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Abstract 

The aim of the present paper is to analytically study the nonlinear forced vibration of a rectangular 

plate floating on the fluid by Modified Multiple Time Scales method for the first time. It is assumed 

that the fluid is stationary, incompressible, non-viscous, and non-rotational, and the plate is subjected 

to transversal excitation. The boundary condition is considered to be simply supported. Using von 
Karman nonlinear strain displacement relationships, the extended Hamilton principle, and FSTD 

plate theory, the partial differential equations of motion are derived. The fluid is mathematically 

modeled by Bernoulli equation and the velocity potential function. Galerkin method is then applied 
for converting the nonlinear partial differential equations into time-dependent nonlinear ordinary 

differential equations. The resulted equations are solved analytically by the Modified Multiple Scales 

Method, thereafter. Despite the large number of derivatives and calculations of the conventional 

multiple scale method, this approach is very simple and straightforward. The results reveal an 
excellent agreement with the traditional Multiple Scales method results and existing studies, and are 

more accurate than other available results. The effect of the presence of fluid near the plate on natural 

frequency and amplitude of vibration of plate are studied. The effects of some key parameters of the 
system are also examined. 

Keywords: Modified Multiple Scales Method, Multiple Scales method, Nonlinear vibration, 

nonlinear forced vibration of plate floating on the fluid. 

 

Introduction  

Fluid-structure interference problems cover a wide range of engineering applications including 

shipbuilding, offshore structures, coastal structures, dams, and submarines. The presence of 

fluid close to a plate significantly increases the kinetic energy of the system and thus reduces 

the values of the natural frequencies of the plate in contact with the fluid, compared to a plate 

vibrating in a vacuum. Hence, plates in contact with fluid have been extensively concerned by 

many researchers.  

Many researchers have studied nonlinear responses of a plate. Some of the most recent 

studies on nonlinear vibration of plate in this paragraph mentioned. Adeli et al. [1], investigated 

free torsional vibration behavior of a nonlinear nano-cone, based on the nonlocal strain gradient 

elasticity theory. Ajiri et al. [2] investigated the nonstationary oscillation, secondary resonance 

and nonlinear dynamic behavior of viscoelastic nanoplates with linear damping based on the 

modified strain gradient theory extended for viscoelastic materials. Also Ajiri and Seyed 

Fakhrabadi [3], developed a new viscoelastic size-depended model based on a modified couple 

stress theory and the for nonlinear viscoelastic material in order to vibration analysis of a 

                                                
* Corresponding Author. Email Address: frabiee@mail.kntu.ac.ir  

mailto:frabiee@mail.kntu.ac.ir


434  Rabiee and Jafari 

viscoelastic nanoplate. Mohamadi et al. [4] studied nonlinear free and forced vibration behavior 

of a porous functionally graded Euler-Bernoulli nanobeam subjected to mechanical and 

electrical loads based on the nonlocal strain gradient elasticity theory.  

Numerous studies have been performed on plates in contact with fluid, many of which 

investigated the vertical plate in contact with the fluid. Zhou and Cheung [5] considered the 

vibration of vertical rectangular plate in contact with water analytically. Khorshidi and Farhadi 

[6] studied the free vibrations of a laminated composite rectangular plate partially in contact 

with the fluid. They extracted the natural frequency of the plate coupled to the sloshing fluid 

modes using the Rayleigh Ritz method.  

Many studies have been also performed on the analysis of free and forced vibrations of plates 

partially or completely immersed in the liquid. Robinson and palmer [7] presented modal 

analysis of a thin horizontal plate floating on liquid. They considered the plate-fluid interaction 

by adding a mass due to fluid. Kerboua et al. [8] investigated a rectangular plate immersed in 

the fluid and floating on the fluid. They modeled the interaction of the fluid-structure by an 

added mass. Also, they developed the mathematical model of the plate using a combination of 

the Finite Element method and Sanders’ shell theory. Hosseini Hashemi et al. [9] presented an 

exact-closed solution for free vibration of a moderately thick plate submerged in fluid or 

floating on fluid. They obtained equations of motion of the plate based on Mindlin plate theory. 

Using modal analysis expansion method, Jafari and Rahmani [10] presented natural frequency 

and mode shapes of a rectangular CLPT composite plate floating on the fluid. They used modal 

expansion method for the forced vibration analysis for the first time here. In their paper they 

considered limited domains for the fluid. Yousefzadeh et al. [11] investigated vibration of thick 

rectangular functionally graded plate floating on the fluid numerically. They derived governing 

equations of motion based on the first order shear deformation theory. Thinh et al. [12] studied 

free vibration of functionally graded rectangular plate submerged horizontally in fluid. They 

presented Navier’s solution for solving their obtained equations of plate.  

Very few researchers have worked on the nonlinear vibrations of the horizontal plate in 

contact with the fluid. A.A. Bukatov and A.A. Bukatov [13] used Multi Scale method to solve 

nonlinear free vibration equations of thin plate floating on incompressible fluid. They 

considered a traveling periodic wave of finite amplitude in their paper. Soni et al. [14] analyzed 

vibration of partially cracked plate submerged in fluid. They used classical plate theory for 

deriving governing equation. They modeled the fluid based on velocity potential and 

Bernoulli’s equation and considered the geometric nonlinearity due to in-plane forces to be 

extracted from the equations. Finally, an analytical solution was applied to solve the governing 

equations of motion for different boundary conditions. Hashemi and jafari [15] investigated 

nonlinear free vibration of FG plate in contact with fluid. They used von Karman nonlinear 

strain displacement and FSTD theory to derive equations of motion and then solved these 

equations by Lindstedt-Poincare method. 

Due to the computational difficulties of the traditional perturbation methods and since their 

application is often limited to the cases where small parameters are involved, other approaches 

have been considered by some of the researchers. Modified Lindstedt Poincare (MLP) method 

was applied by He [16] for both small and large parameters. Multiple Scales Lindstedt-Poincare 

method was used by Pakdemirli et al. [17] for the first time for analyzing a forced vibration 

problem. A new approach was proposed by Hai-En Du et al. [18] for improving the solutions 

to strongly nonlinear systems from perturbation methods. The nonlinear free vibration of a 

simply supported FG rectangular plate was analytically studied by S. Hashemi and A.A. Jafari 

[19] from Modified Lindstedt Poincare (MLP) method, for the first time. M. A. Razzak et al. 

[20] used the Modified Multiple Scale (MMTS) method for investigation of the nonlinear 

https://www.sciencedirect.com/topics/engineering/forced-vibration
https://www.sciencedirect.com/topics/engineering/strain-gradient
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forced vibration of systems. While being simple and straightforward, this approach leads to 

results well   compatible with the numerical results and is more accurate than the existing 

solutions.  

The Modified Multiple Scales method is an analytical method that can be considered as closed 

form solution for nonlinear free and forced vibration of plate. The main advantage of the present 

method is that it covers all the cases: weak nonlinearities with small damping effect, weak 

nonlinearities with strong damping effect, and strong nonlinearities with strong damping effect. 

Very recently, using Modified Multiple Scales method, Rabiee and Jafari [21], the nonlinear 

forced vibration of a rectangular plate was analytically investigated for the first time. Their 

research focuses on resonance case with 3:1 internal resonance. Their obtained results were 

compared with both the traditional Multiple Scales method and previous studies, and excellent 

compatibility was observed. 

Based on a review of the literature, very few researchers have analyzed the vibrations of a 

nonlinear plate floating on the fluid analytically. Present paper focuses on nonlinear forced 

vibration of a plate floating on the fluid by a new analytical approach. The plate is subjected to 

transversal harmonic excitation. Based on Hamilton principle and the first order shear 

deformation theory, equations of motion are derived, first.  The fluid is mathematically modeled 

using the Bernoulli equation and the velocity potential function. The Modified Multiple Scales 

method is applied for the first time in this study for solving the nonlinear equations of a plate 

floating on the fluid. The results are then validated in 3 stages. In step one, the linear natural 

frequency obtained from this study is compared with the linear frequency from previous works, 

and a good agreement is noted. In the next step, the first five frequencies of the wet plate are 

obtained from the presented formulation and the results are compared with the existing studies. 

And in step 3, the transverse displacement of the dry plate is validated with Runge Kutta 

method. Finally, effects of some key parameter on the results are investigated and presented. 

Geometry of the problem 

A rectangular simply supported plate floating on the fluid is concerned, as shown in Figure1. 

The mid plane is selected as the origin of the Cartesian coordinate system.  

 

 

 

 Figure 1. The geometry of the problem  
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Equations 

All equations must be written using Times New Roman font and 10pt size. Number all 

equations sequentially. Each equation number should be right justified written in parentheses. 

Formulation Of The Plate 

Based on the FSTD theory of the plate for the large deflections, the displacement field of the 

plate is considered to be as follows [22]: 

0( , , , ) ( , , ) ( , , ),u x y z t u x y t z x y t 
 

(1) 

0( , , , ) ( , , ) ( , , ),v x y z t v x y t z x y t 
 

(2) 

0( , , , ) ( , , ).w x y z t w x y z
 

(3) 

where u , v , and w  are the displacements in x, y, z directions,  respectively, 0u , 0v , and 0w  are 

the displacements of the origin, and ,   are rotations about y and x axes, respectively. Due 

to small thickness of the plate,  0 0,u v  are assumed to be zero, 

Von Karman nonlinear strain displacement relationships are written as [15]: 

 
2

0 , , )( , , )
0.5 ,xx

w x y tx y t
z

x x




 
   

  
 (4-a) 

 
2

0 , , )( , , )
0.5 ,yy

w x y tx y t
z

y y




 
   

  
 (4-b) 

   0 0, , ) , , )( , , ) ( , , )
,xy

w x y t w x y tx y t x y t
z

y x x y

 


   
   

    
 (4-c) 

 0 , , )
( , , ),xz

w x y t
x y t

x
 


 


 (4-d) 

 0 , , )
( , , ).

( , , )
yz

w x y t
x y t

y x y t
 


 


 (4-e) 

The extended Hamilton principle for plates in contact with fluid is [23]:  

 0 Plate Fluid ncT T W dt        (5) 

Where, body forces are neglected. ncW , plateT , fluidT , and   are the non-conservative energy, 

kinetic energy of the plate, kinetic energy of the fluid, and elastic energy of plate respectively, 

and   is the variation operator. ncW , plateT and  are found from [23]: 

 p nf nfnf

T T T T
c u v k k

x y x x x y


         
      

         
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plate

A z

T D DdzdA     
 

(6) 

 _ _ cosnc Nc Q Nc damping z

A z A

w
W W W Q t wdzdA c wdA

t
    


     

  
 

(7) 

 11 11 22 22 33 33 23 23 13 13 12 12

A z

dz dA                   
 

(8) 

In which, A  is the un-deformed area of the reference plane,  is the mass density , D  is the 

displacement vector of an arbitrary point of the subject differential plate element , ij and ij

are the Jaumann stresses and strains, respectively, Q  is the external force vector, and c is the 

damper coefficient. According to [23]: 

   1 2 3D z j z j w j       (9) 

1.1.   Formulation of the Fluid 

The fluid is assumed to be stationary, incompressible, non-viscous, and irrotational. The fluid 

displacement is also considered to be small. f  is the density of fluid, and a, b, and d are the 

length, width, and depth of the fluid’s tank, respectively. According to the assumption, velocity 

potential function of fluid   must satisfy the Laplace equation. In the Cartesian coordinates, 

Laplace equation can be expressed as [9]: 

2 2 2
2

2 2 2
0

x y z

     
    

  
 (10) 

By method of separation of variables, the velocity potential function is obtained as follows: 

( , , , ) ( , , ) ( )x y z t x y t R z   (11) 

Where ( , , )x y t  and ( )R z  are two unknown functions that will be obtained by considering the 

plate-fluid interaction. The kinetic energy of the fluid, FluidT  is [6]: 

 
/2

0 0

1
, , ,

2

a b

fluid f z h

w
T x y z t dydx

t





  

   (12) 

Boundary Conditions and Discretization 

Boundary Condition of the Plate 

Boundary conditions for simply supported plate with movable edges are [15]: 

2 2

0 0
0 2 2

2 2

0 0
0 2 2

0, 0, 0,

0, 0, 0,

w w
w at x a

x y

w w
w at y b

y x

 

 

 
    

 

 
    

 

 (13) 

For a harmonic solution, the following expansions are used [15]: 
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   

   

   

0 ,
1 1

,
1 1

,
1 1

, , sin sin

, , cos sin

, , sin cos

M N

m n
m n

M N

m n
m n

M N

m n
m n

m x n y
w x y t W t

a b

m x n y
x y t A t

a b

m x n y
x y t B t

a b

 

 


 


 

 

 

   
    

   

   
    

   

   
    

   







 (14) 

1.2.   Boundary Condition of the  Fluid 

At the plate-fluid interaction, compatibility condition of the plate can be stated as [9]: 

0

/2z h

w

z t




 
 (15) 

From Eq. (15), velocity potential function of the plate is obtained as: 

0

/2

( )
( , , , )

z h

wR z
x y z t

R t

z 


 

 



 
(16) 

 By substituting Eq. (16) into (10): 

2
2

2

( )
( ) 0

R z
R z

z



 


 (17) 

 Where   is independent of z and is found in the next Section, after the mode definition. From 

Eq. (17), R(z) is found as follows: 

1 2( ) z zR z Ce C e    (18) 

  Where 1C and 2C  are unknown coefficients and are derived in this Section. Therefore, by 

substituting Eq. (18) into (16): 

 
01 2

/2 /2

1 2

( , , , )
z z

h h

wC e C e
x y z t

tC e C e

 

 






 


 (19) 

   Boundary condition at the bottom of the tank is [9]: 

/2

0
z d hz  





 (20) 

  By substituting (20) in (19) 

 

  

2( /2)

0

2 /2 /2
( , , , )

d h z z

d h h

we e
x y z t

te e

 

 

  




 


 (21) 

  The variation of the kinetic energy of the fluid can then be expressed as: 

2

1 2

0 0

a b

fluid

w
T M wdydx

t
 


  

   (22) 

   where 1M is obtained as: 
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  
  

2 /2 /2

1 2 /2 /2

d h h

f

d h h

e e
M

e e

 

 













 (23) 

   Considering the first term in the series of Eq. (14)  

2 2

2

a b

 


   
    
   

 (24) 

Equations of Motion of the Plate in Contact with Fluid 

Substituting Equations (6)-(8) and (23) into Equation (5), plate motion equations are obtained:  

 

 
       

 
     

     

     

2 2

0 0

2 2

2

0 0 0

2 222
0 0 0

2

22

0 0 0

2

, , , , , , , ,
1

, , , , , ,
4 1

, , , , , ,2(1 )
3

, , , , , ,
3

w x y t w x y t x y t x y t

x y x y

w x y t w x y t w x y t

x y x y
Eh

w x y t w x y t w x y t

y y x

w x y t w x y t w x y t

x x y

 






    
    

    

  
 

   

            
       

   
  

   

 
 

 

2

2

2

, ,
cos 0plate fluid z

w x y t w
h c q t

t t
 

 
 
 
 
 
 
 
 
 
 
 

   
   
     

  
      

  

 (25) 

 

 
 

 
 

 

 
 

   

 

2 2 2

22 2

22

0

, , , , , ,
2 1 1

, ,
2 0

1 , ,
12 1 12 1 , ,

plate

x y t x y t x y t

x y tE x y x y

tw x y t
x y t

x

  
 





  

   
    

     
   
    

 
 

(26) 

 

 
 

 
 

 

 
 

   

 

2 2 2

22 2

22

0

, , , , , ,
2 1 1

, ,
2 0

1 , ,
12 1 12 1 , ,

plate

x y t x y t x y t

x y ty x y xE

tw x y t
x y t

y

  
 





  

   
    

     
   
      

 

(27) 

 

Considering the first term in the series of Eq. (14) and substituting into Equations (25-27), and 

applying Galerkin method, the non-dimensional nonlinear time dependent equations are found 

as below: 
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11 12 13 14 0C A C W C A C B      

21 22 23 24 0C B C W C A C B     (28) 

  3

31 32 33 34 0plate fluidh W C W C W cW C A C B Q           

Where ijC are defined in APPENDIX A1. Due to small thickness of the plate, in plane inertia 

effects and rotary inertia effects can be neglected [24](i.e. 11 21 0C C  ). Also, by defining the 

non-dimensional parameters:  

w
w

h
  

   
7

2
2

7

12 1ab
Q Q

Eh


   

 
0.52

4

1
,

ab
c c

h E

 
  

   

(29)
 

and dimensionless time, /t th E ab  , the nonlinear time dependent equation in the z 

direction is obtained: 

2 3

0 4 0W W cW b W Q      (30) 

 

Where coefficients are defined in APPENDIX A2. 

Modified Multiple Scale Method 

Forced vibration of damped plate floating on the fluid 

In order to find the natural frequencies and transverse mode shapes of the plate, Equation (30) 

must be solved by either of, numerical, Finite Elements, or analytical solutions such as 

perturbation methods. The Modified Multiple Scales method is applied in current study.  

According to Appendix B, the coefficient 4b  is a small value. Thus, the small non-dimensional 

parameteris defined as: 

 
2

/h a   

And Equation (30) will be become: 

  2 3

0 42 cosW W kW B W p t      (31) 

It should be noted that the bar has been omitted for simplification. In which, due to the 
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presence of, weak nonlinear terms appear in the equation (Appendix B) and 0  is the 

undamped linear natural frequency,  cosQ p t  , 2c k , 0 0   and 0k  . 

For 0 , the two Eigen values of Equations (31) are obtained as [19]: 

1 2,k i k i         (32) 

Where 2 2

0 k    , For 0 : 

     3

1 2 4 cosD D W B W p t       (33) 

 Where: 

 
 2

0 1 2 ... , 0,1,2,...
i

i i

d
D D D D D i

dt
       (34) 

Assuming the first approximate solution of Equation (31) in form of: 

   1 2 1( ) ...W a t a t u t     (35) 

The right hand side term of Equion (31) can be extended as below: 

  23 3 2 2 3

4 4 1 1 2 1 2 2 1 2 1. 3 3 3 ...B W B a a a a a a a a u           (36) 

Substituting Eqs. (35) and (36) into Eq. (31) and applying the separation rule [22], the 

following linear equations is resulted: 

   2

0 2 1 1 4 1 2

1
3

2

i tD D a B a a pe    

 
(37) 

   2

0 1 1 2 4 1 2

1
3

2

i tD D a B a a pe     

 

(38) 

    3 3

0 1 0 2 1 4 1 2D D u B a a    

 
(39) 

The solution of Equation (37) will be [19]: 

 (40) 

Since 0 1 1 1D a a   and 0 2 1 2D a a , Equation (37) leads to: 

  2 2

0 2 1 1 2 4 1 23D l a a B a a 

 
(41) 

And from Equation (41): 

1

4
1

2

3



B
l 

 
(42) 

The equations can then be written as follows: 

   2

1 1 0 1 1 1 1 1 1... .a Da D D a a Da O       

 
(43) 

2

2

1111 aalaD 
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The second and higher orders of  from Equation (43) are neglected and thus:  

 
 

 
  
   

2

1 2

1 1 2 2 22

3
.

2 2

i tp k i eB k i a a
a k i a

k k




 

 
  

        
   

(44) 

Assuming 1 / 2ia e   and
2 / 2ia e  , and separating the imaginary and real parts on 

both sides of Equation (44): 

 
      

  
3

2 2 22

cos sin3

8

p kB k
k

k k

  

 

   
  

    
(45) 

 
      

  
3

2 2 22

sin cos3

8

p kB

k k

  
 

 

    
   

    
(46) 

Where t   For the steady-state 0  and  , then Equations (45)-(46) become 

 
      

  
2

2 2 22

cos sin3

8

p kB k
k

k k

  

 

     
   
      

(47) 

 
      

  
2

2 2 22

sin cos3

8

p kB

k k

  


 

      
    
      

(48) 

By squaring both sides of  Equations  (32)-(33) and adding these equations , frequency 

response equation is given by: 

      

2 2
2 2 2 2

2 2

2 2 2 2 22

3 3

8 8

B k B p
k

k k k




  

       
        
           

(49) 

If   is given,  is obtained from Equation (49), by substituting obtained  into Equation 

(47) or (48) , is obtained. Therefore 1a and 2a  is obtained. From Equation (39) particular 

solution of 1u obtained as follow 

3 3

3 3 ( ) ( )

1 1 1 2 2 1 2
2 2

i t i tu C a C a C e C e         
      

   
 

(50) 

And according to Equation (39), 1C and 2C are 

 1

1 1 2

,
2 3

B
C

  
 

  2

2 2 12 3

B
C

  
 


 

(51) 

Equation (51) can be rewritten as follow 
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1 Re ,iC  2 Re iC   (52) 

Where 

   

   

2 22 2

2 22 2

2 4 6
,

2 2 4 6

k kB
R

k k

 

 

 


   2 2

6
arctan

2 4

k

k






 
 
  

 (53) 

Therefore  

    
3

3( ) 3( )

1
8

i t i t
u R e e

         
 

 

(54) 

Equation (35) can be rewritten as follow 

    
3

cos cos 3
4

W t R t   


      

 

(55) 

As regards that   is a small parameter, by neglecting   

    
3

cos cos 3
4

W t R t  


     

 

(56) 

Free vibration of un-damped plate floating on the fluid 

and Equation (31) will be become: 

 2 3

0 4W W B W   (57) 

In which, due to the presence of, weak nonlinear terms appear in the equation (Appendix 

A) and 0  is the undamped linear natural frequency. 

For 0 , the two Eigen values of Equations (57) are obtained as [19]: 

1 0 2 0,i i       (58) 

For 0 : 

    3

1 2 4D D W B W     (59) 

Assuming the first approximate solution of Equation (57) in form of: 

   1 2 1( ) ...W a t a t u t     (60) 

Substituting Eqs. (36) and (60) into Eq. (58) and applying the separation rule [24], the 

following linear equations is resulted: 
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   2

0 2 1 1 4 1 23D Da B a a   (61) 

   2

0 1 1 2 4 1 23D Da B a a   (62) 

    3 3

0 1 0 2 1 4 1 2D D u B a a      (63) 

In the same approach, 1a  obtained as follows: 

 
24

1 1 1 2

3
.

2

B
a i a a a

i




 
    

 
 (64) 

Assuming 1 / 2ia e   and
2 / 2ia e  , and separating the imaginary and real parts on 

both sides of Equation (64): 

0   (65) 

24
0

0

3

8

B
 




    (66) 

Therefore   is derived as a constant value, and:  

24
0

0

3

8

1
2

B
i t

a e




 
  

 


  (67) 

24
0

0

3

8

2
2

B
i t

a e




 
  

 


  (68) 

From Equation (63), the particular solution of 1u is found as follows: 

2 24 4
0 0

0 0

3 3
3 3

16 163 3

1 1 1 2 2 1 2
2 2

B B
i t i t

u C a C a C e C e
 

 

    
       

   
 

     (69) 

And according to Equation (63), 1C and 2C are: 

   
4 4

1 2

1 1 2 2 2 1

,
2 3 2 3

B B
C C

     
   

 
 (70) 

Therefore,  

2 24 4
0 0

0 0

3 33 3 3
16 163 3 4 4

1 1 1 2 2 2 264 64

B B
i t i tB B

u C a C a e e
 

 

 

    
       

   
 

     (71) 

Equation (60) can be presented in the following form: 

3
2 24 4 4

0 02

0 0

3 3
cos cos 3

16 32 16

B B B
W t t 

  

         
              

      
 (72) 

Nonlinear frequency is then obtained as: 

24
0

0

3

16
NL

B
 




    (73) 
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Validation and Results 

The derived relations in the present study are validated in three steps. First, the natural 

frequency of the simply supported plate is compared with existing researches. Thereafter, the 

first five frequencies of the plate in contact with fluid are validated as the second step, in order 

to verify the accuracy of the fluid formulation. And finally, the solution obtained from this study 

is compared with both the exact solution and current Multiple Scale Method. 

Non-dimensional linear natural frequency of a simply supported isotropic square plate ( 

,380GPaE  3/3800 mKg , mh 1.0 , 20/ ha ) obtained from the proposed approach is 

compared with the published results by Hosseieni [24] and Leissa [25] in Table 1. As can be 

seen, the results show an excellent compatibility. 

 

Table 1. Non dimensional linear natural frequency  for the square plate 

Method Current Study Hosseini Hashemi 

[24] 

Leissa [25] 

 0.01484 0.0148 0.01493 

 

To validate the fluid relations, the first five frequencies of the plate (,) in contact with the 

fluid and in vacuum are compared with Hosseini’s  results in Table 2. The results are in good 

agreement with the results in the referenced article [9]. In Hosseini Hashemi's article, a 

submerged plate in the fluid is considered, where the  parameter is the height of the fluid above 

the plate. 

Table 2.  The first five frequencies of the plate in contact with water  

 In vacuum   

Mode 

(m,n) 

Present 

Study 

Reference 

[9] 

Present 

Study 

Reference 

[9] 

(1,1) 48.63 48.30 41.663 41.429 

(2,1) 77.16 76.33 68.029 64.525 

(3,1) 123.669 121.632 111.734 110.369 

(1,2) 159.984 156.685 146.24 149.690 

(2,2) 186.726 182.338 171.791 171.969 

 

To validate the fluid relations, the first five frequencies of the plate ( / 0.05h a , / 2a b ) 

in contact with the fluid and in vacuum are compared with Hosseini’s  results in Table 2. The 
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results are in good agreement with the results in the referenced article [9]. In Hosseini Hashemi's 

article, a submerged plate in the fluid is considered, where the 1h  parameter is the height of the 

fluid above the plate. 

 

Figure 2.  Non-dimensional transverse displacement of dry plate for Modifed  multiple scales method, multiple scales 
method and runge kutta method 

Transverse non-dimensional displacement of the plate floating on the water ( ,207GPaE 

,/7850 3mKg 3/1000 mkgf  ,05.0 mh  ,1ma  2/ ba ) is shown in Figure 3. A good 

agreement is noticed in this Figure, as well. 

 

Figure 3. Non dimensional transverse displacement of plate floating on the water 

The nonlinear frequency ratio of the simply supported plate ( 207 ,E GPa
37850 / ,Kg m  31000 /f kg m  1 ,a m  / 2a b ) is shown in Figure 4. As can be seen, 
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the nonlinear frequency ratio is increased as the plate thickness increases and it can be 

concluded that thickness has a considerable effect on the ratio of frequency response and natural 

frequency. 

 

Figure 4. Thickness effects on nonlinear frequency ratios for isotropic simply supported plate floating on the water 

The dimensions of the plate have a great effect on the flexibility of the plate and consequently its frequency. 

Figure 5 shows the effect of decreased plate width (b) on the nonlinear frequency ratio of the plate for a constant 

plate length ( ,207GPaE  ,/7850 3mKg ,/1000 3mkgf  ,1ma  mh 05.0 ). 

 

Figure 5. Effects of aspect ratio on nonlinear frequency ratios for isotropic simply supported plate floating on the water 

Figure 6 shows the effect of the presence of fluid near the plate on the dimensionless 

nonlinear frequency for free vibrations of a square plate ( 0.05 ,h m 1 ,a m 207 ,E GPa
37850 /Kg m  ). As can be seen in Figure 6, the contact of the plate with the fluid 

significantly decreases the nonlinear frequency of the plate. Thus, considering an additional 

mass to account for the fluid effect is a good way to simplify the complex fluid equations. 
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Figure 6. Effect of the presence of fluid near the plate on the non-dimensional frequency ratio of the plate 

 

In Figure 7, the frequency response of forced vibration of dry plate and plate floating on the 

water for 
25 /zq N m  and 0/ 2 0.0001C    are shown. The plate properties is 

370 , 2778 /E GPa Kg m  , 0.001h m , 0.6 , 0.3a m b m  . Results obtained from 

Modified multiple scale indicated that presence of fluid close to a plate significantly decreases 

displacement of plate. 

 

Figure 7.  Effects of presence of fluid in frequency response of forced vibration of plate for and  

Figure 8 shows transverse  non-dimensional displacement of the plate subjected to transverse 

harmonic excitation ( 00.8 ). Clearly, in figure 8 indicated that presence of fluid close to 

the plate decrease amplitude of vibration and reduced the natural frequency of plate. 
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Figure 8.  Effects of presence of fluid in transverse displacement of forced vibration of plate for and,  

Conclusion  

The nonlinear vibration of a rectangular plate floating on the fluid investigated. Nonlinear 

partial differential equations of motion are derived based on the first order shear deformation 

theory of plates and von Karman nonlinear strain-displacement relations. The fluid 

mathematical model is created by Bernoulli equation and the velocity potential function. 

According to the boundary conditions of the plate, and from Galerkin method, ordinary 

nonlinear differential equations are obtained. The nonlinear system is analytically solved by the 

Modified Multiple Scale method. The natural frequency and non-linear natural frequency of the 

plate were confirmed in comparison with the previous studies. Also, the non-dimensional 

transverse displacement of the plate in vacuum and in contact with fluid was verified by 

numerical results. The effect of the presence of fluid near the plate on the natural frequency of 

the plate and the amplitude of forced vibrations of the sheet compared to the plate in vacuum is 

also shown. 

Clearly, it is indicated that the Modified Multiple Scales method is very simple and leads to 

better results compared with other available ones and thus, can be used as a powerful means for 

solving inhomogeneous nonlinear equations such as forced vibration equations of structures.  
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