in Physical Geography, 35; 393-407.
Jaafari, A., Gholami, D. M. and Zenner, E. K. (2017). A Bayesian modeling of wildfire probability in the Zagros Mountains, Iran. Ecological Informatics. 39; 32-44.
Jaafari, A., Mafi-Gholami, D., Thai Pham, B. and Tien Bui, D. (2019). Wildfire Probability Mapping: Bivariate vs. Multivariate Statistics. Remote Sensing, 11(6); 618.
Jaafari, A., Zenner, E. K., Panahi, M. and Shahabi, H. (2019). Hybrid artificial intelligence models based on a neuro-fuzzy system and metaheuristic optimization algorithms for spatial prediction of wildfire probability. Agricultural and Forest Meteorology, 266-267; 198-207.
Jaafari, A., Zenner, E. K. and Pham, B. T. (2018). Wildfire spatial pattern analysis in the Zagros Mountains, Iran: A comparative study of decision tree based classifiers. Ecological Informatics., 43; 200-211.
Jahdi, R., Salis, M., Darvishsefat, A. A., Alcasena, F., Mostafavi, M. A., Etemad, V., Lozano, O. M. and Spano, D. (2016). Evaluating fire modelling systems in recent wildfires of the Golestan National Park, Iran. Forestry, 89; 136–149.
Jolly, W. M., Cochrane, M. A., Freeborn, P. H., Holden, Z. A., Brown, T. J., Williamson, G. J. and Bowman, D. M. J. S. (2015). Climate-induced variations in global wildfire danger from 1979 to 2013. Nature Communications, 6; 7537.
Littell, J. S., Mckenzie, D., Peterson, D. L. and Westerling, A. L. (2009). Climate and wildfire area burned in western U.S. ecoprovinces, 1916-2003. Ecological Applications, 19; 1003-1021.
Moritz, M. A., Parisien, M.-A., Batllori, E., Krawchuk, M. A., Van Dorn, J., Ganz, D. J. and Hayhoe, K. (2012). Climate change and disruptions to global fire activity. Ecosphere, 3; 1-22.
Nami, M. H., Jaafari, A., Fallah, M. and Nabiuni, S. (2018). Spatial prediction of wildfire probability in the Hyrcanian ecoregion using evidential belief function model and GIS. International Journal of Environmental Science and Technology, 15; 373–384.
North, M. P., Stephens, S. L., Collins, B. M., Agee, J. K., Aplet, G., Franklin, J. F. and Fulé, P. Z. (2015). Reform forest fire management : Agency incentives undermine policy effectiveness. In Science, 349; 1280-1281.
Parisien, M. A., Miller, C., Parks, S. A., Delancey, E. R., Robinne, F. N. and Flannigan, M. D. (2016). The spatially varying influence of humans on fire probability in North America. Environmental Research Letters., 11; 075005.
Pérez-Sánchez, J., Senent-Aparicio, J., Díaz-Palmero, J. M. and Cabezas-Cerezo, J. de D. (2017). A comparative study of fire weather indices in a semiarid south-eastern Europe region. Case of study: Murcia (Spain). Science of the Total Environment, 590-591; 761-774.
Ramanathan, V. and Carmichael, G. (2008). Global and regional climate changes due to black carbon. In Nature Geoscience, 1; 221–227.
San-Miguel-Ayanz, J., Moreno, J. M. and Camia, A. (2013). Analysis of large fires in European Mediterranean landscapes: Lessons learned and perspectives. Forest Ecology and Management, 294; 11-22.
Seidl, R., Thom, D., Kautz, M., Martin-Benito, D., Peltoniemi, M., Vacchiano, G., Wild, J., Ascoli, D., Petr, M., Honkaniemi, J., Lexer, M. J., Trotsiuk, V., Mairota, P., Svoboda, M., Fabrika, M., Nagel, T. A. and Reyer, C. P. O. (2017). Forest disturbances under climate change. In Nature Climate Change, 7; 395–402.
Shi, G., Yan, H., Zhang, W., Dodson, J., Heijnis, H. and Burrows, M. (2021). Rapid warming has resulted in more wildfires in northeastern Australia. Science of The Total Environment, 771; 144888.
Short, K. C. (2017). Spatial wildfire occurrence data for the United States, 1992-2015 [FPA_FOD_20170508].
Spessa, A. C., Field, R. D., Pappenberger, F., Langner, A., Englhart, S., Weber, U., Stockdale, T., Siegert, F., Kaiser, J. W. and Moore, J. (2015). Seasonal forecasting of fire over Kalimantan, Indonesia. Natural Hazards and Earth System Sciences, 15(3), 429–442.
Srivas, T., De Callafon, R. A., Crawl, D. and Altintas, I. (2017). Data Assimilation of Wildfires with Fuel Adjustment Factors in farsite using Ensemble Kalman Filtering. Procedia Computer Science, 108; 1572-1581.
Stavros, E. N., Abatzoglou, J., Larkin, N. K., Mckenzie, D. and Steel, E. A. (2014). Climate and very large wildland fires in the contiguous western USA. International Journal of Wildland Fire, 23(7); 899-914.
Tang, R., Mao, J., Jin, M., Chen, A., Yu, Y., Shi, X., Zhang, Y., Hoffman, F. M., Xu, M. and Wang, Y. (2021). Interannual variability and climatic sensitivity of global wildfire activity. Advances in Climate Change Research, 1-10.
Vilà-Vilardell, L., Keeton, W. S., Thom, D., Gyeltshen, C., Tshering, K. and Gratzer, G. (2020). Climate change effects on wildfire hazards in the wildland-urban-interface – Blue pine forests of Bhutan. Forest Ecology and Management, 461; 117927.
Vilar, L., Garrido, J., Echavarría, P., Martínez-Vega, J. and Martín, M. P. (2019). Comparative analysis of CORINE and climate change initiative land cover maps in Europe: Implications for wildfire occurrence estimation at regional and local scales. International Journal of Applied Earth Observation and Geoinformation, 78; 102-117.
Zhang, G., Wang, M. and Liu, K. (2021). Deep neural networks for global wildfire susceptibility modelling. Ecological Indicators, 127; 107735. | ||
آمار تعداد مشاهده مقاله: 890 تعداد دریافت فایل اصل مقاله: 725 |