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The flow regimes and the dynamics of the front in miscible displacements 

are controlled by the interactions between the mechanisms of instability 

involved in such processes. The instabilities may be driven by the 

unfavorable relative characteristics of the fluids (like unfavorable gravity or 

mobility ratios) or by the heterogeneity of the medium, providing favorable 

paths for the more mobile fluid. This work investigates the effect of porous 

medium heterogeneity with two scales of permeability variations on the 

frontal instability and fluid mixing. The base mode of permeability 

variations has a smaller wavelength and higher frequency, while the 

imposed mode has a larger wavelength. The effect of such a bimodal 

heterogeneity on the growth of mixing zone length (MZL) has been studied 

and the development of the previously recognized flow regimes in layered 

porous media have been examined. The combination of a short wave which 

induces faster growth of instabilities at initial stages of the flow, and a 

relatively longer wavelength heterogeneity with elongated channeling 

period, distorts the consecutive appearance of the flow regimes observed in 

single wavelength heterogeneity profiles of previous studies. Compared to 

the unimodal medium comprising the base wave, in the bimodal cases with 

large contrast between the wavelengths of the two periodic profiles the 

dominance of each wavelength at a different time scale predictably 

enhances the growth of fingers in the early and late stages. Interestingly and 

less intuitively, even in cases with close wave numbers between the 

combined modes (e.g. 15 layers combined with 11 layers) faster growth of 

the mixing zone length is observed. In such cases, the coherence of equal 

layers in a unimodal layered medium is disturbed by the second wave 

number, which results in fading of the lateral diffusion regime. However, 

bimodal heterogeneity may attenuate the instability compared to the 

unimodal system with the imposed wave’s frequency.  

 

Introduction 

Miscible displacement and fluid mixing in porous media are faced in various applications 

like contaminant transport [1], chromatography in packed beds [2], miscible oil displacement 

[3], CO2 flooding and storage [4], and polymer slug injection projects [5]. The interface 

between the fluids is often unstable due to the unfavorable ratio between the fluid properties 

(e.g., viscosity and density) or the heterogeneity in the porous medium. The instability shows 

itself in the form of advancing fingers of displacing fluid, bypassing the in-situ fluid. When 
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triggered by the viscosity mismatch between the fluids, it is referred to as viscous fingering. 

The interaction between viscous instability and the heterogeneity of the medium in miscible 

displacements is interesting from many aspects. Despite the vast number of studies on 

experimental, analytical, and numerical investigation of the effect of heterogeneity on viscous 

fingering [4, 6, 7, 8], the exact mechanism is not fully understood, and one cannot predict the 

rate of mixing, breakthrough time, or other important measurable parameters for complex 

heterogeneity models. In displacement processes, the heterogeneity of the porous medium 

affects viscous fingering at different scales and changes the mixing mechanisms during 

different flow regimes. One of the simple forms of heterogeneity is periodically varying 

permeability across the flow domain, forming a layered system, first defined by De Wit and 

Homsy [6]. The studies on layered porous media with periodic heterogeneity across the domain 

have revealed four flow regimes, including an initial diffusive flow, the channeling regime, 

transverse diffusion, and finally, the viscous fingering regime [7]. The flow regimes and the 

dynamics of the miscible displacements are customarily characterized using mixing zone length 

(MZL) defined as the length of the region with a transverse average concentration between 0.01 

and 0.99. Other definitions have been proposed for MZL (e.g., using the concentration variance 

about the initial condition [8]), which are believed to capture some flow behavior more 

accurately, but in this work, we use the old fashion definition to be comparable to our previous 

studies. Regardless of the definition, fast growth of MZL is interpreted as the rapid growth of 

instabilities on the front zone, and slower growth of MZL is usually attributed to a diffusive 

flow behavior. The study of MZL growth in layered media has shown that the heterogeneity 

characteristics of the rock (i.e., heterogeneity length scale and permeability variance), along 

with the displacement parameters (i.e. the flow rate, the diffusion coefficient, and the mobility 

ratio of the components) affect the development of the flow regimes and the time scale of the 

events [7].  

Despite the comprehensive study conducted on the periodic variation of permeability with a 

single wavelength, the effect of a second wavelength (like what is observed in bimodal 

permeability [4, 9]) has not received much attention. Although bimodal heterogeneity can be 

correlated to fractured media, in which the variation of permeability inside the matrix is widely 

different from the fissure network, there are other formations with similar order of permeability 

variation at different scales [10]. Bimodal heterogeneity is recognized for different reservoir 

rocks. Specifically, in carbonate rocks the micro-pores between clay crystals form preferred 

channels for flow in micro scale (Fig. 1). A bundle of these micro-channels forms a flow path 

between the rock grains in a larger scale. The variation of density of grains in different regions 

changes the permeability over longer distances. Thus, the heterogeneity can be characterized in 

different scales. If the heterogeneity correlation length is small at one scale its effect can be 

discounted or modeled through a modified diffusion rate. In their simulations, Sajjadi and 

Azaiez [7] showed that in periodically layered media, the dimensionless group  
𝑤/𝐿

Pe
 (𝑤: width 

of the layers, 𝐿: length of the medium, and Pe: Peclet number) defines the flow characteristics 

and the time scale and length scale of the flow regimes. According to their simulation results, 

for 
𝑤/𝐿

Pe
≤ 10 the fingering patterns in periodically layered media were identical to those in 

homogeneous media. However, for channels of larger widths (
𝑤/𝐿

Pe
> 10) the heterogeneity of 

the medium affected the displacement front’s stability and the mixing process.  
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Fig. 1. Bimodal structure of a carbonate rock sample from the Arab formation [9] 

From a mathematical point of view, bimodal heterogeneity may be defined based on the 

frequency or the length scale of permeability variations. Accordingly, when two peaks are 

observed in the histogram of permeability [11] or when the medium has two length scales of 

permeability variation [10], bimodal heterogeneity may be perceived. Due to the determinative 

role of heterogeneity length scale on the flow behavior, in this work the second definition, 

namely two wavelengths of permeability variations has been employed. In 1995, Rubin [10] 

developed a probabilistic description of permeability variation using a spatially random 

function with two length scales representing the two modes of heterogeneity. The analytical 

work of Rubin focused on the probabilistic characteristics of the domain, so the results could 

be generalized to any random permeability distribution. But the definition of random 

permeability profile for numerical simulations makes the observed phenomena to be case-

specific. So the measurable properties such as the growth rate of mixing zone length may be 

different for two different random permeability realizations with the same length scales. To 

overcome this limitation, in the current study, the bimodal heterogeneity is defined by 

considering the variations only in a transverse direction and combining a short wave periodic 

permeability forming the base wave with a relatively longer wavelength variation (here called 

the imposed wave). Practically the base mode of heterogeneity can be deemed as the micro 

pores between the crystalline or at a larger scale as the heterogeneities within a geological layer. 

Likewise, the imposed wave can resemble the grouped crystalline between the grains or the 

geological layers with different permeabilities. This definition is a simplified scheme compared 

to the probability density functions capable of realization of two-dimensional random 

permeability distributions. Yet, as will be discussed in the results section, the flow behavior in 

the presence of the different length scales of permeability variations matches the results of 

previous studies qualitatively. In addition to capturing the essential behavior, such a simplified 

definition allows for in depth analysis of the flow regimes and each length scale’s contribution 

to flow instability, which cannot be obtained in more complex realizations.  

In summary, this paper examines the development of fingers in viscously unstable 

displacements in bimodal heterogeneous media by studying the concentration contours and the 

mixing zone length. The results are compared to media with periodic permeability with 

unimodal heterogeneity. The sequence of the flow regimes and their timings are compared for 

different wavelength combinations. 

Model Description 

A 2D miscible displacement in the porous media is modeled based on mass conservation, 

Darcy’s description of momentum conservation, and the convective-diffusive mass transfer 

between the miscible solutions. Fluid 1 is injected (from left) into the rectangular medium with 

uniform apparent velocity 𝑈 and concentration �̂�1 to displace the resident fluid (fluid 2) of 

uniform concentration �̂�2.  
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Fig. 2. Schematic of the modeled two-dimensionalmiscible displacement 

The schematic of the model is shown in Fig.2, and the flow equations are as follows: 

�̂�. �̂� = 0 (1) 

�̂��̂� = −
�̂��̂�𝜙

�̂�
 (2) 

𝜕�̂�

𝜕�̂�
+ �̂�. �̂��̂� = 𝐷�̂�2�̂� (3) 

In this model, the flow is assumed to be incompressible and Newtonian. In the governing 

equations given above, the hat sign refers to dimensional variables. So here �̂� represents the 

gradient vector in dimensional space (�̂�, �̂�), �̂� is the pressure, �̂� = (�̂�𝑥, �̂�𝑦) is the interstitial 

velocity vector, and �̂� is the solvent concentration. �̂�(�̂�), 𝜙 and �̂�(�̂�, �̂�) represent the fluid 

viscosity, and the medium’s porosity and permeability respectively. The viscosity of the fluids 

is assumed to be solely a function of the solvent concentration, and the porosity of the medium 

is deemed constant. The permeability distribution is defined using an exponential function with 

two cosine terms with two wavelengths describing the permeability variations across the 

domain: 

�̂�(�̂�, �̂�) = 𝑘1 exp [
1

2
𝑠 (cos (

2𝜋𝑛𝑦1�̂�

𝑊
) + cos (

2𝜋𝑛𝑦2�̂�

𝑊
))] (4) 

In the given definition 𝑠 sets the range of variation of permeability. 𝑛𝑦1, 𝑛𝑦2, are the two 

frequencies of the permeability variation along �̂� the axis and 𝑊 represents width of the domain. 

Two sample permeability idealizations are illustrated in Fig. 3, one with a unimodal 

heterogeneity (a periodic distribution of 15 layers) and a bimodal medium with two 

heterogeneity wavelengths with 𝑛𝑦1 = 15 and 𝑛𝑦2 = 3. In Fig. 3a the permeability profiles 

from a cross-sectional view are plotted for both media. In Fig. 3b and 3c, the permeability 

contours over the domain are shown.  
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(a) (c) 

Fig. 3. Example of unimodal and bimodal heterogeneous field realizations, (a) permeability profiles on the 

cross-section of the porous medium, (b) permeability contour in the whole domain for a unimodal 

heterogeneous medium, (c) permeability contour in a bimodal heterogeneous medium 

 

The viscosity-concentration correlation in this model is an exponential function [12]. 

�̂�(�̂�) = �̂�1 exp (𝑅 (
�̂�1 − �̂�

�̂�1 − �̂�2

)) (5) 

This definition implies a viscosity of �̂�1 at the entrance, where the solvent concentration 

is �̂�1, and a viscosity of �̂�2 = �̂�1 exp(𝑅) at the outlet with the solvent concentration of �̂�2. Thus 

𝑅 represents the log viscosity ratio defined as ln 𝑀 = ln
�̂�2

�̂�1
.  

The equations are made dimensionless using diffusive scaling [7]. A Lagrangian reference 

frame attached to the displacement front is used. So the domain of interest moves with the flow, 

and the front remains at the center of the modeled frame at all times. 

(𝑥, 𝑦) =
(�̂� − 𝑈�̂�/𝜙, �̂�)

𝐷𝜙/𝑈
         𝑡 =

�̂�

𝐷𝜙2/𝑈2
     𝒖 = (𝑢𝑥, 𝑢𝑦) =

(�̂�𝑥, �̂�𝑦)

𝑈/𝜙 
 

𝑝 =
�̂�

𝐷�̂�1𝜙/�̂�1

       𝜇 =
�̂�

�̂�1
       𝑘 =

�̂�

�̂�1

      𝐶 =
�̂� − �̂�2

�̂�1 − �̂�2

 

(6) 

The dimensionless equations can now be derived as: 

𝛁. 𝒖 = 0 (7) 

𝛁𝑝 = −
𝜇(𝒖 + 𝒊)

𝑘
 (8) 

𝜕𝐶

𝜕𝑡
+ 𝒖. 𝛁𝐶 = 𝛁2𝐶 (9) 

The permeability distribution and the viscosity-concentration function in dimensionless 

form can be written as follows: 

𝑘 = exp [
1

2
𝑠 (cos (

2𝜋𝑛𝑦1𝑦

𝑊𝑈/(𝐷𝜙)
) + cos (

2𝜋𝑛𝑦2𝑦

𝑊𝑈/(𝐷𝜙)
))] (10) 

𝑛𝑦1 = 15, 𝑛𝑦2 = 3  

𝑛𝑦1 = 15, 𝑛𝑦2 = 0  
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= exp [
1

2
𝑠 (cos (

2𝜋𝑛𝑦1𝑦

Pe/𝐴
) + cos (

2𝜋𝑛𝑦2𝑦

Pe/𝐴
))] 

𝜇(𝐶) = exp(𝑅(1 − 𝐶)) (11) 

where Pe = 𝐿𝑈/(𝐷𝜙) is the Peclet number (also the dimensionless length of the domain) 

and 𝐴 = 𝐿/𝑊 is the aspect ratio of the domain. 

The details of the preparation of the equations for numerical simulation based on Hartley 

transformation are discussed in [13, 14] for non-isothermal displacements in homogeneous 

porous media and are briefly given in Appendix A for the heterogeneous system defined here. 

A semi-implicit second-order Adams-Bashforth-Adams-Moulton predictor-corrector is 

employed to solve Eq. A13. Other authors have previously used the numerical scheme and it 

has been validated against analytically predicted finger growth rates through linear stability 

analyses [15]. More details about the numerical technique is given in [14]. 

Simulation Results 

As stated in Eq. A6, the role of heterogeneity in the development of instability is defined by, 

∇𝑓 which is simplified to 
𝜋𝑠𝐴𝑛𝑦

Pe
𝑓 for single frequency layered heterogeneity. Since 𝑓 itself 

varies between -1 and 1 (regardless of the flow and medium’s assigned parameters), the 

magnitude of ∇𝑓 depends on the multiplied factor. Therefore, for given flow parameters in 

unimodal layered media, the influence of heterogeneity on the flow instability and mixing zone 

growth depends on the factor 
𝑛𝑦

Pe/𝐴
 (i.e. inverse of the dimensionless width of the layers), and 

the range of variation of permeability represented by 𝑠. For the scenarios discussed here, the 

range of permeability variations 𝑠 and the dimensionless length of the medium Pe are kept 

constant. Thus the only difference between the permeability realizations is the length scale of 

heterogeneity. Although in this study, parameters of the same nature as the single frequency 

layered media are involved, the combination of two permeability profiles with different 

frequencies substantially alters the observed phenomena in the simple harmonic layered media. 

The reason is illustrated in Fig. 4, which shows how changing the number of layers varies ∇𝑓 

in single frequency and double frequency permeability profiles. For clarity, the curves are 

plotted over half of the width of the medium. As observed in these plots, the magnitude of the 

gradient of log permeability in unimodal heterogeneity is directly related to the number of 

layers. A 25-layer has a proportionally larger gradient than a 15-layer medium. But the same 

guideline does not apply to double permeability frequency profiles. The role of the second 

wavelength is noticed in comparing the two scenarios with 𝑛𝑦1 = 15, 𝑛𝑦2 = 11 and 𝑛𝑦1 =

15, 𝑛𝑦2 = 3. The latter shows much a smaller magnitude of log permeability gradient. Also, a 

base wave of 𝑛𝑦1 = 15 layers combined with an 11 layer wave shows the same magnitude of  

∇𝑓 as the third case with 𝑛𝑦1 = 25, 𝑛𝑦2 = 3.  
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(a) (b) 

Fig. 4. Log permeability gradient ∇𝑓 profiles for (a) unimodal heterogeneity, and (b) bimodal heterogeneity 

In this part of the results section, the frequency of the base wave is kept constant as 𝑛𝑦1 =

15, and the wavelength of the imposed wave is changed. In the next part, the effect of changing 

the base wave is investigated. In Fig.5, two reference scenarios are compared with the 

displacement in a bimodal medium. The reference cases belong to a 15 layer unimodal 

heterogeneous medium and a homogeneous porous medium. The third medium is defined by 

𝑛𝑦2 = 11 on a base wave of 𝑛𝑦1 = 15. The profile of the permeability across the flow direction 

is plotted on top of the first concentration contour for each scenario.  

 
(a) 

 
(b) 

 

 
(c)  

 

  

Fig. 5. Concentration contours of miscible displacements at different time steps in media with (a) 𝑛𝑦 = 15, (b) 

𝑛𝑦 = 0, and (c) 𝑛𝑦1 = 15, 𝑛𝑦2 = 11. The setting parameters are Pe = 1024, 𝐴 = 2, 𝑅 = 3, 𝑠 = 0.1 

In Fig.5a, in the 15 layer medium, the flow regimes including the initial growth of the fingers 

in the high permeable layers (at 𝑡 = 100), the lateral diffusion and merging of the fingers (at 

𝑡 = 400), and finally the growth of viscous fingers on the diffused front (at 𝑡 = 600 and 800) 

are observed. In comparison, the front in the homogeneous medium of Fig.5b shows a random 

distribution of viscous fingers and delayed development of instability in the absence of 

heterogeneity as a driving force. It can also be observed that at different time steps, the severity 

of instability is different between the two reference scenarios, though the breakthrough time 

(considering the moving reference frame) is more or less similar for both. Addition of a second 

heterogeneity wavelength in Fig.5c (𝑛𝑦2 = 11) has a significant influence on the pattern of 

fingers and their growth rate. Bearing in mind that the development of instability driven by the 

heterogeneity of the medium depends on the rate of spatial variation of permeability, it is 

expected that the base wave with smaller length scale acts faster in destabilization of the front 

than the second wave with a larger length scale. That is why in the early time frames of Fig.5c 
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(at 𝑡 = 50), fifteen fingers can be counted on the front. Although the initial stimulation of 

instability is driven by the base wave, similar to the unimodal case of Fig.5a, in the bimodal 

system of Fig.5c, the uneven development of the fingers impedes efficient transverse diffusion 

between them and allows for further enhancement of instability. Therefore the fingers reach the 

downstream boundary at a shorter time. In the absence of a lateral diffusion regime, the 

consecutive flow regimes observed in the 15 layers porous medium are not established in the 

bimodal case with a second heterogeneity wavelength. 

Since the channeling regime lasts a shorter period in layers with smaller wavelengths, in 

Fig.5c with 𝑛𝑦2 11, the flow regime is past the channeling regime and  viscous fingering in the 

late time frames is observed. In Fig. 6, the frequency of the imposed wave is changed to 𝑛𝑦2 =

1, 3, and 7. In the cases shown in Fig. 6a to 6c, like in Fig.5c, the early time frames show fifteen 

fingers, which means that the base wave controls the instability at the early stages. By further 

progress of the displacement front, the growth of fingers in the wider channels becomes more 

apparent and the second wavelength takes over. Similar to Fig.5c, the combination of the 

wavelengths enhances the instability with respect to the simple 15-layer medium. Again the 

base wavelength helps faster stimulation of fingers and the imposed wavelength disturbs the 

transverse diffusion (hence skipping the diffusive flow regime) and guides the instability in a 

second mode of channeling.  

 
(a) 

 
(b) 

 
(c) 

Fig. 6. Concentration contours of miscible displacements at different time steps in media with the base wave 

of 𝑛𝑦1 = 15, the second wave of permeability variation imposed on the first wave has (a) 𝑛𝑦2 = 1, (b) 𝑛𝑦2 = 3, 

and (c) 𝑛𝑦2 = 7 layers. The setting parameters are Pe = 1024, 𝐴 = 2, 𝑅 = 3, 𝑠 = 0.1 

For cases with 𝑛𝑦2 = 1, 3, and 5 (𝑛𝑦2 = 5 is not shown here due to its close similarity to the 

𝑛𝑦2 = 3 scenario) since the second wave number is a factor of the base wave’s number of 

layers, each wide finger absorbs a corresponding number of smaller fingers (15, 5, and 3 small 

fingers per a large finger, respectively), and the process of emerging is similarly repeated for 

each wide finger. Looking at Fig. 6b, for instance, the similarity between the three layers of the 

imposed wave suggests that the pattern can be repeated. So if the width of the medium, 𝑛𝑦1 and 

𝑛𝑦2 are all doubled, then the fingering looks the same as in Fig. 6b. A similar concept has been 

reported by Rubin [10] for random bimodal heterogeneity, stating that the contribution of each 

mode depends on the ratio between the length scales. For 𝑛𝑦2 = 7 and 11 in Fig. 6c and Fig.5c, 

evolving of 𝑛𝑦2  fingers from 15 fingers is uneven and although in the later times 𝑛𝑦2 fingers 

are distinguished, they are not distributed as uniformly as the cases with 𝑛𝑦2 = 1, 3 and 5.  
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(a) 

 
(b) 

 
(c) 

Fig. 7. Concentration contours of miscible displacements at different time steps in media with the second wave 

of permeability variation with 𝑛𝑦2 = 3 layers imposed on base wave of (a) 𝑛𝑦1 = 11, (b) 𝑛𝑦1 = 25, and (c) 

𝑛𝑦1 = 0. The setting parameters are Pe = 1024, 𝐴 = 2, 𝑅 = 3, 𝑠 = 0.1 

In this part of the results section (shown in Fig. 7), the base wave is changed to 𝑛𝑦1 = 11 

and 25 while the second wave number is kept constant at 𝑛𝑦2 = 3. The displacement in a three-

layer medium (with no base wave) is shown in Fig. 7c for reference. As mentioned earlier, the 

channeled fingers diminish faster into a diffused front in a medium with smaller heterogeneity 

wavelength. As a result, in Fig. 7b with 𝑛𝑦1 = 25, at 𝑡 = 100 the fingers developed in the 

narrow channels of the base wave are smaller than in Fig. 7a with 𝑛𝑦1 = 11. Comparing the 

rate of growth of fingers, it seems like the cases discussed here have more or less the same 

breakthrough time. So, we may conclude that the second wave number, 𝑛𝑦2, controls the 

breakthrough time of the displacements in bimodal heterogeneous media. In the analytical study 

of Rubin [10] the time dependent dominance of each wavelength in finger growth, has been 

reported and the effect of large-scale permeability variations became significant at large travel 

distances.  

For a quantitative analysis of the influence of the defined heterogeneity on the formed 

instabilities, the temporal growth of MZL is plotted for the described scenarios. First, the plots 

corresponding to varied second wave numbers are discussed, and then the effect of the base 

wave will be analyzed. As shown in Fig.8, the homogeneous medium (brought here for 

comparison with the heterogeneous scenarios) goes through a diffusive regime until 𝑡 = 200 

and then viscous fingering supports fast growth of mixing zone length in the following time 

steps. The heterogeneous media, however, deviate from the diffusive flow regime at the early 

stages due to growing fingers inside the channels. Among the heterogeneous media, the medium 

with single frequency 𝑛𝑦 = 15 heterogeneity shows the slowest growth of MZL and the 

bimodal heterogeneity enhances the growth rate of instability compared to the single-mode 

heterogeneous medium with the frequency of the base wave. One can see in the magnified plot 

that even at the initial time steps the media with a second imposed wave of heterogeneity 

(except for 𝑛𝑦2 = 1) show more rapid growth of MZL than the unimodal medium. The lateral 

diffusion regime is hardly noticeable except for 𝑛𝑦2 = 11 for which a slight decay in growth 

rate can be observed at around 𝑡 = 200 which may be considered a short period of lateral 

diffusion.  
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Fig. 8. Mixing zone length for media with two imposed permeability waves, the base wave for all the cases has 

15 layers; the second imposed wave has smaller number of layers as show in the legend  

The case with  𝑛𝑦2 = 1 follows the unimodal curve with 𝑛𝑦 = 15  for a longer period than 

the other scenarios. The reason lies in the fact that the longer wavelength corresponding to 

𝑛𝑦2 = 1  acts more gradually in guiding the flow into the channel. So the effect of the second 

heterogeneity wavelength takes a longer time to appear on the MZL curve. The channeling 

regime lasts longer in wider channels, and the faster advancement of the instability in the final 

time frames of the process can be attributed to the channeling regime in the second 

heterogeneity wavelength. When the gap between the heterogeneity modes is large, they affect 

mixing in their separate time scale. A very small wavelength acts fast in destabilizing the front 

and then forming a diffused front which will later be directed into the larger wavelength 

channels. In the long period, it seems like a larger wavelength heterogeneity shows a faster 

growth of mixing zone and the MZL curves are ranged from large to small with respect to their 

assigned 𝑛𝑦2 (with 𝑛𝑦2 = 1 showing the shortest breakthrough time and 𝑛𝑦2 = 11 the longest 

breakthrough time among the bimodal media). Similarly, in the numerical simulations of 

Amooie et al. [4] in media with a random distribution of low permeability facies, a faster 

breakthrough in media with scarce zones of higher permeability, which means larger length 

scale of heterogeneity, and more diffusive behavior in the zones with a smaller length scale of 

heterogeneity have been reported. 

Fig. 9 shows the second set of results with constant wavelength heterogeneity (𝑛𝑦2 = 3) 

imposed on different base waves. For reference, the displacements in a homogeneous porous 

medium and in a unimodal heterogeneous medium with 𝑛𝑦 = 3 are shown as well. Although 

the MZL curves show different breakthrough times, their slopes seem to be the same in the final 

stages of the flow as the fingers grow in 𝑛𝑦2 = 3 channels. If we look at the magnified graph, 

we can see more scattered curves compared to the early time curves of Fig.8. The reason is the 

dominance of the base wave in early time behavior which is different for the cases shown here 

in Fig. 9. In contrast to the previous cases, which showed enhanced instability for all bimodal 

distributions compared to the single wavelength scenario, when changing the base wave we 
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may see tempering of instability in bimodal cases. Yet overall, a smaller wavelength of the base 

wave seems to enhance instability at later times.  

 

Fig. 9. Mixing zone length for media with two imposed permeability waves, the base wave for all the cases has 

15 layers; the second imposed wave has smaller number of layers as show in the legend 

Conclusion 

The interaction between viscous fingering and channeling in bimodal heterogeneous media 

has been investigated for miscible displacements through numerical simulation of the process. 

The heterogeneity has been defined as the combination of two cosine permeability profiles with 

different length scales to observe the effect of bimodal heterogeneity on the development of 

instabilities. Such a definition is aimed to provide a closer resemblance of reservoir rocks in a 

simple scheme in which the contribution of the involved parameters can be distinguished. Two 

sets of numerical experiments have been performed first, varying the imposed wave's 

wavelength of heterogeneity and keeping the base wave unchanged. In the second set a 3 layer 

periodic profile was imposed on different base waves. The concentration contours have been 

presented for qualitative examination of the emerging fingers on the displacement front. For 

quantitative analysis of the results, MZL profiles of the simulated cases have been compared. 

The presence of a second wavelength in the permeability distribution profile changes the 

unstable flow regimes previously obtained for unimodal layered media. The instabilities at first 

follow the permeability distribution with the smaller wavelength (the base wave) but gradually 

merge into fingers formed in channels with larger wavelengths. The overlap of the flow regimes 

in double wavelength distributions enhances the instability compared to the unimodal medium 

with the base wave frequency. In the cases with large contrast between the wavelengths, the 

enhancement has been explained by the dominance of each mode at a different period. Faster 

growth of the mixing zone length in cases with close wave numbers between the combined 

waves (e.g., 15 layers combined with 11 layers) has been attributed to the fading of the lateral 

diffusion regime due to the dissimilar fingering patterns.  

The base wave’s frequency showed a non-uniform effect. The base waves with smaller 

wavelengths showed enhanced instability compared to the unimodal medium with the imposed 

wave’s profile, while base waves with larger wavelengths attenuated the growth of fingers by 

delaying the dominance of the imposed wave.  
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Appendix A 

For solving the given set of dimensionless equations, the stream function-vorticity 

formulation of [14, 16] is adopted. First, the pressure is eliminated by taking the curl of Eq. 8, 

knowing that 𝛁 × 𝛁 = 0 for any continuously twice differentiable function. Thus:  

𝛁 × 𝛁𝑝 = −𝛁 × (
𝜇(𝒖 + 𝒊)

𝑘
) 

𝑘

𝜇
𝛁 (

𝜇

𝑘
) × (𝒖 + 𝒊) = −𝛁 × (𝒖 + 𝒊) 

(A 1) 

One can apply the operator to obtain 𝛁 × (𝒖 + 𝒊) = 𝛁 × 𝒖, which is the definition of 

vorticity vector 𝝎. Also 
𝑘

𝜇
𝛁 (

𝜇

𝑘
) = 𝛁 (ln

𝜇

𝑘
) hence Eq. (A 1) reduces to: 

𝝎 = −𝛁 (ln
𝜇

𝑘
) × (𝒖 + 𝒊) 

= −𝛁(ln 𝜇) × (𝒖 + 𝒊) + 𝛁(ln 𝑘) × (𝒖 + 𝒊) 
(A 2) 

Incorporating Eq. 10 and Eq. 11 we have: 

𝛁(ln 𝜇) = −𝑅𝛁C (A 3) 

𝛁(ln 𝑘) = −
𝜋𝑠

Pe
{

0

𝐴 (𝑛𝑦1 sin (
2𝜋𝑛𝑦1𝑦

Pe/𝐴
) + 𝑛𝑦2 sin (

2𝜋𝑛𝑦2𝑦

Pe/𝐴
))

} (A 4) 

For brevity, we keep 𝛁(ln 𝑘) = 𝛁𝑓 thus Eq. A2 can be expanded to:  

𝝎 = 𝑅𝛁C × (𝒖 + 𝒊) + 𝛁𝑓 × (𝒖 + 𝒊) 

ω = −𝑅 (
𝜕𝐶

𝜕𝑥
𝑢𝑦 −

𝜕𝐶

𝜕𝑦
(𝑢𝑥 + 1)) − (

𝜕𝑓

𝜕𝑥
𝑢𝑦 −

𝜕𝑓

𝜕𝑦
(𝑢𝑥 + 1)) 

(A 5) 

Where 
𝜕𝑓

𝜕𝑥
 and 

𝜕𝑓

𝜕𝑦
 are the components of the vector defined in Eq. A4. In fluid mechanics the 

stream function is defined as a scalar integral whose derivative gives the velocity vector as 
𝜕𝜓

𝜕𝑦
=

𝑢𝑥 and 
𝜕𝜓

𝜕𝑥
= −𝑢𝑦 which can be adopted in Eq. A5 to give: 

ω = 𝑅 (
𝜕𝐶

𝜕𝑥

𝜕𝜓

𝜕𝑥
+

𝜕𝐶

𝜕𝑦
(

𝜕𝜓

𝜕𝑦
+ 1)) + (

𝜕𝑓

𝜕𝑥

𝜕𝜓

𝜕𝑥
+

𝜕𝑓

𝜕𝑦
(

𝜕𝜓

𝜕𝑦
+ 1))

= (𝑅𝛁C + 𝛁𝑓). (𝛁𝜓 + 𝐣) 

(A 6) 

For an incompressible flow by definition 𝜔 = −∇2𝜓. Hence the system of equations to be 

solved now consists of:  
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ω = (𝑅𝛁C + 𝛁𝑓). (𝛁𝜓 + 𝐣) 

𝜔 = −∇2𝜓 

𝜕𝐶

𝜕𝑡
+ 𝒖. 𝛁𝐶 = 𝛁2𝐶 

(A 7) 

The boundary and the initial conditions can be defined based on the described model as: 

(𝜔, 𝐶)(𝑥, 𝑦, 𝑡0)  = (0, 𝐶0) 

(𝜔, 𝐶)(0, 𝑦, 𝑡) = (0,1) 

(𝜔, 𝐶)(Pe, 𝑦, 𝑡) = (0,0) 

(𝜔, 𝐶)(𝑥, 0, 𝑡)  = (𝜔, 𝐶)(𝑥, Pe/𝐴, 𝑡) 

(A 8) 

where 𝐶0 =
1

2
erfc

𝑥

2√𝑡0
. The numerical method is based on the transformation of the equations 

to Hartley space. Application of this pseudo-spectral method requires periodic boundary 

conditions. Hence, the concentration is decomposed to the base state and perturbed 

concentration 𝐶 = 𝐶̅ + 𝐶′ as suggested by [17]. The base state is obtained from solving the 

unperturbed convection-diffusion equation with the uniform injection velocity throughout the 

domain defined by 
𝜕�̅�

𝜕𝑡
= 𝛁2𝐶̅.  For the defined boundary and initial conditions: 

𝐶̅ =
1

2
erfc

𝑥

2√𝑡
 (A 9) 

Thus the system of equations is now expressed (and solved) in terms of the new unknown 

perturbed concentration 𝐶′.  

ω = (𝑅𝛁C′ + 𝑅
𝜕𝐶̅

𝜕𝑥
𝐢 + 𝛁𝑓) . (𝛁𝜓 + 𝐣) 

𝜔 = −∇2𝜓 

𝜕𝐶′

𝜕𝑡
+ 𝒖. 𝛁𝐶′ + 𝒖. 𝛁𝐶̅ = 𝛁2𝐶′ 

(A 10) 

With the periodic boundary conditions defined for 𝐶′  

(𝜔, 𝐶′)(𝑥, 𝑦, 𝑡0)  = (0,0) 

(𝜔, 𝐶′)(0, 𝑦, 𝑡) = (0,0) 

(𝜔, 𝐶′)(Pe, 𝑦, 𝑡) = (0,0) 

(𝜔, 𝐶′)(𝑥, 0, 𝑡)  = (𝜔, 𝐶′)(𝑥, Pe/𝐴, 𝑡) 

(A 11) 

The deviation in concentration field from the base-state profile can be triggered by the initial 

perturbation, which later grows into viscous fingers or permeability variations. In the absence 

of these causes, the flow remains stable, and the concentration follows  𝐶̅ profile. It should be 

emphasized that the definition of 𝐶̅ is optional, and any step-like function that is twice 

differentiable can maintain the periodic boundary condition for the remaining 𝐶′. In fact, the 

periodic boundary condition required for application of Hartley based (or any other) spectral 

method may be achieved by doubling the length of the domain and mirroring the concentration 

profile as done by Tan and Homsy [16]. But this scheme doubles the size of the simulated 

domain and consequently the computational complexity. Tan and Homsy used the Fourier 

transformation for solving the exact system of equations for homogeneous porous media. 

Hartley transform is closely related to Fourier transform with the advantage of retaining the 

transformed functions in the real space and is equally applicable for inverse transformation. 
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In this work a two-dimensional Fast Hartley Transformation (FHT) has been employed for 

the enhancement of accuracy of the numerical simulations [18].  The method has been 

successfully applied to simulate viscous fingering [7, 13, 14, 17]. The discrete Hartley 

transform of function 𝑔(𝑥, 𝑦, 𝑡), and its partial derivatives, are defined as [19]: 

𝐻[𝑔(𝑥, 𝑦, 𝑡)](𝑞𝑥, 𝑞𝑦)

=
1

√𝑁𝑥𝑁𝑦

∑ ∑ 𝑔(𝑥𝑖 , 𝑦𝑗 , 𝑡)(cos(𝑞𝑦𝑦𝑗) + sin(𝑞𝑦𝑦𝑗))

𝑁𝑦

𝑗=1

(cos(𝑞𝑥𝑥𝑖)

𝑁𝑥

𝑖=1

+ sin(𝑞𝑥𝑥𝑖)) 
(A 12) 

𝐻 [
𝜕𝑔

𝜕𝑥
(𝑥, 𝑦, 𝑡)] (𝑞𝑥, 𝑞𝑦)

= −2𝜋𝑞𝑥𝐻[𝑔(𝑥, 𝑦, 𝑡)](−𝑞𝑥, 𝑞𝑦)𝐻 [
𝜕2𝑔

𝜕𝑥2
(𝑥, 𝑦, 𝑡)] (𝑞𝑥, 𝑞𝑦)

= −4𝜋2𝑞𝑥
2𝐻[𝑔(𝑥, 𝑦, 𝑡)](𝑞𝑥, 𝑞𝑦) 

To avoid redundancy, only the transformation of partial derivatives concerning one variable 

are presented. Here 𝑁𝑥 and 𝑁𝑦 are the number of spectral modes or the number of grids along 

𝑥 and 𝑦 axes. 𝑞𝑥 and 𝑞𝑦 are the variables of the spectral domain, and 𝑥𝑖 = 2𝜋𝑖/𝑁𝑥 and 𝑦𝑗 =

2𝜋𝑗/𝑁𝑦. The Hartley transform of a function is going to be shown with a tilde sign. Thus the 

system of equations and the corresponding initial condition defined in A10 and A11 will be 

transformed into A13 and A14, respectively: 

ω̃ = 𝐻 [(𝑅𝛁C′ + 𝑅
𝜕𝐶̅

𝜕𝑥
𝐢 + 𝛁𝑓) . (𝛁𝜓)] − 2𝜋𝑅𝑞𝑦𝐶 ′̃(𝑞𝑥, −𝑞𝑦)

− 2𝜋𝑅𝑞𝑦𝑓(𝑞𝑥, −𝑞𝑦) 

�̃� = 4𝜋2(𝑞𝑥
2 + 𝑞𝑦

2)�̃� 

𝜕𝐶′̃

𝜕𝑡
+ 𝐻[𝒖. 𝛁𝐶′ + 𝒖. 𝛁𝐶̅] = −4𝜋2(𝑞𝑥

2 + 𝑞𝑦
2)𝐶′̃ 

(A 13) 

(�̃�, 𝐶′̃)(𝑞𝑥, 𝑞𝑦, 𝑡0)  = (0,0) (A 14) 

Note that the boundary conditions are no longer required in the spectral domain as the spatial 

derivatives are transformed. The nonlinear terms need to be calculated in the real domain and 

then transformed to Hartley space. 

 


