تعداد نشریات | 161 |
تعداد شمارهها | 6,572 |
تعداد مقالات | 71,005 |
تعداد مشاهده مقاله | 125,494,066 |
تعداد دریافت فایل اصل مقاله | 98,754,612 |
تلفیق مشاهدات رخداد آکولتیشن در توموگرافی ضرایب شکست تر جو با استفاده از مدلهای تابعی سهبعدی و چهاربعدی | ||
فیزیک زمین و فضا | ||
مقاله 2، دوره 48، شماره 1، اردیبهشت 1401، صفحه 13-31 اصل مقاله (3.93 M) | ||
نوع مقاله: مقاله پژوهشی | ||
شناسه دیجیتال (DOI): 10.22059/jesphys.2021.321252.1007308 | ||
نویسندگان | ||
مسعود دهواری1؛ سعید فرزانه* 2؛ محمدعلی شریفی3 | ||
1دانشجوی دکتری، دانشکده مهندسی نقشهبرداری و اطلاعات مکانی، پردیس دانشکدههای فنی، دانشگاه تهران، تهران، ایران | ||
2استادیار، دانشکده مهندسی نقشهبرداری و اطلاعات مکانی، پردیس دانشکدههای فنی، دانشگاه تهران، تهران، ایران | ||
3دانشیار، دانشکده مهندسی نقشهبرداری و اطلاعات مکانی، پردیس دانشکدههای فنی، دانشگاه تهران، تهران، ایران | ||
چکیده | ||
بخارآب یکی از مهمترین شاخصهای جوی است که تعیین دقیق آن به افزایش دقت مدلهای عددی هواشناسی کمک فراوانی میکند. اما تغییرات شدید این پارامتر در مکان و زمان باعث شده است که نتوان مدلی دقیق برای این پارامتر ارائه کرد و درنتیجه مدلهای عددی هواشناسی دقت لازم را در پیشبینی این پارامتر نداشته باشند. امروزه با استفاده از مشاهدات GNSS و بهکارگیری روش توموگرافی میتوان ضرایب شکست تر در هر یک از المانهای حجمی در نظر گرفتهشده را برآورد کرد. اما یکی از پارامترهای تعیینکننده دقت مسائل توموگرافی توزیع سیگنالهای GNSS در داخل شبکه است. استفاده از مشاهدات رخداد آکولتیشن میتواند باعث افزایش تعداد مشاهدات از جنس پارامترهای جوی حتی در نقاطی که مشاهدات ایستگاههای GNSS حضور ندارد، شود. هدف از این تحقیق تلفیق مشاهدات آکولتیشن با مشاهدات GPS بهمنظور بالابردن دقت ضرایب شکست برآورد شده در توموگرافی تابعی تروپوسفر است. بهمنظور برآورد کردن مجهولات مسئله توموگرافی از مدل تابعی با کمک هارمونیکهای کلاهکروی بههمراه توابع متعامد تجربی برای تشکیل مدل سهبعدی استفاده شده است. همچنین از توابع پایه اسپیلاین برای نمایش توزیع ضرایب شکست تر در زمان و تشکیل مدل چهاربعدی بهره گرفتهشده است. منطقه مورد مطالعه، شبکه ایستگاههای دائمی در کالیفرنیا در نظر گرفته شده است. پروفیل ضرایب شکست تر حاصل از توموگرافی در دو اپک زمانی (دو فصل مختلف) محاسبه شدشده و با دادههای رادیوسوند مقایسه میشوند. نتایج نشان میدهد که استفاده از مشاهدات آکولتیشن در کنار مشاهدات زمینی GPS در توموگرافی انجامشده با استفاده از مدلهای تابعی سهبعدی و چهاربعدی میتواند مقدار RMSE پروفیلهای ضرایب شکست تر را تا حدود 8 درصد نسبت به توموگرافی انجامشده فقط با استفاده از مشاهدات GPS بهبود دهد. | ||
کلیدواژهها | ||
هارمونیکهای کلاهکروی؛ رادیوسوند؛ برآورد مؤلفههای واریانس؛ تأخیر تروپوسفری تر؛ توابع اسپیلاین پایه | ||
مراجع | ||
Adavi, Z. and Mashhadi-Hossainali, M., 2014, 4D tomographic reconstruction of the tropospheric wet refractivity using the concept of virtual reference station, case study: northwest of Iran. Meteorology and Atmospheric Physics 126, 193-205. Al-Fanek, O. J. S., 2013, Ionospheric imaging for Canadian polar regions. University of Calgary. Alizadeh, M., 2013, Multi-Dimensional modeling of the ionospheric parameters, using space geodetic techniques. Techn. Univ. Wien. Alizadeh, M., Schuh, H., Todorova, S. and Schmidt, M., 2011, Global ionosphere maps of VTEC from GNSS, satellite altimetry, and Formosat-3/COSMIC data. Journal of Geodesy 85, 975–987. Aster, R., Borchers, B. and Thurber, C., 2005, Parameter estimation and inverse problems: Elsevier Academic. Borchers, CH Thurber–Elsevier-Academic Press, New York, London. Bender, M., Dick, G., Ge, M., Deng, Z., Wickert, J., Kahle, H., Raabe, A. and Tetzlaff, G., 2011, Development of a GNSS water vapour tomography system using algebraic reconstruction techniques. Advances in Space Research 47, 1704-1720. Bender, M., Dick, G., Heise, S., Zus, F., Deng, Z., Shangguan, M., Ramatschi, M. and Wickert, J., 2013, GNSS Water Vapor Tomography. Bender, M. and Raabe, A., 2007, Preconditions to ground based GPS water vapour tomography. Annales geophysicae. pp. 1727-1734. Bevis, M., Businger, S., Herring, T. A., Rocken, C., Anthes, R. A. and Ware, R. H., 1992, GPS meteorology: Remote sensing of atmospheric water vapor using the Global Positioning System. Journal of Geophysical Research: Atmospheres 97, 15787-15801. Bjornsson, H. and Venegas, S., 1997, A manual for EOF and SVD analyses of climatic data. CCGCR Report 97, 112-134. Böhm, J., Heinkelmann, R. and Schuh, H., 2007, Short note: a global model of pressure and temperature for geodetic applications. Journal of Geodesy 81, 679-683. Böhm, J., Niell, A., Tregoning, P. and Schuh, H., 2006, Global Mapping Function (GMF): A new empirical mapping function based on numerical weather model data. Geophysical Research Letters 33. Champollion, C., Masson, F., Bouin, M.-N., Walpersdorf, A., Doerflinger, E., Bock, O. and Van Baelen, J., 2005, GPS water vapour tomography: preliminary results from the ESCOMPTE field experiment. Atmospheric research 74, 253-274. Chen, P., Yao, Y. and Yao, W., 2017, Global ionosphere maps based on GNSS, satellite altimetry, radio occultation and DORIS. GPS solutions 21, 639-650. Dettmering, D., Schmidt, M., Heinkelmann, R. and Seitz, M., 2011, Combination of different space-geodetic observations for regional ionosphere modeling. Journal of Geodesy 85, 989-998. Farzaneh, S. and Forootan, E., 2018, Reconstructing Regional Ionospheric Electron Density: A Combined Spherical Slepian Function and Empirical Orthogonal Function Approach. Surveys in Geophysics 39, 289-309. Flores, A., Ruffini, G. and Rius, A., 2000, 4D tropospheric tomography using GPS slant wet delays. Annales Geophysicae. Springer, 223-234. Forootan, E., 2014, Statistical signal decomposition techniques for analyzing time-variable satellite gravimetry data. Universitäts-und Landesbibliothek Bonn. Haines, G., 1985, Spherical cap harmonic analysis. Journal of Geophysical Research: Solid Earth 90, 12563-12574. Haji-Aghajany, S. and Amerian, Y, 2017, Three dimensional ray tracing technique for tropospheric water vapor tomography using GPS measurements. Journal of Atmospheric and Solar-Terrestrial Physics 164, 81-88. Haji-Aghajany, S., Amerian, Y. and Verhagen, S., 2020a, B-spline function-based approach for GPS tropospheric tomography. GPS Solutions 24, 1-12. Haji-Aghajany, S., Amerian, Y., Verhagen, S., Rohm, W. and Ma, H, 2020b, An optimal troposphere tomography technique using the WRF model outputs and topography of the area. Remote Sensing 12, 1442. Hansen, P. C., 1998, Rank-deficient and discrete ill-posed problems: numerical aspects of linear inversion. SIAM. Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz‐Sabater, J., Nicolas, J., Peubey, C., Radu, R. and Schepers, D., 2020, The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological Society 146, 1999-2049. Hirahara, K., 2000, Local GPS tropospheric tomography. Earth, planets and space 52, 935-939. Koch, K.-R. and Kusche, J., 2002, Regularization of geopotential determination from satellite data by variance components. Journal of Geodesy 76, 259-268. Limberger, M., 2015, Ionosphere modeling from GPS radio occultations and complementary data based on B-splines. Technische Universität München. Liu, Z., 2004, Ionosphere tomographic modeling and applications using Global Positioning System (GPS) measurements. Razin, M. R. G. and Voosoghi, B., 2017, Regional ionosphere modeling using spherical cap harmonics and empirical orthogonal functions over Iran. Acta Geodaetica et Geophysica 52, 19-33. Recommendation, I., 453-9, 2001, The radio refractive index: its formula and refractivity data. Recommendations and Reports of the ITU-R 8, 618-7. Schmidt, M., Dettmering, D., Mößmer, M., Wang, Y. and Zhang, J., 2011, Comparison of spherical harmonic and B spline models for the vertical total electron content. Radio Science 46. Schumaker, L. L. and Traas, C., 1991, Fitting scattered data on spherelike surfaces using tensor products of trigonometric and polynomial splines. Numerische Mathematik 60, 133-144. Sharifi, M.A., Sam-Khaniani, A., Joghataei, M., Schmidt, T., Masoumi, S. and Wickert, J., 2013, Tropopause analysis over the Iranian region using GPS radio occultation data. Advances in Space Research 52, 1700-1707. Subirana, J. S., Hernandez-Pajares, M. and Zornoza, J.e.M.J., 2013, GNSS Data Processing: Fundamentals and Algorithms. European Space Agency. Xia, P., Cai, C. and Liu, Z., 2013, GNSS troposphere tomography based on two-step reconstructions using GPS observations and COSMIC profiles. Annales geophysicae. Copernicus GmbH (Copernicus Publications) on behalf of the European Geosciences Union (EGU). Xu, X., Luo, J. and Shi, C., 2009, Comparison of COSMIC radio occultation refractivity profiles with radiosonde measurements. Advances in Atmospheric Sciences 26, 1137–1145. Zhao, Q., Yao, Y. and Yao, W, 2018, Troposphere water vapour tomography: A horizontal parameterised approach. Remote Sensing 10, 1241. | ||
آمار تعداد مشاهده مقاله: 1,122 تعداد دریافت فایل اصل مقاله: 754 |