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A B S T R A C T 

 

In recent years, the application of the resilience concept has increased in various domains. Resilience depicts the ability of a system to return 
to its normal operational status after failure events or disruptions. According to the literature survey, there are various studies, which have 
been done in the field of engineering and non-engineering systems, and there is no study about applying the resilience concept in the field of 
the mining industry. In this paper, first, the resilience concept is introduced, and the resilience of the mining fleet of Sungun copper mine is 
estimated later on. For this aim, performance indicators of the system (i.e., reliability, maintainability, and supportability) are used. The results 
showed that the resilience of the entire system for one hour of its function is equal to 83.1%, and this value decreases to 37.1% after 10 hours. 
It means if there is a failure in the system, it will have 83.1% and 37.1% probabilities to be resilient against the failure event after 1 hour and 10 
hours of system function. 
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1. Introduction 

Mining is one of the most significant parts of human industries. This 
industry is consisted of many complicated processes like ore mining, ore 
processing, and so on, to supply the primary requirements of other 
industrial sectors. In the field of ore mining, systems like fan systems, 
loading and haulage systems, drilling systems, supporting systems, water 
drainage systems, and so on have worked together to produce the final 
product of mine and increase productivity. Out of schedule stoppage of 
these systems due to the failures or disruptions may cause to decreasing 
both mining safety and productivity. 

Resilience has driven from Resilire (a Latin word), which refers to 
bounce back, flexibility, etc. [1]. In 1625, the resilience concept was used 
scientifically for the first time [2]. This concept has migrated from the 
natural and physical sciences into the other sciences [3]. US National 
Infrastructure Advisory Council (NIAC) defined resilience as the 
“system’s ability to anticipate, absorb, adapt to, and rapidly recover from 
a potentially disruptive event” [4]. The schematic view of resilience is 
shown in Fig. 1. As can be seen, the system is performing its requested 
function in an initial stable state (𝐹1 level) until failure occurring at the 
time 𝑡2 . After the failure event, the performance level of the system 
decrease (system degradation) until the function level of the system 
reaches to 𝐹2 at time 𝑡3. The system may stay at the degraded state for a 
while (𝑡2 − 𝑡3 ) based on the system supportability. However, by the 
initiation of recovery actions at time t3, the system return to its desired 
performance level (𝐹3) at time 𝑡4. 

There are many definitions of system resilience in the literature; most 
of them are general definitions. Orwin and Wardle [5] defined resilience 
as the recovery speed of a system to return to its pre-failure status. 

Allenby and Fink [6] defined resilience as the system's ability to preserve 
its functions and structure in case of disruptions (internal or external), 
and to degrade when it must. Haimes [7] defined resilience as the 
system's ability to withstand a critical disruption within acceptable 
degradation parameters and to recover with a suitable time and 
reasonable costs and risks. Youn et al. [8] defined resilience as the sum 
of the system reliability (passive survival rate) and system restoration 
(proactive survival rate). Pregenzer [9] defined resilience as the system's 
ability to absorb continuous and unpredictable change and still maintain 
its vital functions. Ayyub [10] defined resilience as the ability of the 
system to prepare for and adapt to changing conditions and withstand 
and recover rapidly from disruptions. However, numbers of resilience 
definitions have been presented for more specific domains as follow (see 
Fig. 2): 

(a) Engineering resilience: System’s ability to predict, absorb, adapt, 
and/or quickly recover from a disruptive event [11]. 

(b) Ecological resilience: The ability of an ecosystem to absorb 
changes of state variables, driving variables, and parameters, that 
is, to persist after disturbance [12]. 

(c) Economic resilience: Ability and adaptive response that enables 
firms and regions to avoid maximum potential losses [11].  

(d) Social resilience: The ability of a society to absorb failures and 
reorganize while retaining the same function, structure, identity, 
and feedbacks [13]. 

(e) Psychological resilience: Dynamic process wherein individuals 
display positive adaptation despite experiences of significant 
adversity or trauma [14]. 

All of these definitions have emphasized that a resilient system should 
be able to withstand the failures and absorb failures' impacts. These 
abilities are about preparedness activities or pre-failure features of the 
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system. These are activities that make the system reliable, robust, 
flexible, and adaptable. However, the post-failure features of system or 
recovery activities are also significant for having a resilience system. 
These activities help the system to return to its normal performance 
status. System supportability and maintainability levels have a critical 
effect on the system recovery process. Haimes [7] and Ayyub's [10] 
definitions have considered both pre-and post-failure features of the 
system. Preparedness and recovery activities are both vital for having a 
resilience system [15]. 

 
Fig. 1. System’s performance transition in resilience. 

 

 
Fig. 2. Different resilience definitions domains. 

 
In the last years, numerous researchers have worked on the 

philosophy of resilience concept and also have attempted to apply this 
concept in the field of engineering and non-engineering systems. They 
introduced many qualitative and quantitative methods for systems 
resilience estimation. However, in this paper, the resilience concept has 
been applied in the field of the mining industry.  

2. Resilience estimation methods 

In the last years, many methods have been introduced for the 
estimation of the system’s resilience. Hosseini et al. [11] classified 
resilience estimation methods into two groups include qualitative and 
quantitative. Qualitative methods are usually used in non-engineering 
systems domains. Nevertheless, in the field of engineering systems, 
quantitative methods have more enthusiasts. In the following, some of 
the presented resilience estimation methods are depicted. 

Bruneau et al. [16] introduced four dimensions include robustness, 
redundancy, resourcefulness, and rapidity for civil infrastructure (such 
as power generation systems, transportation systems, etc.) resilience 
against natural disasters such as an earthquake. They have presented a 
deterministic metric (Equation 1) for measuring the resilience reduction 
of the civil infrastructures. In this metric, 𝑅  is the infrastructure 
resilience reduction, 𝑄(𝑡) is the system’s performance function, 𝑡0 is the 
disruption event time and 𝑡1 is the system recovery completion time. In 
this metric, the initial system’s performance level has been considered 
as 100% (see Fig. 3). They assumed that recovery actions commence 
immediately after the disruption completion. Moreover, they supposed 
the infrastructure is a brittle system that has not any flexibility against 
disruptive events. Hence, its quality falls dramatically after the 
disruption. These assumptions may be unrealistic. 

 

𝑅 = ∫ [100 − 𝑄(𝑡)]𝑑𝑡
𝑡1

𝑡0

 (1) 

System performance function (Q(t))

Time (t)

100%

t0 t1

RapidityRobustness

Resilience reduction (R)
Disruption

 
Fig. 3. The measure of the resilience reduction (adapted from [16]). 

Orwin and Wardle [5] presented a deterministic quantitative metric 
for measuring the resilience of soil’s biota against exogenous 
disruptions. They have introduced Equation (2) as follow: 

(2) Rsilience =
2|𝐷0|

(|𝐷0| + |𝐷𝑥|)
− 1 

As can be seen in Fig. 4, 𝐷0 is the difference between the control (𝐶0) 
and the disturbed soil (𝑃0) at the end of the disturbance (𝑡0), and 𝐷𝑥 is 
the difference between the control (Cx) and the disturbed soil (𝑃𝑥) at the 
time point (𝑡𝑥) chosen to measure resilience. 

 
Fig. 4.  A schematic view of the soil’s biota resilience in case of disruption [5]. 

As said, in Bruneau et al. [16] metric, the initial system performance 
level was assumed equal to 100%, but this hypothesis may not be right 
in reality. For this reason, Tierney and Bruneau [17] proposed Equation 
(3) as a new resilience reduction metric to overcome the issues of 
Equation 1. They have claimed resilience can reduce the infrastructure 
system's failure.  

𝑅 =
∫ [𝑄(𝑡)]𝑑𝑡

𝑡1

𝑡0

100(𝑡1 − 𝑡0)
 (3) 

Where 𝑄(𝑡) is the system’s performance function, 𝑡0 is the disruption 
event time, and 𝑡1 is the system recovery completion time. In Equation 
3, recovery duration has been also considered using the (𝑡1 − 𝑡2) term.  

Cimellaro et al. [18] presented a deterministic metric (Equation 4) for 
measuring the resilience of six hospitals in Memphis against seismic 
disruption using four resilience dimension that introduced by Bruneau 
et al. [16]. In this equation, 𝑄1 and 𝑄2 are the system’s services quality 
before and after the disruption, 𝑇𝐿𝐶  is the control time of the system, and 
𝛼 is the weighting factor representing the importance of pre- and post-
failure activates qualities. This weight can be obtained using expert 
judgment. 

𝑅 = 𝛼 ∫
𝑄𝑡(𝑡)

𝑇𝐿𝐶𝑇𝐿𝐶

𝑑𝑡 + (1 − 𝛼) ∫
𝑄2(𝑡)

𝑇𝐿𝐶𝑇𝐿𝐶

𝑑𝑡 (4) 
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Due to the opinions of experts, the weighting factor may obtain 
differently. Then, using Equation 4, different resilience values can be 
calculated. Moreover, it is not clear how four resilience dimensions are 
used in this metric. 

Youn et al. [8]  introduced a metric for resilience estimation using 
system reliability and restoration, as represented by Equation (5). Their 
metric is probabilistic and considering the uncertainties, but it is not 
time-dependent.   

𝜓 = 𝑅 + 𝜌 = 𝑅 + κ. Λ𝑃. Λ𝐷(1 − 𝑅) (5) 
Where  𝜓 ,  𝑅 , and 𝜌  represent system resilience, reliability, and 

restoration. Reliability is the ability of the system to maintain its 
required capacity and performance during a given period under stated 
conditions. Restoration is the system’s ability to recover permanently 
from a disruptive event. It is the recovery degree of the system reliability 
and depends on the probability of the correct diagnosis event (Λ𝐷 ), 
correct prognosis event (Λ𝑃 ), and successful recovery event (κ) [8]. 
Based on Youn et al. [8], the system with restoration has more resilience. 

Ayyub [10] proposed a metric for the system’s resilience estimation 
as Equation 6. In this formula, 𝑅𝑒 is the system resilience, 𝑇𝑖 is the time 
to the incident, 𝑇𝑓 is the time to failure, 𝑇𝑟 is the time to recovery, Δ𝑇𝑓 is 
the duration of failure (𝑇𝑓 − 𝑇𝑖), Δ𝑇𝑟 is the duration of recovery (𝑇𝑓 −

𝑇𝑓), and 𝐹 is the failure profile (ratio of the robustness to redundancy). 
Moreover, 𝑅 is the recovery profile (proportion of the resourcefulness 
to rapidity). 

𝑅𝑒 =
𝑇𝑖 + 𝐹Δ𝑇𝑓 + 𝑅Δ𝑇𝑟

𝑇𝑖 + Δ𝑇𝑓 + Δ𝑇𝑟

 (6) 

      Rød et al. [19] inspired by Equation (5) and presented a new 
metric for resilience estimation of Arctic region infrastructures 
(Equation 7). They have considered resilience as a function of system 
reliability and recoverability. Rød et al. defined recoverability as the 
system's ability to restore its capacity and performance by recovering 
from the effects of disruption during a period, under a given condition 
using the available resources. Recoverability is a combination of [19]: 

 Disrupted system maintainability and supportability 

 PHM system efficiency before the disruption (This item takes 
into account the system anticipation ability) 

 The resilience of the system owner in case of disruption 
(Because the organizations with low resiliency cannot 
accurately use the material and human resources in critical 
situations) 

𝜓 = 𝑅 + Λ𝑟(1 − 𝑅) (7) 
In Equation (7), Λ𝑟 refers to the system recovery efficiency and can 

be formulated as following [19]: 

Λ𝑟 = ∏ 𝛽𝑖

4

𝑖=1

 

 

(8) 

Where  𝛽1  is the organization resilience, 𝛽2  is the system 
maintainability,  𝛽3  is the PHM efficiency, and 𝛽4  is the system 
supportability. As can be seen, recoverability is the function of 
reliability, and its performance is affected by the health condition of the 
system. 

Cai et al. [20] have introduced a probabilistic metric for the system 
resilience estimation based on system availability (Equation 9). They 
have believed that resilience is an intrinsic system ability, and it is 
composed of two features known as performance and time-related 
features. The system structure determines the performance-based 
features (e.g., robustness and adaptability). But maintenance resource 
determines the time-related features (e.g., recoverability and 
resourcefulness). Based on Cai et al. [20], similar to the reliability, 
failure events (external factors) are not intrinsic properties of the system 
resilience. Then, they have not involved the failure events properties in 
their resilience metric. 

𝜌 =
𝐴1

𝑛ln(𝑡1)
∑

𝐴2
𝑖 𝐴3

𝑖

ln(𝑡3
𝑖 − 𝑡2

𝑖 )

𝑛

𝑖=1

 (9) 

In Equation (9), 𝑛  is the number of failures or shocks, 𝐴1  is the 
steady-state availability, 𝐴2 is the post-failure transient state availability, 
𝐴3  is the post-failure steady-state availability, and 𝑡1 is the steady-state 
time. Moreover, (𝑡3 − 𝑡2) is the post-failure steady-state time (see Fig. 
5). These parameters can be determined by the structure of the 
engineering system and maintenance resources, such as redundant 
structure, failure rate, and repair rate [20]. 

According to the investigated metrics, in Equation (7), uncertainties 
have been considered, and this metric is time-dependent (considering 
system maintainability). Moreover, pre-and post-failure system features 
are also embedded in this metric. Accordingly, this metric has been 
applied in this paper. 

 
Fig. 5. Availability of the system subject to degradation and failure [20]. 

3. Resilience estimation approach 

According to Equation (7), reliability, maintainability, and 
supportability (RMS) estimation are required for resilience estimation. 
The RMS estimation using time data has consisted of the below steps: 

1) Database establishment 
2) Selection of the best fit statistical model 
3) Estimation of the system’s performance indicators 

In this study, a database that was consisted of the failure, repair, and 
delivery has been established firstly. After data collection, the hypothesis 
of the independent and identically distributed nature (iid) of data 
should be evaluated to select the best fit model. For this aim, trend and 
autocorrelation tests are usually used. For example, if collected data has 
a trend, then the nonhomogeneous models like the power law process 
(PLP) should be used. If there is no autocorrelation in data, and also the 
trend test results show the potential of the presence of a trend in the 
data, then the PLP model can be used. Moreover, if there is no evidence 
about the presence of trend and autocorrelation in the data, the classical 
distribution models such as normal or lognormal models can be used 
[21–23]. However, in the present paper, to perform trend and serial 
correlation tests, the illustrated algorithm in Fig. 6 has been used. 

  
Finally, the resilience of the system can be estimated using Equation 

(7). Hence, for a series-parallel system with n series and m parallel 
subsystems, the resilience of the subsystem (𝜓𝑖𝑗(𝑡)) can be obtained 
using Equation (10), and the resilience of the entire system can be 
estimated using Equation (11). 

𝜓𝑖𝑗(𝑡) = 𝑅𝑖𝑗(𝑡) + 𝛬𝑖𝑗(𝑡). (1 − 𝑅𝑖𝑗(𝑡)) = 1 − (1 − 𝑅𝑖𝑗(𝑡)). (1 − 𝛬𝑖𝑗(𝑡)) 
(10) 

𝜓(𝑡) = ∏ [1 − [∏ (1 − 𝑅𝑖𝑗(𝑡)) . (1 − 𝛬𝑖𝑗(𝑡))
𝑚

𝑗=1
]]𝑛

𝑖=1  (11) 
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Fig. 6. Reliability, Maintainability, and Supportability (RMS) estimation 

algorithm using time data [25, 26] 

4. Case study 

In this section, the mining fleet of Sungun Copper mine, the second-
largest copper mine in Iran, is considered as a case study. The estimated 
deposit of the mine is about 828 million tons, with an average copper 
grade of 0.62%. As can be seen in Fig. 7, the Sungun Copper mine is 
located 75km northwest of the provincial town of Ahar, East Azarbaijan, 
Varzaqan County, Iran. This region is regarded as one of the coldest 
zones in Iran. Furthermore, heavy precipitation and heavy fog are 
common atmospheric phenomena all year round. The mining operation 
is managed in the mine site by employing a fleet of dump trucks, loaders, 
shovels, excavators, bulldozers, and drilling rigs [24]. The characteristics 
of the mining fleet and its block diagram are illustrated in Table 1 and 
Fig. 8. 

 
Fig. 7. Sungun Copper mine location [27]. 

 

Table 1. Sungun mine’s fleet characteristics. 

Subsystem name Model Code 

Drill wagon Hasher Wa. 
Bulldozer Caterpillar-d11n Bl. 

Loader Caterpillar-988b Lo. 
Dump truck Komatsu-785-5 DT.1 
Dump truck Komatsu-785-5 DT.2 
Dump truck Komatsu-785-5 DT.3 
Dump truck Komatsu-785-5 DT.4 
Dump truck Komatsu-785-5 DT.5 
Dump truck Komatsu-785-5 DT.6 

5. Results and Discussion 

Based on the previous section, using the time between failure (TBF), 
time to repair (TTR), and time to delivery (TTD) data of the mining 
fleet subsystems of Sungun Copper mine, RMS estimation of 
subsystems for 10 hours of the operation have been performed. 
According to the obtained results, For example, the TBFs data of BI, Wa, 
Lo, DT.2, and DT.3 subsystems had no trend and autocorrelation. 

Therefore, classical distribution models have been used for modeling the 
failure data of these subsystems. While, the TBFs of DT.1, DT.4, DT.5, 
and DT.6 have trend and autocorrelation. Therefore, the PLP model has 
been used for these subsystems. For instance, the results of iid 
assumption evaluation for TBFs data of Wa and DT.5 subsystems are 
shown in Table 2. As can be seen, all performed trend tests have shown 
that the TBFs data of the Wa subsystem have no trend. The statistical 
and graphical tests have indicated that this subsystem has no 
autocorrelation. Therefore, the Weibull-3P distribution model (a 
classical model) has been used for modeling the TBFs data of the Wa 
subsystem. The results have also shown that TBFs data of the DT.5 
subsystem have a trend but no autocorrelation. Hence, the PLP model 
should be used for this subsystem. Finally, in Table 3, the best-fitted 
models for the subsystems of the mining fleet based on their TBFs, 
TTRs, and TTDs are presented. 

Drill wagon 

(Wa.)

Loader 

(Lo.)

Dump truck (DT.2)

Dump
Bulldozer

(BI.)
Mine

Dump truck (DT.1)

Dump truck (DT.3)

Dump truck (DT.4)

Dump truck (DT.5)

Dump truck (DT.6)

Fig. 8. Block diagram of Sungun mine’s fleet. 

The results of the mining fleet subsystems RMS estimation are shown 
in Fig. 9-11. It must be mentioned, because of the same model, repair, 
and spare parts for the dump truck subsystems, these subsystems have 
the same supportability. According to Fig. 9-11, at a determined time, 
DT.2 and DT.1 will have the lowest and highest reliability, respectively; 
DT.3 and Wa will have the lowest and highest maintainability, 
respectively. Furthermore, BI will have the highest supportability. 
Through time, the supportability of Wa will have improved and get 
better than Lo and DT.1 supportability. As an example, according to Fig. 
9, after 4 hours of operation of the mining fleet, the reliability of DT.5 
will reach 40%. It means this subsystem has a 40% failure probability 
after 4 hours of functionality.   

 Table 2. The results of iid assumption evaluation for TBFs data of Wa 
and DT.5 subsystems. 

 
 

Table 3. Best fitted models for mining fleet subsystems. 

 
In this study, the values of PHM efficiency and organization resilience 

are determined as constant values. In this paper, the used values of PHM 
efficiency and organization resilience are adapted from Rød et al. [19] 
(Table 4). 
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Fig. 9. Mining fleet subsystems reliability for 10 hours of function. 

 
Fig. 10. Mining fleet subsystems maintainability for 10 hours of function. 

 
Fig. 11. Mining fleet subsystems supportability for 10 hours of function. 

 
Table 4. The considered values for β1 and β3 [19]. 

Parameters Symbols Values 

 Organization resilience β1 0.85 
 PHM efficiency β3 0.75 

 
Finally, using Table 4, the results of RMS estimation, and also 

Equation (9) and Equation (10), the resilience of mining fleet 
subsystems and the entire system for 10 hours of function have been 
estimated. The results are shown in Fig. 12 and 13. As can be seen, DT.1 
and DT.5 will have the highest and lowest resilience, respectively. 
According to the figures, DT.1 and DT.5 have the same supportability 
and maintainability, approximately. But the higher reliability of DT.1 is 
the reason for its higher resiliency compares to DT.5. Additionally, the 
resilience of the mining fleet system at the first hour of function will be 
about 83.1% and will reduce through time. It means if there is a failure 
in the first hour of mining fleet operation, it will have an 83.1% 
probability to predict, absorb, adapt, and quickly recover from the 
failure event. Moreover, after 10 hours of operation, the resilience value 
of the mining fleet will be reached to 37.1%. It means the system will 

have a 37.1% probability to be resilient against the failure event after 10 
hours of function. Generally, to increase or maintain the mining fleet 
resilience against the failure events, the mine's management should be 
more focused on the subsystems that their RMS are in an unsuitable 
condition (i.e., wagon drill, dump trucks, and bulldozer subsystems). 
Hence, the reliability of Wa and DT.5 should be increased by some 
measures. For instance, improvement of the preventive maintenance 
activates and increment of training programs for staff are such measures 
that mine's management can implement. Furthermore, the 
supportability of the bulldozer and dump trucks should be increased 
using proper spare parts logistics, fast and secure coordination of the 
demand for spare parts, providing enough workforces, and enhancing 
spare parts transportation speed to the workstation, etc. 

 
Fig. 12. Mining fleet subsystems resilience for 10 hours of function. 

 
Fig. 13. Mining fleet resilience for 10 hours of function. 

6. Conclusion 

Resilience is defined as the ability of the system to anticipate, absorb, 
adapt to, and rapidly recover from a potentially disruptive event. Each 
system may act differently in the face of failure events. Some of them 
may entirely fail in the face of failure, while some of them may show 
resistance, adaptation, and then recover their initial status. In this work, 
the resilience concept was applied to a case study from the mining 
industry. For this aim, the system's RMS, PHM efficiency, and 
organization resilience were estimated. Based on the results, at the fixed 
time, DT.2 and DT.1 will have the lowest and highest reliability, 
respectively. Moreover, DT.3 and Wa will have the lowest and highest 
maintainability, respectively. The results also showed that BI has the 
highest supportability. Through time, the supportability of Wa will 
improve and get better than Lo and DT.1 supportability. As shown, the 
resilience of the mining fleet at the first hour of function will be about 
83.1%. However, to increase and maintain the system resilience, the RMS 
state of the critical subsystems that are not in a suitable condition should 
be increased. For instance, improvement of the preventive maintenance 
activates, the increment of training programs for staff, proper spare parts 
logistics, fast and secure coordination of the demand for spare parts, and 
providing enough workforces, etc. are such measures that mine's 
management can implement. 
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