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Abstract 

Following the advances in Computer-Aided Design (CAD) and Additive Manufacturing (AM), with 
regards to the numerous benefits of the Fused Deposition Modeling (FDM) as a popular AM process, 

resolving its weaknesses has become increasingly important. A serious problem of the FDM is the 

dimensional error or size difference between the CAD model and the actual 3D printed part. In this 
study, the approach is compensating the error regardless of its source. At First, all parameters affecting 

the dimensional accuracy of FDM are comprehensively identified. Then, multi-input–single-output 

(MISO) data is prepared by designing experiments using the Taguchi method and obtaining the results 
from 3D printed samples. Next, a GMDH neural network is applied, which uses a simple nonlinear 

regression formula in each neuron but can create very complex neuron combinations. So, it is possible 

to analyze small or even noisy data. Regulatory parameters of the Neural Net have been optimized to 

increase efficiency. The case study shows a decrease in the RSME for the Nominal CAD Model from 

0.377 to 0.033, displaying the compensator's efficiency. 

Keywords: Additive Manufacturing, Fused Deposition Method, Error Compensation Model, 

GMDH Neural Network. 

Introduction  
Rapid Prototyping (RP) is a technology that makes transforming digital designs into solid 

models possible. It can be used to produce machine parts, prototypes, and molds [1]. Over the 

last decades, advances have been made in Computer-Aided Design (CAD) and RP. This has 

given designers the chance to generate a concept faster and more freely [2]. RP is usually used 

to produce parts by Additive Manufacturing (AM) technologies. In AM, layers of material are 

gradually added to form the required shape. This is contrary to conventional manufacturing 

techniques, e.g., forming or material removal [3]. Numerous AM processes are available 

including Stereolithography (SLA), Laminated Object Manufacturing (LOM), Selective Laser 

Sintering (SLS), Fused Deposition Modeling (FDM) and etc. [1]. 

FDM is an AM process in which semi-molten plastic material is extruded from a nozzle. In this 

process, thin layers of plastic form a solid shape from bottom to top [4]. Normally, a filament 

of the material is fed into a heated nozzle with a roller mechanism. A thin layer of the material 

is extruded out of the nozzle, forming the layer by moving the nozzle in the x-y plane. This 

happens over a build surface that is capable of moving vertically in the z-axis direction. 

Different materials are used in this process, when the most common is Acrylonitrile Butadiene 
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Styrene (ABS) [5].  Several advantages of this process such as simplicity, low price, and 

durability of produced parts are the most important reasons that FDM can be used to 

manufacturing the functional parts, apart from the prototypes. However, FDM has many 

drawbacks of its own [6]. Many research projects have been carried out to optimize process 

parameters and minimize the drawbacks, including low strength, rough surface finish, long 

build time and poor dimensional accuracy [7]. So, one of the most important challenges in FDM 

is dimensional accuracy, i,e., the difference between the manufactured model with the presented 

CAD file. 

Numerous research papers have discussed the accuracy of parts printed with FDM machines, 

most of which considering shrinkage as the most important cause. Sood et al. (2009) used 

Taguchi’s design to run 27 experiments. They came out with optimum values for their 

parameters [6]. El-Katatny et al. [8] investigated the dimensional errors of FDM printed 

anatomical replicas derived from computed tomography (CT). They showed that the replicas 

are generally smaller than the actual size. Percoco et al. [9] used three process parameters, i.e. 

air gap, temperature and size. They aimed to investigate the deviations in holes and shafts in 

order to improve the mating process in assembly. Mohamed et al. [10] used second-order 

Definitive Screening Design (DSD) and Artificial Neural Network (ANN) to optimize six 

process parameters of printing cylindrical samples. Akbas et al. [11] carried out experimental 

and numerical experiments in order to find the effects of material, feed rate, nozzle temperature 

and height on dimensional accuracy of an FDM printed strip. Park et al. [12]  compared FDM 

with other AM techniques to produce dental casts. They concluded that FDM is the inferior 

method in terms of dimensional accuracy. Peng et al. [13]  optimized process parameters to 

print a confirmation experiment. The final part improved in dimensional accuracy; however, its 

build time increased. Mendricky et al. [14]  investigated the effect of multiple process 

parameters on dimensional accuracy, surface roughness, material consumption, and build time. 

They concluded that layer height is the most important factor affecting dimensional accuracy 

and surface roughness. Chohan et al. [15] optimized vapor smoothing process parameters to 

gain improved surface finishing and dimensional accuracy in biomedical applications. Garg et 

al. [16] also studied the accuracy of ABS samples after cold vapor smoothing with acetone. 

Nsengimana et al. [17] compared different post-processing techniques in FDM and SLA, 

concluding that an acetone bath on FDM printed ABS samples has the best result. Garg et al. 

[18] used FDM to produce mold samples and achieved acceptable results. 

Many researchers proposed a compensation model to produce more accurate parts. Tong et al. 

[19] extended the approach of software error compensation. They used this to reduce errors in 

FDM and SLA parts. Li et al. [20] studied a printing error compensator to print electronic parts 

with connecting brackets. Pacurar et al. [21] used FEM to predict printed sample dimensions. 

They developed a software application to calculate the original CAD parameters using linear 

regression. Yaman [22] proposed a novel approach in which “shrinkage itself is utilized to 

eliminate the effects of shrinkage.” In this method, inside lines are designed over the perimeter 

of holes to prevent them from decreasing their size. He also developed numerical shrinkage 

models, which were mostly in agreement with experimental data. Dilberoglu et al. [23] 

expanded Yaman’s approach and confirmed his findings by running more experiments and 

predicting FEA models. Their approach can only be used to compensate holes and slots 

dimensions. Noriega et al. [24] developed a model to predict the dimensions of the 

manufactured parts and determine the CAD model dimensions using ANN and an optimization 

algorithm. However, they only used a limited number of process parameters in a particular 

condition. Therefore, the performed researches fall into the framework of two basic approaches: 

error avoidance approach by reduction of its sources and error compensation approach, 

regardless of the sources [25]. A comparison of the two approaches shows that most of the 
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research can be categorized within the first approach which focuses on building more accurate 

samples by using different materials and optimizing the process parameters [26]. However, 

these methods are less frequently used due to technical problems and high implementing costs. 

In contrast, the second method is more practical because of its general attitude and the lack of 

need for extensive changes in methods and parameters. However, the presented models are 

mostly limited to specific geometries and invalid in other ones.Furthermore, reviewing the 

studies on second approach shows that each of them addressed a limited number of FDM 

process parameters (rarely reaching four or five). Another noteworthy point is that these models 

are based on a small number of experiments due to the high cost, greatly increasing the risk of 

noise in the results. 

Accordingly, the main challenge of this research is to provide an error compensator that is not 

limited to a specific geometry, is low cost, flexible, includes most process parameters, and short 

data or possible noise has the least negative impact on its performance. 

In this paper, first, ten process parameters are selected to study. Using Taguchi’s approach, 27 

experiments are carried out, and the parameters that are dominantly affecting the dimensional 

accuracy are found. A GMDH artificial neural network is then trained to predict the output of 

CAD models with respect to their process parameters. GMDH has the lowest sensitivity to short 

data and the adverse effects of noisy results because it uses a simple quadratic regression 

structure with the ability to construct complex mathematical combinations [27]. This ANN 

enables the determining of initial CAD dimensions in order to reach the closest dimensions to 

the nominal values. Finally, as a case study, a sample model is modified by the proposed 

compensator, then printed, and the real error reduction is evaluated. 

 

Materials and Methods 

 
Parameter Identification 

Two sources have been used to identify configurable input parameters of the FDM process: 

The first source is the MakerBot Replicator 2X software, which is used to receive a CAD file 

and pass proper information into the existing FDM machine. The parameters that can be 

adjusted in the software or the settings that are applied manually on the FDM machine are 

selected as the input parameters. A view of software setting page can be seen in Figure 1. It 

should be noted that this procedure will perform individually for each machine and each 

software. 
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Figure 1. A view of Makerbot setting page 

 

The second source is a review of the research literature on identification, optimization, or error 

compensation for the FDM process, particularly in recent years. It should be considered that 

the development of the FDM process has led to the creation of new parameters and adjustments 

in later software versions. Some new tools and machines did not exist in the past, so old research 

may have become invalidated. The results of the literature review are reported in Table 1. 

Table 1. Literature review of input parameters of FDM process 

Reference Author(s) Year Input Parameters 

[28] Sood et al. 2009 

Layer Thickness 

Air Gap 

Raster Angle 

Raster Width 

[29] Panda et al. 2009 

Layer Thickness 

Build Orientation 

Air Gap 

Raster Angle 

Raster Width 

[30] 
Arivazhagan and  

Masood 
2012 

Build Orientation 

Interior Style 

Raster Width 

[31] Luzanin et al. 2013 Extruder Temperature 
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[32] Sahu, R.K. et al. 2013 

Layer Thickness 

Build Orientation 

Air Gap 

Raster Angle 

Raster Width 

[33] Bhatia, S. 2014 
Print Location 

Build Orientation 

[27] 
Rayegani and 

Onwubolu 
2014 

Layer Thickness 

Build Orientation 

Air Gap 

Raster Angle 

Raster Width 

[34] Akande, S.O. 2015 
Layer Thickness 

Infill Density 

[35] Baich, L. et al. 2015 Interior Style 

[36] Equbal, A., et al. 2017 

Air Gap 

Raster Angle 

Raster Width 

[37] 
Narang, R. and D. 

Chhabra 
2017 

Layer Thickness 

Build Orientation 

Infill Density 

Interior Style 

No. of Shells 

Air Gap 

Raster Angle 

Raster Width 

[38] Qattawi, A. et al. 2017 

Layer Thickness 

Build Orientation 

Infill Density 

Interior Style 

Print Speed 

[39] Aw, Y.Y., et al. 2018 
Infill Density 

Interior Style 

[40] Deng, X., et al. 2018 Print Speed 
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Layer Thickness 

Infill Density 

Extruder Temperature 

[41] Leite, M., et al. 2018 

Layer Thickness 

Infill Density 

Extruder Temperature 

Raster Angle 

[42] Dey, A. and N. Yodo 2019 

Layer Thickness 

Build Orientation 

No. of Shells 

Air Gap 

Raster Angle 

Raster Width 

Extruder Temperature 

[23] Dilberoglu et al. 2019 

Print Speed 

Raster Width 

Extruder Temperature 

[43] 
Lyu, J. and S. 

Manoochehri 
2019 

Scale 

Layer Thickness 

Extruder Temperature 

Infill Density 

 

There is an overlap of parameters between Table 1 and software settings. The ineffectiveness 

of some other parameters has been shown in various studies. Also, some parameters such as 

print speed or raster settings (Including angle and width) are not available for all printers. With 

regards to these points, the following eight parameters were selected as adjustable input 

parameters in the FDM process: 

Scale, Print Location, Extruder Temperature, Angle to X-Axis (Part Orientation), Layer 

Thickness, Infill Density, Number of Shells, and Infill Pattern (Interior Style). 

Due to the part height and warpage effects, which take the part walls out of the perpendicularity 

tolerance range[13], the part's height can be added to this list as the 9th parameter. 

The Taguchi Procedure 

The conventional experimenting method of full factorial DOE is quite complex, costly, and 

impracticable [44, 45]. Taguchi technique minimizes the number of experiments using 

orthogonal arrays. In addition, it shows the effects of each independent variable (input) on the 

dependent variable (output) by defining a loss function with regard to the nature of the output. 

Next, analysis of variance (ANOVA) and signal-to-noise ratio are provided [46, 47]. 
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As mentioned in section 2.1, nine input parameters are selected, and three levels of magnitude 

are considered for each parameter, as listed in Table 2. The dependent variable (output) is the 

error value between the part's dimensions produced by the FDM printer and the proposed CAD 

model. According to the nature of the output, the "smaller is better" strategy is used. The loss 

function is according to Equation 1[48]. 

𝑆
𝑁⁄ = −10 log [(1 𝑛⁄ )(∑𝑦2)] (1) 

Where y is the model dimensional error and n is the number of each experiment's replications. 

Table 2. Input variables with their levels 

No. Variable Name Symbol Unit Level 1 Level 2 Level 3 

1 Scale X1 mm 40 50 60 

2 Print Location X2 - 1:Left 2:Center 3:Right 

3 Extruder Temperature X3 C 218 230 242 

4 Angle to X-Axis X4 Degree 0 45 90 

5 Layer Thickness X5 mm 0.15 0.20 0.25 

6 Infill Density X6 % 10 20 30 

7 No. of Shells X7 - 2 3 4 

8 Infill Pattern X8 - 1: Star 2:Rectangular 3:Hexagonal 

9 height X9 mm 10 20 30 

 

 

GMDH Neural Network 

The GMDH neural network is one of the best tools to solve modeling and forecasting problems 

for small and large amounts of data. It can even work with random or complex data structures 

[49]. Suppose the input is in the form of a �⃗� vector where,�⃗� = (𝑥1, 𝑥2,⋯ , 𝑥𝑛), the output 

predicted by the neural network is zi, and the actual output is yi. Furthermore, assume the value 

of P represents the number of data pairs in the form of multi-input–single-output: 

𝑦𝑖 = 𝑓(𝑥𝑖1, 𝑥𝑖2,⋯ , 𝑥𝑖𝑛), 𝑖 = 1, 2,… , 𝑛 (2) 

 

𝑧𝑖 = 𝑓(𝑥𝑖1, 𝑥𝑖2, ⋯ , 𝑥𝑖𝑛), 𝑖 = 1, 2,… , 𝑛 (3) 

The GMDH neural network's goal is to map the input to the actual output. To achieve this goal, 

it is necessary to minimize the variance between the actual output and the output predicted by 

the neural network. Therefore: 

𝑀𝑖𝑛𝑖𝑚𝑢𝑚 → ∑(𝑦𝑖 − 𝑧𝑖)
2

𝑃

𝑖=1

 (4) 

The predicted output is a nonlinear function in the form of Kolmogorov-Gabor polynomial: 
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𝑧 = 𝑐0 + ∑𝑐𝑖𝑥𝑖 + ∑∑𝑐𝑖𝑗𝑥𝑖𝑥𝑗

𝑛

𝑗=1

𝑛

𝑖=1

𝑛

𝑖=1

+ ∑∑ ∑ 𝑐𝑖𝑗𝑘𝑥𝑖𝑥𝑗𝑥𝑘

𝑛

𝑘=1

𝑛

𝑗=1

𝑛

𝑖=1

+ ⋯ (5) 

Where Ci are polynomial coefficients and 𝑖, 𝑗, 𝑘 ∈ (1,… , 𝑛). 

For the sake of simplicity, the GMDH network uses the Kolmogorov-Gabor quadratic 

polynomial in the following form [50]: 

𝑧 = 𝑐0 + 𝑐1𝑥𝑖 + 𝑐2𝑥𝑗 + 𝑐3𝑥𝑖𝑥𝑗 + 𝑐4𝑥𝑖
2 + 𝑐5𝑥𝑗

2 (6) 

To calculate the Ci coefficients where 𝑖 =  0,1, … , 5 regression analysis is used as follows: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒(𝐸)                    , 𝐸 =
∑ (𝑦𝑖 − 𝑧𝑖)

2𝑃
𝑖=1

𝑃
 (7) 

For a set of P MISO data pairs, the above relationships can be summarized and reproduced in 

the following matrix form: 

𝑦𝑃×1 = 𝐺.𝐶 (8) 

Where: 

𝑦𝑃×1 = {𝑦1, 𝑦2, … , 𝑦𝑃}𝑇 

𝐶 = {𝑐0, 𝑐1, 𝑐2, 𝑐3, 𝑐4, 𝑐5}
𝑇 

𝐺 =

[
 
 
 1
1
⋮
1

𝑥1𝑢

𝑥2𝑢

⋮
𝑥𝑃𝑢

𝑥1𝑣

𝑥2𝑣

⋮
𝑥𝑃𝑣

𝑥1𝑢𝑥1𝑣

𝑥2𝑢𝑥2𝑣

⋮
𝑥𝑃𝑢𝑥𝑃𝑣

𝑥1𝑢
2

𝑥2𝑢
2

⋮
𝑥𝑃𝑢

2

𝑥1𝑣
2

𝑥2𝑣
2

⋮
𝑥𝑃𝑣

2 ]
 
 
 

 (9) 

To calculation of C values: 

𝐶 = (𝐺𝑇𝐺)−1𝐺𝑇𝑦 (10) 

The value of (𝐺𝑇𝐺)−1𝐺𝑇 is called the Pseudo-Inverse of the Matrix G [51-54]. 

At the next step, a number of neurons are chosen to compose the subsequent layer. The selection 

criterion is the deviation amount (error) between the predicted output and the actual output of 

each neuron. Let us define: 

𝑒𝑖 = (𝑦𝑖 − 𝑧𝑖)
2 (11) 

For the maximum and minimum values, we have: 

𝑀𝑎𝑥(𝑒𝑖) = 𝑒𝑚𝑎𝑥 (12) 

 

𝑀𝑖𝑛(𝑒𝑖) = 𝑒𝑚𝑖𝑛 (13) 

The critical value of error is defined as below: 

𝑒𝑐 = 𝛼𝑒𝑚𝑖𝑛 + (1 − 𝛼)𝑒𝑚𝑎𝑥 (14) 

Where 0 < 𝛼 < 1 is called the selection pressure criterion [55]. Removable neurons are the 

ones in which,𝑒𝑖 > 𝑒𝑐. Obviously, selecting higher values of α leads to the elimination of more 
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neurons. α = 0 means 𝑒𝑐 = 𝑒𝑚𝑎𝑥  and we will not have any exclusions. Likewise, α=1 

means,𝑒𝑐 = 𝑒𝑚𝑖𝑛, and all neurons except those with the least error value will be dismissed. 

Assume the maximum number of neurons allowed for each layer is R, which the user has set 

initially. Now, if the number of neurons remaining is greater than R, they are arranged from the 

lowest value of ei to the highest. Then the first R neurons at the beginning of the list, which are 

the ones with the lowest ei values, are selected to create the next layer. 

It should be noted that the entire data is divided into two sets: a training set and a test set. The 

user determines the ratio of this division. The selection and evaluation of the quality of neurons 

are made on the test data set. The GMDH network training process involves adding layers, 

calculating regression coefficients, and removing lower quality neurons. This network is self-

organizing and the output of the current layer is the input of the next layer. This process 

continues until at least one of the stopping conditions is met[56]. Reaching a layer with just a 

single neuron is the primary stopping condition. Another condition is reaching a layer whose 

RSME value is higher than the previous layer, which indicates that the situation is deteriorating. 

Furthermore, reaching the maximum number of allowed layers previously set by the user causes 

the operation to stop. In the latter two cases, the neuron with the best function (lowest ei) is 

selected as the output, and the other neurons in that layer are discarded. 

A summary of the above steps is graphically displayed in Figure2 [57]. 

 

Figure 2. A graphical example of GMDH neural network training - (a) The first network layer with 

four inputs is formed. (b) After calculating the values of ei, lower quality neurons are removed (the 

removed neurons are shown in white). (c) Selection of neurons in the new layer. (d) and (e), after the 

selection process at each stage, the network training continues until one of the stop conditions is 

reached. (f) The neurons which have no role in the network are removed—reconstructed from source 

[57] 

 

Compensation Model 

Assume the Nominal CAD model is as shown in Figure 3, where the curve of the object's edge 

is arbitrary. To calculate the error of each point on the curve, first, the origin is defined; then, x 
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and y axes are specified. It is better to choose the reference and axes with regards to the datum 

of the object. 

 

Figure 3. Vector Generation from Nominal CAD Model 

 

Next, we define some points as the "exact points" on the specified curve. These points are either 

based on the piece's datum or such that, a good approximation of the main curve is obtained 

(points P1, P2, and P3 in Figure 10). Vectors that connect the coordinate system's origin to each 

of these points are created in the next step. For example, for the points in Figure 4, we have: 

𝑃1
⃗⃗ ⃗⃗ = (𝑅1, 𝜃1) 

𝑃2
⃗⃗⃗⃗⃗ = (𝑅2 , 𝜃2) 

𝑃3
⃗⃗⃗⃗⃗ = (𝑅3 , 𝜃3) 

⋮ 

 

Figure 4. Applying Compensation on Nominal CAD Model (Generation of Compensated 

CAD Model). 
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We need nine input parameters for each point to enter information into the neural network (error 

compensation model). Here, R represents the scale parameter. θ represents the angle with the 

x-axis. The distance of the piece from the bottom edge indicates the height parameter. 

Depending on the circumstances, other parameters can be set individually or in groups by 

adjusting the optimal value obtained from ANOVA analysis and the signal-to-noise ratio in the 

Taguchi algorithm.  

Moving forward, these points (with nine neural network input parameters) are supplied to the 

optimized GMDH neural network. For each, a compensation radius value declared by Rci 

(where i = 0, 1,…, n and n is the total number of points on the curve) is taken as the neural 

network's output. 

New points are obtained from vectors whose angles are unchanged, but their radii have 

increased/decreased by the value of  Rci. In other words, for each point, Ri transformed to Ri + 

Rci. The points on the x and y axes are considered as P0 and Pn + 1. 

Afterward, the best passing spline through the points obtained from the compensated vectors is 

plotted as the new curve of the intended edge. The compensated CAD model is redesigned 

based on the implementation of this new curve to the nominal CAD model and is used for 3D 

printing. The compensated CAD Model of Figure 3 is presented in Figure 4. 

The greater the number of points, the greater the accuracy of the fitted curve. At the same time, 

it will cause more complexity and consequently more computational costs and slow down the 

compensation process. However, due to the piecewise nature of the spline curve, it is very 

unlikely that the curve will go out of the smooth state by increasing the number of points, 

because as the number of points increases, the degree of the curve does not increase. 

The Proposed Method 

In the first step, the process input parameters are identified individually and listed. Next, 

appropriate parameter levels are determined according to their range of application. Then, using 

the Taguchi method, a set of experiments is suggested. The number of experiments and 

consequently the amount of data obtained for neural network training may be inadequate. This 

is due to the uniqueness and personalization of parameters based on their application range and 

number of levels. In this case, a number of randomly selected points within the range of each 

parameter and based on the neural network needs are used as additional points, which 

complement the Taguchi-designed experiments. By adjusting the parameters on these points 

and the Taguchi method's points, the entire result is used as input data for neural network 

training.This data is divided into two groups: the training set and the test set. The user 

determines the ratio of this division (p-train), the maximum number of neurons in each layer, 

the maximum number of allowed layers, and the selection pressure criterion (α) by initializing 

the parameters. The training data with the initial configuration of GMDH network parameters 

is then given to the neural network, and its RSME and R-Value are determined. To optimize 

the neural network parametrically, experiments are once again designed by the Taguchi method 

for these configuration parameters (α, p-train, maximum the number of Neurons and the 

maximum number of layers). 

The total RSME value obtained in each experiment, ANOVA analysis and S / N ratio obtained 

to show the amount of parameter's influence and optimal levels. Then, the GMDH neural 

network is trained with the training set and used as an error compensation model in the 

following steps. 

Now, the existing Nominal CAD model, as mentioned in Section 2.4, is punctuated and gridded. 

For each point's polar vector, the required compensation value of Rci is obtained using the 



462  Gorgani et al. 

optimized GMDH network. The compensated radius of each point is (Ri+Rci) while its angle 

remains unchanged. Using the new radii and passing a spline, the compensated CAD model is 

obtained. 

The 3D printing process is performed on this model and the FDM process error, which is Rc i 

for each point, causes the printed part to have maximum compliance with the nominal CAD 

model. 

The steps of this method can be observed in the flowchart illustrated in Figure 5. 

 

Figure 5. Flow-Chart of the proposed Method 

 

Results and Discussion: 

As mentioned in Section 2.2, nine parameters, each with three levels, were identified after 

reviewing the research and investigating device settings and Makerbot Replicator 2X software. 

These are listed in Table 2. The test table for the Taguchi orthogonal arrays suggests a 27-test 

system in the L27 form for this study. For simplicity, categorical inputs are encoded as 

continuous, and later the results are decoded. As shown in Table 2, for Print location, the 
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numbers 1, 2, and 3 represent left, center, and right, respectively. The numbers 1, 2, and 3 

represent the star, rectangular and hexagonal, sequentially for the infill pattern. To make the 

numbers as tangible as possible for infill density, the numbers 0.1, 0.2, and 0.3 represent 10%, 

20%, and 30% infill, respectively. The input parameters are named x1 to x9 according to Table 

2. 

Hexagonal-shaped samples, which have four pairs of parallel faces with different angles, were 

used for this study. The height of the samples were 30 mm, and the distance of parallel faces 

was measured in three different heights of 10 mm, 20 mm, and 30 mm. Every sample was 

printed on a rectangle of 100 mm by 150 mm. Printing location was one of the process 

parameters, therefore, the hexagon was printed on three locations on the right, left or center of 

the rectangle. Part number was printed on the rectangle to prevent mistakes (See Figure 6). 

 

Figure 6 . The Hexagonal samples printed in different values of the input parameters 

These 27 experiments give 27 pairs of data sets in the form of 9 inputs and one output. If a 

value is somewhat noisy or inaccurate, the probability of error increases in neural network 

training. Therefore, another 53 tests are randomly designed within the allowable range of 

parameters and added to the Taguchi list. Thus, there is a total of 80 tests. Parameter settings 

are done on the software, and a 3D printer creates the result. Material is ABS, and the measuring 

instrument is a micrometer with an accuracy of 0.001mm. 

The Samples are measured by the three operators. The results of Taguchi-designed and 

randomly added experiments are shown in Tables 3 and 4, respectively. In these two tables, the 

nominal dimension represents the nominal CAD model's desired size, and the real dimension 

column represents the value measured on the printed model. The following formula produces 

the error value: 

𝐸𝑟𝑟𝑜𝑟 =  𝑁𝑜𝑚𝑖𝑛𝑎𝑙 𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 –  𝑅𝑒𝑎𝑙 𝐷𝑖𝑚𝑒𝑛𝑠𝑖𝑜𝑛 

The Taguchi tests' average error is 0.159 mm, and for the added points, the error is 0.153 mm, 

which indicates good compatibility. 
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Table 3. Results for Taguchi Tests 

Order X1 X2 X3 X4 X5 X6 X7 X8 X9 Nominal Dim Real-Dim Error 

1 40 1 218 0 0.15 0.1 2 1 10 40 39.843 0.157 

2 40 1 218 0 0.2 0.2 3 2 20 40 39.849 0.151 

3 40 1 218 0 0.25 0.3 4 3 30 40 39.820 0.180 

4 40 2 230 45 0.15 0.1 2 2 20 40 39.890 0.110 

5 40 2 230 45 0.2 0.2 3 3 30 40 39.867 0.133 

6 40 2 230 45 0.25 0.3 4 1 10 40 39.890 0.110 

7 40 3 242 90 0.15 0.1 2 3 30 40 39.839 0.161 

8 40 3 242 90 0.2 0.2 3 1 10 40 39.868 0.132 

9 40 3 242 90 0.25 0.3 4 2 20 40 39.851 0.149 

10 50 1 230 90 0.15 0.2 4 1 20 50 49.840 0.160 

11 50 1 230 90 0.2 0.3 2 2 30 50 49.827 0.173 

12 50 1 230 90 0.25 0.1 3 3 10 50 49.849 0.151 

13 50 2 242 0 0.15 0.2 4 2 30 50 49.832 0.168 

14 50 2 242 0 0.2 0.3 2 3 10 50 49.840 0.160 

15 50 2 242 0 0.25 0.1 3 1 20 50 49.835 0.165 

16 50 3 218 45 0.15 0.2 4 3 10 50 49.870 0.130 

17 50 3 218 45 0.2 0.3 2 1 20 50 49.860 0.140 

18 50 3 218 45 0.25 0.1 3 2 30 50 49.856 0.144 

19 60 1 242 45 0.15 0.3 3 1 30 60 59.818 0.182 

20 60 1 242 45 0.2 0.1 4 2 10 60 59.834 0.166 

21 60 1 242 45 0.25 0.2 2 3 20 60 59.835 0.165 

22 60 2 218 90 0.15 0.3 3 2 10 60 59.848 0.152 

23 60 2 218 90 0.2 0.1 4 3 20 60 59.829 0.171 

24 60 2 218 90 0.25 0.2 2 1 30 60 59.795 0.205 

25 60 3 230 0 0.15 0.3 3 3 20 60 59.822 0.178 

26 60 3 230 0 0.2 0.1 4 1 30 60 59.787 0.213 

27 60 3 230 0 0.25 0.2 2 2 10 60 59.825 0.175 

Average 0.159 
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Table 4. Results for Additional Tests 

Order X1 X2 X3 X4 X5 X6 X7 X8 X9 
Nominal 

Dim 
Real-Dim Err 

28 55 1 239 18 0.21 0.29 5 3 20 55 54.836 0.164 

29 56 1 241 60 0.13 0.22 5 3 33 56 55.851 0.149 

30 55 1 217 42 0.13 0.14 3 2 40 55 54.837 0.163 

31 46 2 243 15 0.26 0.13 5 2 40 46 45.836 0.164 

32 56 3 216 19 0.16 0.12 4 3 21 56 55.836 0.164 

33 43 2 240 61 0.13 0.18 4 2 40 43 42.847 0.153 

34 46 3 227 13 0.12 0.25 3 2 20 46 45.883 0.117 

35 46 1 229 89 0.18 0.29 2 3 33 46 45.844 0.156 

36 58 2 219 41 0.24 0.12 2 1 38 58 57.812 0.188 

37 51 3 227 80 0.21 0.28 2 1 32 51 50.835 0.165 

38 48 1 227 29 0.18 0.14 2 2 28 48 47.879 0.121 

39 44 3 217 19 0.21 0.26 2 3 23 44 43.861 0.139 

40 42 3 224 71 0.3 0.24 3 1 19 42 41.864 0.136 

41 51 1 224 54 0.14 0.14 4 2 27 51 50.875 0.125 

42 60 2 225 47 0.28 0.3 5 2 33 60 59.817 0.183 

43 59 3 230 26 0.22 0.17 5 2 39 59 58.821 0.179 

44 54 3 244 85 0.27 0.14 5 2 19 54 53.837 0.163 

45 51 3 232 24 0.18 0.14 3 1 36 51 50.835 0.165 

46 48 1 225 76 0.16 0.26 4 1 26 48 47.844 0.156 

47 46 3 238 41 0.14 0.13 3 2 35 46 45.875 0.125 

48 54 1 220 23 0.24 0.12 3 3 38 54 53.828 0.172 

49 52 3 238 63 0.24 0.16 4 2 35 52 51.817 0.183 

50 41 1 245 74 0.23 0.24 5 1 30 41 40.841 0.159 

51 41 2 231 79 0.14 0.29 5 1 29 41 40.856 0.144 

52 51 2 226 31 0.12 0.18 2 2 32 51 50.871 0.129 

53 43 3 243 75 0.2 0.24 3 2 12 43 42.860 0.140 

54 59 1 230 35 0.21 0.3 5 1 34 59 58.848 0.152 
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55 50 2 240 79 0.3 0.14 5 1 23 50 49.823 0.177 

56 57 2 228 9 0.24 0.25 3 2 33 57 56.802 0.198 

57 60 3 218 43 0.23 0.21 2 1 40 60 59.819 0.181 

58 56 3 226 19 0.24 0.18 3 3 36 56 55.826 0.174 

59 48 3 224 27 0.16 0.11 5 3 18 48 47.867 0.133 

60 50 3 227 20 0.25 0.26 4 2 33 50 49.847 0.153 

61 51 1 216 53 0.14 0.14 2 2 11 51 50.885 0.115 

62 50 1 229 15 0.22 0.27 2 1 18 50 49.849 0.151 

63 48 2 219 37 0.24 0.21 3 2 31 48 47.853 0.147 

64 43 2 244 52 0.22 0.26 2 3 19 43 42.872 0.128 

65 52 2 227 23 0.29 0.19 4 2 31 52 51.859 0.141 

66 49 1 236 84 0.18 0.23 5 2 29 49 48.849 0.151 

67 50 1 219 10 0.19 0.29 4 3 12 50 49.863 0.137 

68 47 3 216 16 0.26 0.27 4 2 39 47 46.818 0.182 

69 55 3 238 79 0.3 0.3 5 1 12 55 54.828 0.172 

70 57 1 217 70 0.21 0.17 4 3 30 57 56.838 0.162 

71 49 2 221 22 0.15 0.16 5 2 35 49 48.858 0.142 

72 48 1 238 79 0.18 0.14 5 3 15 48 47.850 0.150 

73 59 2 222 13 0.16 0.21 2 2 11 59 58.853 0.147 

74 50 1 244 28 0.19 0.24 3 1 13 50 49.861 0.139 

75 47 3 234 19 0.3 0.19 5 2 11 47 46.874 0.126 

76 41 3 229 26 0.28 0.24 3 2 18 41 40.884 0.116 

77 44 2 232 84 0.25 0.13 2 1 38 44 43.841 0.159 

78 54 1 244 11 0.2 0.18 3 1 20 54 53.824 0.176 

79 46 1 244 3 0.29 0.18 4 3 13 46 45.838 0.162 

80 54 2 219 45 0.2 0.28 4 1 30 54 53.855 0.145 

Average 0.153 

We used Minitab 19 software to analyze the results. The ANOVA analysis results are listed in 

Table 5, and the Main effect plots for S / N ratios are presented in Figure 7. In this analysis, the 

"smaller is better" strategy is taken due to the nature of the output (error). 
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Figure 7. 3D Printed Parts: Main Effects Plot for S/N Ratios (Smaller is Better) 

 

Table 5. 3D Printed Parts: Response Table for Signal to Noise Ratios (Smaller is better) 

Level X1 X2 X3 X4 X5 X6 X7 X8 X9 

1 17.02 15.66 16.05 15.33 16.26 16.04 15.99 15.93 16.66 

2 16.25 16.48 16.32 17.04 16.02 16.13 16.28 16.30 16.30 

3 15.00 16.12 15.90 15.90 15.99 16.10 16.00 16.04 15.31 

Delta 2.03 0.82 0.43 1.71 0.27 0.08 0.29 0.36 1.36 

Rank 1 4 5 2 8 9 7 6 3 

 

Figure 7 and Table 5 show that the most influential factor is the scale, and the least effective 

factor is infill density. According to ANOVA analysis, scale and infill density have a Delta 

value of 2.03 and 0.08, respectively. The ratio of the least effective to the most effective factor 

is 0.0394, or about 4%. Therefore, all factors remain in the neural network training. Figure 7 

also shows that the optimal position for "scale" is 40 mm. For the print location, the optimal 

state happens when the sample position is in the middle of the printer desk. The best extruder 

temperature for ABS filament happens at 230° C. In the 45° orientation the error is minimum. 

The figure also shows that the number of shells should be three, and their pattern type should 

be rectangular for optimum state. Moreover, lower heights are shown to cause a smaller error. 

The smaller the Layer thickness factor is, the better. The model's density does not significantly 

affect the output error, although the 20% density parts have slightly less error than 10% and 

30% density parts. The results from Tables 3 and 4 are then integrated and given as input data 

to the GMDH neural network with the following initial settings: 

P-train: 0.8 (80%) 

Number of layers: 3 
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Number of neurons: 6 

α = 0.7 

The calculated RSME of 0.0107 and the R-value of 0.869 indicate the relative proportionality 

of the results. Therefore, four variables with three levels are selected as the neural network 

configuration variables according to Table 6. Note that these levels are not mandatory and are 

entirely determined by the user. The Taguchi L9 orthogonal array table determines the test 

settings. 

Table 6. Input parameters with their levels for GMDH-NN Performance Optimization 

No. Variable Name Level 1 Level 2 Level 3 

1 Max. No. of Neurons 3 6 9 

2 Max. No. of Layers 3 5 7 

3 Alpha 0.5 0.7 0.9 

4 P-Train  0.6 0.7 0.8 

Available data obtained from Taguchi designed experiments combined with random points 

were fed to the GMDH network, each time with one of the proposed settings. The RSME values 

and the R-values are measured for all data, then listed in Table 7. Moreover, the main effects 

plot for S/N ratios is shown in Figure 8. Due to the nature of the RSME output, the smaller is 

better strategy is used in this analysis. Table 8 shows the results of the ANOVA analysis for the 

regulation of GMDH neural network input parameters. According to these results, the optimal 

value are as follows: 

Maximum number of Neurons = 6 

Maximum number of layers = 3 

α = 0.5 

P-train = 0.8 (or 80%) 

Table 7. GMDH-NN: Results for Taguchi L9 Tests 

No. 
Max. No. 

of Neurons 

Max. No. 

of Layers 
Alpha P-Train RSME R 

1 3 3 0.5 0.6 0.0121 0.827 

2 3 5 0.7 0.7 0.0147 0.754 

3 3 7 0.9 0.8 0.0152 0.719 

4 6 3 0.7 0.8 0.0107 0.869 

5 6 5 0.9 0.6 0.0163 0.696 

6 6 7 0.5 0.7 0.0121 0.83 

7 9 3 0.9 0.7 0.0153 0.707 

8 9 5 0.5 0.8 0.0109 0.863 

9 9 7 0.7 0.6 0.0129 0.823 
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Table 8. GMDH-NN Performance: Response Table for Signal to Noise Ratios (Smaller is 

better) 

Level Neurons Layers Alpha P-Train 

1 37.12 38.13 38.65 37.30 

2 37.95 37.22 38.06 37.10 

3 37.78 37.50 36.14 38.45 

Delta 0.83 0.91 2.50 1.35 

Rank 4 3 1 2 

 

 
 

Figure 8. GMDH-NN Performance: Main Effects Plot for S/N Ratios (Smaller is Better) 

 

In this case, RSME is 0.0103, and R-value is 0.878. The performance curves of the GMDH 

neural network training in the optimal state are presented in Figure 9. The diagrams in Figure 

10 show the difference between the Nominal CAD model and the one predicted by the prepared 

model for each of the 80 input data sets. The relatively good fitting and the RSME value of 

0.0103 show the high quality of the created mathematical model. Furthermore, the average error 

of -0.001, knowing that its ideal state is zero and the standard deviation of 0.0103, is very close 

to the model's RSME value. This shows the appropriate distribution of error and confirms the 

optimal performance of the mathematical model. 



470  Gorgani et al. 

 

Figure 9. GMDH-NN: Training Performance 

 

 

Figure 10. GMDH-NN: The difference between Predicted Model Error (Output) & Real 

Error (Target) 
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Case study 

Assume the given Nominal CAD model is as shown in Figure 11. We create a compensated 

curve for the free form edge of the body by placing the coordinates' origin on the two 

perpendicular lines' intersection point. 

 

Figure 11. Nominal CAD Model for case study 

 

For this purpose, we select the points P0 to P6 on the curve as shown in Figure 12 and report 

their x, y, R, and θ values in Table 9. According to section 2.2, we choose the factor x1 is the 

length of each point's vector. Similarly, the x4 factor is chosen to be the angle of each point's 

vector. Also, the factor x9 is selected as the height of the points, which in this model are 15 mm 

for all points. Other parameters are set to their optimal values and are equal for all selected 

points. They are constant during the test. This arrangement is shown in Table 10. The above 

values are given to the optimized GMDH neural network, and the output is taken. This output 

is Rci = -ei, where ei is the error between the nominal CAD model and the actual printed model. 

The values obtained for Rci are listed in Table 11. With respect to these values, Ri at any point 

is converted to (Ri + Rci), and is called R-compensated. 



472  Gorgani et al. 

 

Figure 12. Selection of Indicator points and polar vectors 

Table 9. Selected points for generating the compensation Model 

Point X Y R θ 

P0 60.00 0.00 60.00 0.00 

P1 56.55 10.29 57.48 10.31 

P2 46.93 16.84 49.86 19.74 

P3 32.76 23.07 40.07 35.15 

P4 22.59 33.05 40.03 55.65 

P5 11.86 46.35 47.84 75.65 

P6 0.00 50.00 50.00 90.00 

 

Table 10. Input values for selected points in the case study 

Point X1 X2 X3 X4 X5 X6 X7 X8 X9 

P0 60 2 230 0 0.15 50 3 2 15 

P1 57.479 2 230 10.31 0.15 50 3 2 15 

P2 49.86 2 230 19.74 0.15 50 3 2 15 

P3 40.068 2 230 35.15 0.15 50 3 2 15 

P4 40.033 2 230 55.65 0.15 50 3 2 15 

P5 47.843 2 230 75.65 0.15 50 3 2 15 

P6 50 2 230 90 0.15 50 3 2 15 

 

P

0 
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Table 11. Predicted Compensation values for selected points 

Point 
Compensation 

Value 

P0 0.186 

P1 0.168 

P2 0.135 

P3 0.098 

P4 0.097 

P5 0.135 

P6 0.154 

 

3D printing is done once using the Nominal CAD model and once using the compensated CAD 

model to evaluate the extent of the effects of compensation. Printed radius values are recorded 

in the columns of Table 12 under the headings Real-R-Nominal and Real-R-Compensated, 

respectively. Also, we put the error measure of each in the Err-Nominal and Err-compensated` 

columns, respectively. According to Table 12, the RSME value of the nominal model without 

compensation is 0.377. After implementing the compensation, this value is 0.033. This can be 

seen in Figure 13. The proximity of the true -ei diagrams in the nominal state to the value of Rci 

predicted by the mathematical model and the neural network indicates the correct performance 

of the prediction. Also, the compensated model error diagram in Figure 13 fluctuates around 0, 

which confirms the correct operation of Model 1. 

 

Figure 13. Comparison between Nominal Error, Compensated Error and Compensation 

Value 
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Table 12. Results for 3D Printed Part using Nominal and Compensated CAD Model 

Point R-Nominal R-Compensated 
R-Real-

Nominal 

Err.-

Nominal 

R-Real-

Compensated 

Err.-

Compensated 

P0 60.000 60.186 59.826 0.174 59.995 0.005 

P1 57.479 57.647 57.320 0.159 57.489 -0.010 

P2 49.860 49.995 49.723 0.137 49.872 -0.012 

P3 40.068 40.166 39.950 0.118 40.056 0.012 

P4 40.033 40.130 39.920 0.113 40.010 0.023 

P5 47.843 47.978 47.700 0.143 47.832 0.011 

P6 50.000 50.154 49.858 0.142 49.999 0.001 

RSME 0.377  0.033 

 

Limitations and future work 

The most important limitations of the research are the small number of samples due to the 

expensive sampling process, as well as its time consuming. On the other hand, the impossibility 

of accurate measurements due to the wall roughness (generally in the FDM process) can affect 

the results. Future research could be to do this research with more data, as well as repeat 

sampling for each record, in order to cover possible errors and measurements in a automatic 

way and with more accurate tools. 

Conclusion 

In this research, an error compensation model is presented regardless of the error sources. In 

this model's development, the elimination of disturbance (which may happen because of 

inadequate and noisy data) in the results and the model's comprehensiveness in terms of input 

parameters have been considered. 

Nine parameters are identified and then experiments are designed using Taguchi orthogonal 

arrays, L27 with 3 levels for each parameter. To compensate for the small number of existing 

multi-input–single-output sets, another 53 experiments were randomly selected by adjusting the 

inputs within their allowable range. Hence a total of 80 experiments are conducted, and the 

results are recorded. 

The results are fed to a GMDH neural network, which is capable for limited or noisy data sets, 

where the regulatory parameters of the network are optimized. The output is considered a 

mathematical model of the process.  

Finally, a case study is performed on the results. After implementing the above algorithm and 

performing the compensation, the error rate is reduced from 0.377 to 0.33, as shown in Figure 

13. The proximity of the error curves in the actual nominated state and the amount of 

compensation offered by this compensator indicates its accurate execution. Also, the fluctuation 

of error around zero confirms the correct performance of the compensator. 
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