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Abstract 

Nowadays, In the present study, time-dependent thermo-elastic creep behavior and life assessment of 
rotating thick-walled cylindrical shells made of 304L austenitic stainless steel (304L SS) are 

investigated based on the third-order shear deformation theory (TSDT). Loading is composed of a 

uniform internal pressure, distributed temperature field, and a centrifugal body force due to rotating 
speed. Norton’s law is utilized as the material creep constitutive model. Using the minimum total 

potential energy principle, a system of differential equations in terms of displacement and boundary 

conditions are derived. Then, the governing equations are solved with an analytical approach, which 

leads to an accurate solution. Subsequently, an iterative procedure is also proposed to determine the 
stresses and deformations at different creep times. Larson-Miller Parameter (LMP) and Robinson's 

linear life fraction damage rule are employed for assessing the creep damages and the remaining life of 

cylindrical shells. To the best of the researcher’s knowledge, in the previous studies, there is no study 
carried out into third-order shear deformation theory for thermo-elastic creep analysis of cylinders. To 

validate the accuracy of the suggested method based on TSDT, a comparison among analytical results 

and those of the finite element method (FEM) is performed and very good agreement is found. The 
results indicate that the present analysis is accurate and computationally efficient. 

Keywords: Creep, Life assessment, Rotating thick cylindrical shell, 304L austenitic stainless steel, 

Third-order shear deformation theory. 

  

Introduction 
 

Recently, the shells have attracted considerable attention from the research community due 

to high structural efficiency and wide applications in aerospace vehicles, aircraft industries, 

power generation, pressure vessels, nuclear reactors, petrochemical plants, submarines, 

buildings, and many other engineering applications [1-28]. In most of these applications, the 

shells are worked at high temperatures and under mechanical loading conditions. Due to long 

operational time, working in these situations lead to more thermo-mechanical stresses. 

Therefore, creep can impose the irreversible damages to structures and the creep analysis of 

these structures is a crucial necessity in the study of the above-mentioned applications. 

Failures of these components are always catastrophic, then, it is very important to the 

assessment of life in these structures. As a result, the creep behavior in these structures should 

be considered to stress analysis [29-37]. Choosing appropriate material of the structure is an 

important problem before performing the stress analysis. 304L austenitic stainless steel (304L 

SS) due to its excellent creep resistance has long creep life-time and can be utilized 

extensively in high-temperature applications [38]. For creep analysis, selecting the creep 

constitutive equations to model the creep behavior of the materials are needed and very 

important. It is worth noting that Norton’s law is very popular because it is an easy and 

convenient model to use and the results obtained from this creep constitutive model are 
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accurate and reasonable and it is one of the most important and widespread creep constitutive 

models to estimate the failure of structures [39-44]. Many researchers have worked on the 

creep analysis of components under thermo-elastic loadings which some of the relevant 

studies will be introduced [45-48]. Considering the presence of residual stress, Singh and 

Gupta [49] analyzed the problem of the steady-state creep response of a thick-walled cylinder 

made of functionally graded material (FGM) subjected to internal pressure via Hoffman's 

yield criterion. Nejad et al. [50] studied the steady-state creep behavior of rotating FGM 

thick-walled cylinders subjected to internal pressure, in which Norton’s law was used to 

estimate material creep behavior. Using a semi-analytical approach, time-dependent creep 

analysis of FGM hollow cylinder operating under non-axisymmetric two-dimensional thermo-

mechanical loadings was considered by Arefi and Loghman [51]. Moradi and Loghman [52] 

have used Bailey-Norton creep constitutive model to analyze the nonlinear creep response of 

a thick-walled cylinder made of stainless steel 316 under internal pressure and non-

axisymmetric field by using a semi-analytical method. 

In order to creep analysis, the classical theory of plane elasticity (PE) has been used in all 

the studies cited above, however, shear deformation theory (SDT) has not been considered for 

any of the mentioned solutions. During the last years, there have been numerous studies on 

the analysis of structures using SDT [53-63]. Shear deformation theory is a suitable theory to 

calculate stresses and displacements in axisymmetric thick shells. Although classical theory 

gives reasonable and acceptable results for thin shells, it is not an appropriate theory for thick 

shells [64, 65]. To take into account the effects of transverse shear deformations and rotary 

inertia, use of an appropriate shell theory like SDT in the thermo-elastic analysis of thick-

walled shells for increasing the reliability of analysis becomes mandatory [66-73]. Stress 

analysis of thick cylindrical and conical shells made of homogeneous and functionally graded 

materials (FGMs) was studied extensively based on the SDT. Using the third-order shear 

deformation theory (TSDT), the stresses and displacements in the thick conical shell with 

variable thickness subjected to non-uniform internal pressure were investigated by Eipakchi 

[74]. Ghannad and Gharooni [75] carried out an elastic analysis of FG thick hollow 

cylindrical shells under internal and external pressure by applying an analytical approach 

based on the TSDT. Using the TSDT and analytical approach, Gharooni et al.[76] studied the 

thermo-elastic analysis of FGM thick cylindrical shells under internal pressure and thermal 

loading. Jabbari et al.[77] have used a semi-analytical approach based on the first-order shear 

deformation theory (FSDT) to analyze the thermo-elastic analysis of rotating thick truncated 

conical shells with variable thickness operating under internal and external pressures. Based 

on the FSDT, Kashkoli et al. [78, 79] proposed a semi-analytical method to investigate 

thermo-elastic creep stresses for life assessment of thick cylindrical and truncated conical 

shells made of 304 L austenitic stainless steel subjected to internal pressure. In other 

researches, Kashkoli et al.[80, 81] performed thermo-mechanical creep response of thick 

cylinders made of functionally graded material with constant and variable thicknesses under 

internal pressure using FSDT. Studies showed that the FSDT is acceptable theory to 

determine the radial displacement, radial stress, and circumferential stress, but the axial and 

von Mises stresses and axial displacement resulted from FSDT are considerably different than 

those from TSDT and FEM solution. Thus, FSDT is not very suitable and to overcome the 

above inconsistencies, an increase in the order of shear deformation theory is necessary. To 

the best of the author’s knowledge, there have been no works that investigate the creep 

response of cylindrical shells based on TSDT. 

In this study, we focus on the thermo-elastic creep response of a rotating thick-walled 

cylinder made of 304L austenitic stainless steel subjected to internal pressure. The governing 

formulations are derived using the minimum total potential energy principle based on the 
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TSDT. An analytical technique and iterative method are employed to solve the resulting 

equations and determine the stresses at different creep times. Robinson's linear life fraction 

damage rule is employed to obtain the creep damages and LMP is proposed to estimate the 

creep life of the cylinder. present research aim is to investigate the creep response of a 

rotating thick-walled cylinder by using accurate theory and simple analytical method. The 

results of the present study are also compared with those of FEM and there will be a good 

agreement between the results of the present study based on the TSDT and FEM results.  The 

results confirm that the analytical method based on TSDT gives the most accurate results for 

radial and axial displacements, radial, circumferential and axial stresses. 

 

Problem formulation 
 

Thermo-elastic analysis 
First, an analytical method was performed to obtain the thermal stresses of a thick 

cylindrical shell. A clamped-clamped thick-walled cylinder with an inner radius ir , outer 

radius or , constant thickness h and length L is illustrated in Fig. 1. The cylinder is subjected 

to an inertia body force due to rotation of the cylinder with a constant angular speed and 

uniform internal pressure, and temperature field. 

 

Figure 1. Cross section of the thick cylinder with clamped-clamped ends.  

As Fig. 1 indicates, the location of a typical point m can be determined using the following 

equation: 

  ,  1

0
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  (1) 

where R , z , r and x are the middle surface radius, thickness variable, the radius, and the 

vertical coordinate, respectively. The inner and outer radius of the cylinder is also written as: 
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  (2) 

The displacement field is assumed as a polynomial of a variable z through the thickness 

based on the shear deformation theory. The approximate solution will be improved as the 
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number of terms in the polynomial function increase. In this study, for the displacement field, 

the third-order approximation is used. The general axisymmetric displacement field could be 

expressed as follows: 
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in which xU ,U  and zU are axial, circumferential, and radial displacement components 

respectively. tu  and tw are unknown functions to determine the displacement field. The linear 

relations between the strain and the displacement components in the cylindrical coordinate 

system based on kinetic relations are expressed as: 
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  (4) 

According to the linear constitutive thermos-elastic equations, the thermal stresses of 

homogenous and isotropic materials for an axisymmetric condition are also written as: 
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Here E ,  and  are the modulus of elasticity, Poisson’s ratio, and thermal expansion 

coefficient, i , i and 
c

i  represent the stresses, strains, and creep strains in the axial ( )x , 

circumferential ( ) , and radial ( )z directions, xz and xz are the shear stress and shear strain 

and  T is the temperature distribution, respectively. The stress resultants are expressed as 

follows: 
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In this study, the minimum total potential energy principle can be employed to derive the 

governing equations and boundary conditions as:  

U W    (7) 

where U and W represent the total strain energy and the total virtual work, respectively. 
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The strain energy of the elastic body and the external work are given by:  

 

 
1

2

V

x x z z xz xz

U U dV

dV rdrd dx R z dxd dz

U  

 

       





 



  

    




  (8) 

 

   

 2

. .

2

.

.

sf bf

s V

i

sf z

bf z

W f u dS f u dV

h
dS rd dx R d dx

f u PU

f u R z U

 



  



       





 

 

  (9) 

where    is density and   is angular speed, which is assumed to be constant. Body force 

bff due to rotation of the cylinder and surface force sff due to internal pressure have been 

assumed. The variation of the strain energy becomes: 
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The variation of the virtual work will be: 
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By Substituting Eqs. (4)–(6) into Eq. (7), integrating by parts, and then setting each of the 

coefficients of iu  and iw equal to zero, we obtain the following equations: 
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In addition, the boundary conditions are as: 
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It should be noted that Eq. (14) is a set of differential equations in terms of the forces and 

moments that theses equations are equilibrium governing equations based on the TSDT and 

Eq. (15) represents the boundary conditions at the two ends of the cylinder. In order to solve 

Eq. (14), forces, and moments need to be obtained in terms of the displacement components.  

Substituting the stress components of Eq. (5) into Eq. (6) and considering Eqs. (3)– (4), the 

stress resultants could be derived as follows: 
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The coefficients j , j , j and  ,L j are given in Appendix A. Substituting the stress 

resultants of Eq. (16) into Eq. (14) leads to the following equilibrium equations as a function 

of displacement components in the matrix form as: 
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Eq. (17) is a set of eight linear non-homogeneous equations. Since matric  3A is 

irreversible and it’s reverse will be used for solving the governing differential equations, the 

first equation in the set of Eq. (14) is integrated as: 
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In Eq. (17), It can be observed that that 0u does not exist, but 0du
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Using the mentioned changes, Eq. (17) can be written as: 
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The coefficients matrices  
8 8iB


, and force vector  F  are given in  Appendix A. 

1.1.1.   Thermo-elastic solution  

In order to obtain the differential equations for thermo-elastic analysis, creep strains
c

x , 
c
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and 
c

z are ignored. Hence, deleting the creep strains from Eq. (20), and defining the 

differential operator ( )P D , the governing equations for thick cylinders are derived. 
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It is noted that the total solution of Eq.(22) which contains the general solution for the 

homogeneous case  
h

y  and particular solution  
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Eq. (24) is substituted into Eq. (21): 
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In order to obtain the eigenvalues of Eq. (25), it is necessary that the determinant of 

coefficients is considered zero as: 
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The result of the determinant above is a sixteen-order polynomial, which is a function of 

m , the solution of which is a sixteen eigenvalue im . The eigenvalues are eight pairs of the 

conjugated root where a pair of the roots is zero. To derive the eigenvectors associated with 

the obtained eigenvalues, the eigenvalues are substituted into Eq. (25). Therefore, the 

homogeneous solution could be written as follows: 

   
14

1

im x

ih i
i

y C V e


   (27) 

The particular solution may be obtained as: 

     
1

3p
y B F


   (28) 

Therefore, the total solution is expressed as: 

       
14

1

3
1

im x

i i
i

y C V e B F




    (29) 

 

Suppose that two ends of the cylinder are clamped-clamped. Thus, the boundary 

conditions for the mentioned cylinder are: 

0 1 2 3 0 1 2 3

0 1 2 3 0 1 2 3

0     0

    0

x u u u u w w w w

x L u u u u w w w w

         


         
  (30) 

Therefore: 

0,

( , ) 0

0( , )

x

z x L

U x z

U x z


   
   
  

  (31) 

Note that the problem consists of 16 unknown constants  including 0C (Eq. (18)), 1C  to 

14C (Eq. (29)), and 15C (Eq. (19)). Imposing the boundary conditions 16 linear algebraic 

equations are obtained. Solving the linear algebraic equations, 16 unknown constants can be 

determined. 

Heat conduction analysis 

In this study, the one-dimensional heat conduction equation in the cylinder, because of the 

steady-state and the heat generation absence assumptions, is expressed as: 

0
d dT

Kr
dr dr

 
 

 
  (32) 

r R z   is substituted into Eq. (32) as: 

  0
d dT

K R z
dz dz

 
  

 
  (33) 

Here, K denotes the thermal conduction coefficient. The distributed temperature field is 

obtained by solving Eq. (33) as follows: 

 1 2 ref

dz
T g g T

K R z
  

   (34) 
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In which 1g  and 2g are integration constants which are determined using boundary 

condition and refT is the reference temperature. By assuming 
0refT T , and applying the 

boundary conditions ( )i iT r r T  , and ( )o oT r r T  , we obtain the temperature gradient 

distribution as follows: 

 
ln

2
1

2
ln

2

o i

R z

R h
T T T

R h

R h

  
  

    
  
  

  

  (35) 

Governing equations for creep 

For a thick cylindrical shell with creep behavior, the relations between strain rates and the 

displacement rates can be written as [78, 79]: 

 
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











    

     
   

  (36) 

 

Note that 
( )

( )
d

dt
 . The linear stress rates-strain rates relations can be expressed as 

follows: 

1

1

1

1 2

2

c

x xx

c

c
z z z

xz xz

E

E

  

    

      

    


  

     
                    


 
    

  (37) 

where
i

 ,
i

 and 
c

i denote the stresses, strains, and creep strains rate in the axial ( )x , 

circumferential ( ) , and radial ( )z directions, also 
xz

 and xz are the shear stress and shear 

strain rate, respectively. According to Norton’s law: 
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 1
2 1 1

1 2 1
2

1 1 2

c

x xn
c e

c
zz

A
 

 


 




     
          
        

  (38) 

where: 

     
2 2 2 21

6
2

e x x z z xz                 (39) 

Here, A and n  are material constants for creep, and e  is the effective stress. Finally, 

assuming the angular speed and the pressure to be constant respect to time, the following 

equations of equilibrium considering Eqs. (14), for the creep problem are obtained as: 

 

 

( ) ( 1)

( ) ( 1) ( )

0

0            0,1,2,3

i i
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d
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dx

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


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
    


  (40) 

In which: 
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
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
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   
   

    
   

     

   (41) 

 

It should be noted the temperature field is steady and its derivative with respect to time is 

zero. Thus, Substituting Eqs. (37) into Eqs. (41) and then into Eqs. (40) leads to the following 

set of differential equations in terms of displacement rates: 

            

   

2

1 2 32

0 1 2 3 0 1 2 3

c

T

d d
A y A y A y F

dx dx

y u u u u w w w w


  


 

  (42) 

 

Eq. (42) is a set of eight linear non-homogeneous equations. As stated earlier, since 

matric  3A is irreversible and it’s reverse will be used in the subsequent calculations, Thus, 

the first equation in the set of Eq. (40) is integrated as: 

(0)

0xRN D   (43) 

In Eq. (42), It can be observed that that 0u  does not exist, but 0du

dx
does. If 0du

dx
is defined 

as new parameter  , then we have: 

0 15u dx D    (44) 

Applying the mentioned changes gives a new set of differential equations and boundary 

conditions as follows: 
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            

   

2

1 2 32

1 2 3 0 1 2 3

c

T

d d
B y B y B y F

dx dx

y u u u w w w w


  


 

  (45) 

The force vector  
8 1cF


is listed in Appendix B. 

Creep solution  

The complete solution of Eq. (45) is given as: 

       
14

1

3
1

im x

i ci
i

y D V e B F




    (46) 

The boundary conditions are: 

0 1 2 3 0 1 2 3

0 1 2 3 0 1 2 3

0     0

    0

x u u u u w w w w

x L u u u u w w w w

         


         
  (47) 

The creep problem consists of 16 unknown constants including 0D (Eq. (43)), 1D  to 

14D (Eq.( 46)) , and 15D (Eq. (44)) which can be found from the boundary conditions. An 

iterative numerical method is employed to find a distribution of stresses. When the stress rates 

have been determined, the creep stresses at any time will be obtained iteratively as: 

( ) ( 1) ( ) ( )

1

( )

0

( , ) ( , ) ( , )              , = , ,

                 

i i i i

ij i ij i ij i

i
k

i
k

r t r t r t dt i j x z

t dt

   





  







  (48) 

The stresses at the time 1it  will be employed to obtain ( )( , )i

ij ir t . When the time it is zero, 

the stress distributions in the thermo-elastic state are calculated. 

Creep life assessment 

Several models have been suggested for estimating the creep lifetime, including time-

fraction rule, strain-fraction rule, the reference stress, and skeletal stress method, continuum 

damage model, etc. Each of which has its own strengths and limitations. Experimental 

approaches for assessing the creep lifetime of components are usually time-consuming, 

expensive, and not practical for routine industrial applications. Analytical and numerical 

methods are also time-consuming, expensive, and beyond the usual engineering tasks. Also, 

the results of these methods are not accurate because of the uncertainty involved with material 

data, loading conditions, and constitutive equations. Therefore, relatively simple damage 

accumulation rule is vital for the successful life assessment method that provides reasonable 

and conservative results based on the less than ideal input data. In the industry, the most 

common method to creep damage assessment under variable thermomechanical loading is 

Robinson’s linear life-fraction rule [82-86]. In this method, the fracture under variable load 

and temperatures can be predicted adding the creep life fractions consumed at each condition 

until their sum reaches the value of unity. The calculation of accumulated creep damage is 

carried out at the end of each time increment 0it   using the following equation:  

1

          
in

i

f i
i r

t
D

t


   (49) 



Journal of Computational Applied Mechanics                                                                                              377 

Here, i

fD is creep damage and i

rt denotes the creep fracture time at i th  time increment. 

Based on the rupture criteria,  1i

fD   is used as an approximate value of rupture. The Larson-

Miller parameter is employed to obtain the time to rupture as [78]: 

 10. ( )      L M rP T C log t     (50) 

where T is temperature in Kelvin and rt  denote rupture time in hours. C is a physical 

parameter which the value of 20  is used as accepted value of C  for most engineering 

materials and steels. The use of LMP is easier than other approaches to approximate creep 

fracture data. The variation of LMP versus stress for the 304L SS is demonstrated in Fig. 2. It 

can be observed that the LMP will remain constant for any constant stress level the 

combination of rupture time and test temperature [87]. The remaining life at any point in the 

radial direction of the conical shell can be expressed as: 

 1      i i i

f rRL D t    (51) 

 

 

Figure 2.  Variation of stress versus Larson–Miller parameter for the 304L SS [87]. 

Results and discussion 

In this section, numerical results are computed for predicting creep behavior of thick 

cylindrical shell made of 304L austenitic stainless steel subjected to an internal pressure based 

on the TSDT. The cylindrical shell rotates and has clamped-clamped boundary conditions. 

304L austenitic stainless steel referred to as 304L SS, is chosen as the material to use in high-

temperature applications due to its excellent creep resistance capacity. Using the analytical 

method and programming the Maple software, the results are obtained. The following 

geometrical parameters and material properties for the cylindrical shell are considered [78, 

79]: 

6

5 1
3

40 mm  ,  60 mm  ,  20 mm  ,  1000 mm  

179 GPa  ,  0.3  ,  16.9 10  1 C  ,  16.2 W m C  
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i o

o o

n

r r h L

E K

kg A n
m

 





  

   

    

   

   

Also, the values of the temperature boundary conditions, internal pressure, and angular 

velocity are assumed as follows: 
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625 C  ,  550 C  ,  60 MPa   ,  =500  o o

i o
radT T P

s
      

In order to show the accuracy and efficiency of the proposed solution based on the TSDT, 

the results of the analytical method are also validated and compared with the results which are 

obtained by the finite element method (FEM) model. Ansys is used to model a thick 

cylindrical shell in the FEM analysis. It is interesting to note that, when the number of 

elements in the FEM model is fine, results obtained from the analytical solution based on the 

TSDT are in good agreement with FEM results. A parametric study has been performed and 

the typical results are presented in a non-dimensional form in Figs.3-8.  

 

(a) 

 

(b) 
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(c) 

 

(d) 

Figure 3. Variations of normalized creep displacements and stresses of the cylindrical shell 

across the dimensionless axial direction after 10000hr of creep process at the middle layer. 

 

 

(a) 
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(b) 

 

(c) 

Figure 4. Variation of normalized stresses of the cylindrical shell across the dimensionless 

radial direction after 10000hr of creeping at 
2

Lx   . 

The creep displacements and stresses distributions at the middle layer of the thick cylinder 

after 10000hr of creeping for both FEM method and analytical solution based on TSDT are 

shown in Fig. 3. It can be seen that the results of the analytical approach agree very well with 

the FEM results. It is also found that the TSDT has an acceptable amount of accuracy when 

one wants to obtain radial displacement, axial displacements, radial stress, and circumferential 

stress. This means that TSDT for analyzing thick cylinder is accurate and computationally 

efficient. It is worthwhile to note that at points near the boundaries, the change in the creep 

displacements and stresses pattern is more considerable than that of the cylinder at points 

away from the boundaries. With these results, it can be observed that the absolute maximum 

of radial and axial displacements occurs at points near the boundaries. 

Distributions of radial, circumferential, and axial stresses of the cylinder after 10000hr of 

creeping are demonstrated in Fig. 4. The same as Fig. 3, to demonstrate the validity of the 

present analysis, the results of analytical solution based on TSDT for creep stresses are 

compared with those obtained by FEM. According to Fig. 4, a very good agreement is found. 

It is evident from Figs. 4(a)-4(c) that, the absolute minimum of radial and axial stresses 
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occurs at the outer surface of the cylinder, while the absolute maximum of circumferential 

stress occurs at the outer surface.  

 

(a) 

 

(b) 

 

(c) 

Figure 5.  Variations of normalized radial and axial displacements and radial stress of the 
cylindrical shell across the dimensionless axial direction from initial solution at zero time up 

to 90000hr of creep process. 

Effects of the creep time on the radial displacement, axial displacement and radial stress 

histories from the initial solution at zero time up to 90000hr of creep process with respect to 
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the ratio of x L for middle layer of the cylindrical shell are demonstrated in Fig. 5. As shown 

in Figs. 5(a)-5(c), the absolute value of both radial and axial displacements is increased 

significantly with the increase of the creep time, while the absolute values of radial stress are 

decreased. It can also be observed that there is a considerable change in the radial 

displacement pattern with time during the creep process. 

 

 

(a) 

 

(b) 

Figure 6. (a) Variation of normalized effective stress histories along the dimensionless radial 
direction (b) Effect of internal pressure on normalized effective stress after 50000 hr of 

creeping. 

The effective stress histories up to 50000 hr and the effect of internal pressure on effective 

stress along the dimensionless radial direction are shown in Fig. 6. According to Fig. 6(a), 

The results reveal that the effective stresses at the outer surface of the cylinder are higher than 

those of the cylinder at the inner surface. It is also found that the effective stresses are 

decreased with the increase of the creep time. As Fig. 6(b) shows, the effective stresses are 

increased by increasing the internal pressure. 
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(a) 

 

(b) 

Figure 7. (a) Variation of creep damage along the dimensionless radial direction, (b) Effect of 
internal pressure on creep damage distribution after 50000 hr of creeping. 

 

 

(a) 
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(b) 

Figure 8. (a) Variation of remaining life along the dimensionless radial direction, (b) Effect 
of internal Pressure on remaining life distribution after 50000 hr of creeping. 

 

The creep damage and the effect of internal pressure on the creep damage histories of the 

cylindrical shell with respect to z h  are illustrated in Fig. 7. Also, the remaining life and the 

internal pressure effect on the remaining life of the cylindrical shell across the dimensionless 

radial direction are shown in Fig. 8. As Figs. 7(a) and 8 (a) show, it is observed that maximum 

damages and the minimum remaining life occurs at the inner surface of the cylinder. Figures 

7(b) and 8(b) present the effect of internal pressure on the creep damage and the remaining 

life of the cylindrical shell, respectively. It can be found that increasing the internal pressure 

has led to an increase in the creep damage and leads to reduce the remaining life as expected. 

Moreover, it is worth mentioning that there is a considerable change in creep damage and 

remaining life pattern at the inner surface and outer surface, respectively. 

Conclusions 

In this research, the time-dependent thermo-elastic creep response of a thick cylindrical 

shell made of 304 L SS subjected to the internal pressure and the thermal gradient was studied 

based on the TSDT. Norton’s creep constitutive equation is used to model the creep behavior 

of the material. the governing set of differential equations are derived by applying the 

minimum total potential energy principle and these equations are solved using accurate and 

analytical method. Robinson’s linear life fraction damage rule was used for obtaining the 

creep damage and the assessment of creep remaining life is determined using Larson-Miller 

parameter. To confirm the accuracy of the analytical solution based on TSDT, the results of 

the present work are also compared and validated with FEM results, and good agreement was 

found between the results. The remarkable obtained results in this investigation are as 

follows: 

 The results indicate that the analytical approach based on the TSDT by increasing the 
order of shear deformation theory is a very appropriate theory in thick structural analysis 
to determine the radial and axial displacements and radial, circumferential and axial 
stresses with higher accuracy. It is worth noting that TSDT for analyzing a thick cylinder 
is accurate and computationally efficient. 

 The results also confirm that at points near the boundaries, the change in the creep 
displacements and stresses pattern is more considerable than that of the cylinder at points 
away from the boundaries. 



Journal of Computational Applied Mechanics                                                                                              385 

 It is noted that the absolute minimum of radial and axial stresses occurs at the outer 
surface of the cylinder, while the absolute maximum of circumferential stress occurs at the 
outer surface. 

 The absolute value of both radial and axial displacements is increased with the increase of 
the creep time, while the absolute values of radial stress are decreased. 

 It was concluded that the effective stresses are decreased as the creep time increases. 
 The creep life becomes maximum at the minimum value of applied temperature in the 

outer surface.  
 The creep damages at the inner surface of the cylindrical shell is serious. 
 Furthermore, internal pressure has a great influence on the effective stresses, the creep 

damage, and the remaining life of the cylindrical shell. The effective stresses, as well as 
creep damages, increase by increasing internal pressure while an opposite behavior is 
experienced for the remaining life of cylinder and it decreased. 
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