
Journal of the Earth and Space Physics, Vol. 47, No. 4, Winter 2022, P. 111-124          (Research) 
 

DOI: 10.22059/JESPHYS.2021.326054.1007332 

 

MLP, Recurrent, Convolutional and LSTM Neural Networks Detect Seismo-TEC 
Anomalies Potentially Related to the Iran Sarpol-e Zahab (Mw=7.3) Earthquake of 12 

November 2017 
 

Akhoondzadeh, M.1*, Hosseiny, B.2 and Ghasemian, N.2 
 

1. Associate Professor, Department of Photogrammetry and Remote Sensing, School of Surveying and Geospatial 
Engineering, College of Engineering, University of Tehran, Tehran, Iran 

2. Ph.D. Student, Department of Photogrammetry and Remote Sensing, School of Surveying and Geospatial Engineering, 
College of Engineering, University of Tehran, Tehran, Iran 

(Received: 27 June 2021, Accepted: 20 Sep 2021) 

 
Abstract 
A strong earthquake (𝐌𝐰 = 𝟕. 𝟑) (34.911 N, 45.959 E, ~19 km depth) occurred on November 12, 
2017, at 18:18:17 UTC (LT=UTC+03:30) in Sarpol-e Zahab, Iran. Six different Neural Network 
(NN) algorithms including Multi-Layer Perceptron (MLP), Recurrent Neural Network (RNN), 
Gated Recurrent Unit (GRU), Convolutional Neural Network (CNN), Long-Short Term Memory 
(LSTM) and CNN-LSTM were implemented to survey the four months of GPS Total Electron 
Content (TEC) measurements during the period of August 01 to November 30, 2017 around the 
epicenter of the mentioned earthquake. By considering the quiet solar-geomagnetic conditions, 
every six methods detect anomalous TEC variations nine days prior to the earthquake. Since time-
series of TEC variations follow a nonlinear and complex behavior, intelligent algorithms such as 
NN can be considered as an appropriate tool for modelling and prediction of TEC time-series. 
Moreover, multi-methods analyses beside the multi precursor’s analyses decrease uncertainty and 
false alarms and consequently lead to confident anomalies. 
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1. Introduction 
Although there are many scientific papers 
indicating the pre-seismic Lithospheric-
Atmospheric-Ionospheric (LAI) anomalous 
variations, it should be noted that the 
statistical analysis is an undeniable part of 
earthquake precursor’s analysis. Since multi-
precursors and multi-predictors analysis are 
appropriate ways to increase the confidence 
of the detected anomalies, intelligent 
algorithms such as Neural Networks (NN) 
enable to model the complexity and non-
linearity of precursor’s time series.  
The ionospheric anomalies may be observed 
in the D, E and F layers, about 1 to 10 days 
before the strong earthquake and may be 
continued a few days after the event (Parrot, 
1995; Liu et al., 2004; Hayakawa and 
Molchanov, 2002; Pulinets and Boyarchuk, 
2004; Freund, 2009; Pulinets and Ouzounov, 
2011; Sorokin and Pokhotelov, 2014; 
Akhoondzadeh et al., 2010; 2018; 2019).  
Currently, thousands of GPS receivers are 
used to monitor the Earth’s surface 
deformations. Total Electron Content (TEC) 
data retrieved from GPS measurements have 
made a considerable contribution to the 

understanding of seismo-ionospheric 
variations. TEC is the integrated number of 
the electrons within the block between the 
satellite and receiver or between two 
satellites. The GPS satellites transmit two 
frequencies of signals (f1=1575.42 MHz and 
f2=1227.60 MHz). The received signals in 
ground stations contain many effects such as 
ionosphere, troposphere, hardware and 
random errors. Ionosphere on the contrary of 
the troposphere is a dispersive medium and 
its effects can be evaluated with 
measurement of the modulations on the 
carrier phases recorded by dual-frequency 
receivers. To study TEC variations, data of 
GIM (Global Ionospheric Map) provided by 
NASA Jet Propulsion Laboratory (JPL) were 
used. The GIM is constructed into 5° × 2.5° 
(Longitude, Latitude) grid with a time 
resolution of two hours. GIM data are 
generated on a daily basis using data from 
about 150 GPS sites of the IGS (International 
Gnss Service) and other institutions. The 
Vertical Total Electron Content (VTEC) is 
modeled in a solar-geomagnetic reference 
frame using a spherical harmonics expansion 
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up to degree and order of 15. Instrumental 
biases, so-called differential P1-P2 code 
biases (DCB), for all GPS satellites and 
ground stations are estimated as constant 
values for each day (Mannucci et al., 1998). 
To convert line-of-sight TEC into vertical 
TEC, a modified single-layer model mapping 
function approximating the JPL extended 
block model mapping function is adopted 
(http://www.gsfc.nasa.gov/). In this research, 
TEC data based on the date and geographic 
location of each earthquake from about six 
weeks before to one week after the main 
event were processed. 
Liu et al. (2004) statistically described the 
temporal parameters of the seismo-
ionospheric precursors detected during 1-5 
days prior to the earthquakes using TEC data 
for 20 major earthquakes in Taiwan. 
Akhoondzadeh (2012) applied four methods 
including mean, median, wavelet transform 
and Kalman filter to detect anomalous TEC 
variations concerning Tohoku earthquake. 
In the border region between Iran and Iraq in 
the vicinity of the Sarpol-e Zahab town 
(34.911 N, 45.959 E, 19.00 km depth) a 
strong earthquake of Mw=7.3 happened at 
18:18:17 UTC (LT=UTC+03:30) on 
November 12, 2017. TEC is the integrated 
number of the electrons within the block 
between the satellite and receiver or between 
two satellites. 
The purpose of this study is to determine 
whether the deep learning neural network 
algorithms used are effective in modeling 
TEC non-linear variations and anomalies 
detection. 
 
2. Methodology  
In this paper, six different NN methods based 
on feedforward and recurrent architectures 
were implemented to observe potentially 
anomalous Total Electron Content (TEC) 
variations around the time and location of 
Sarpol-e Zahab earthquake.  
 
2-1. Multi-Layer Perceptron (MLP) 
Neural Network 
Artificial Neural Networks are a class of 
intelligent systems that can discover patterns 
with a few a priori assumptions and learn any 
complex functional relationship from the data 
to model a phenomenon. An ANN is made 
up by simple processing units, the neurons, 

which are connected in a network by a large 
number of weighted links where the acquired 
knowledge is stored. 
An input xj is transmitted through a 
connection, which multiplies its strength by a 
weight wij to give a product xjwij. This 
product is an argument to a transfer function f, 
which yields an output represented as: yi = 
f(xjwij) where i is an index of neurons in the 
hidden layer and j is an index of an input to 
the neural network. 
The most popular and successful model is the 
feed forward Multi-Layer Perceptron (MLP) 
network. In a MLP, neurons are grouped in 
layers, and only forward connections exist. In 
order to detect anomaly, total available data 
are split into a training set and a test set. The 
training set is used for construction of the 
neural network, whereas the test set is used 
for measuring the predictive error of the 
model. The training process is used 
essentially to find the connection weights of 
the networks. If the prediction error exceeds 
the pre-defined threshold, the measured value 
could be considered as anomaly. 
This type of Neural Network was discussed 
in details in paper of Akhoondzadeh (2013) 
to detect seismo-ionospheric anomalous 
variations induced by the powerful Tohoku 
earthquake of March 11, 2011. 
 
2-2. Convolutional Neural Network (CNN) 
Convolutional neural networks can be 
considered as one type of the neural networks 
applied on grid-like topology data such as 1-
D time-series taking samples at evenly 
spaced time steps intervals. The name 
“convolutional” comes from their 
architecture using one kind of linear 
mathematical operation called convolution. 
These kinds of neural networks use 
convolution rather than matrix multiplication 
used in ordinary neural networks. 
Convolutional Neural Networks (CNN) have 
multiple building blocks that form the CNN 
layers (Khan et al., 2018): 1- pre-processing 
layer; 2- convolutional layers; 3- non-
linearity (detector stage); 4- pooling layers; 
5- fully connected layers. 
 
2-2-1. Pre-processing 
Before importing the input data to the 
network, it is essential to make the data zero-
centered and normalized. Zero centering is 
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accomplished by subtracting the mean of the 
whole data (both train and test) from each 
data point and normalization is achieved by 
dividing the zero-centered data to the 
variance of each dimension. We can show the 
zero centering and normalization equations 
as follows (Khan et al., 2018): 

𝑥ᇱ = 𝑥 − 𝑥ො           𝑥ො =
ଵ

ே
∑ 𝑥௜

ே
௜ୀଵ                     (1) 

𝑥ᇱᇱ =
௫ᇲ

ඨ∑ (ೣ೔షෝೣ)మಿ
೔సభ

ಿషభ

                                           (2) 

2-2-2. Convolutional layer 
Generally, convolution can be defined as an 
operation applied to two functions with real-
valued arguments. The convolution operation 
is usually defined by an asterisk (Equation 3). 

s(t) = (x ∗ w)(t) = ∫ x(a)w(t − a)da       (3) 

The first argument, the function x, is referred 
to as the input and the second, w, is called the 
kernel in a convolutional neural network. 
 
2-2-3. Convolutional Network Architecture 
for Time-Series 
Time-series data can be considered as a 1-D 
array of time steps. Each string of time series 
data can be viewed as a 1×m vector, in which 
m is the number of time steps. We are 
supposed to perform the convolution on the 
time series data using a 1×3 filter. If we do 
not zero-pad the array, the output of the 
convolution operation would be 2 pixels 
smaller than the original input. We move the 
filter with a stride of a one-time unit in the 
horizontal direction to obtain the feature map. 
Applying multiple 1-D convolutions and 
pooling layers gives a CNN the ability to 
model intricate patterns existing in a complex 
and non-linear time series. 
 
2-2-4. Non-linearity 
The output of a convolutional or  
fully connected layer is fed into a non-linear 
or piece-wise linear function. This allows  
the network to learn non-linear mappings. If 
we eliminate this non-linearity, only 
modeling linear functions will be possible. 
Non-linearity also controls the degree of 
response of the neuron to a particular input. 
Non-linearity must be differentiable 
according to the backpropagation learning 
rule.  

2-2-5. Pooling layer 
Pooling operation is applied to the output of 
the non-linearity layer. It represents a 
statistical summary of the data and removes 
the distortions and disturbances in the 
primary feature map and also lessens the 
computational cost of the data. For example, 
max pooling chooses the maximum unit in a 
rectangular neighborhood. Some other 
pooling operations include average pooling, 
L2 norm in a rectangular neighborhood or 
weighted average in a rectangular 
neighborhood with weights based on distance. 
Pooling layers ensure that the learned 
function is invariant to the small changes in 
the input data and thus improve the 
generalization ability of the network. 
 
2-2-6. Fully connected layers 
Fully connected layers are usually placed at 
the end of a CNN. These layers are the same 
as the weight layers of a Multi-Layer 
Perceptron and can be considered as a 
convolutional layer with a filter size of 1×1. 
The input data are multiplied by a weight 
matrix and are added to a bias vector and 
after passing the activation function 
(Equation (4)) the output vector is obtained. 

𝑦 = 𝑓(𝑊்𝑥 + 𝑏)                                         (4) 

Our implemented CNN contained two 1-D 
convolutional layers with 100 1×2 filters and 
one 1×2 1-D Max Pooling layer. In addition, 
a fully connected layer was also devised in 
the last layer. Each row of the state matrix 
was imported to the CNN. Four time-steps 
were considered ([t1, t2, t3, t4]) and our aim 
was to predict the TEC value at one time-step 
ahead. 
 
2-3. Recurrent Neural Network (RNN) 
RNN is a branch of artificial neural networks. 
In contrast with feedforward neural network, 
RNN contains a loop that connects every 
input data to former output of the network. 
Therefore, unlike a feedforward network, the 
recurrent network can process a sequential 
data, such as time-series, by having a 
recurrent hidden state (Williams and Zipser, 
1989).  
By considering x = (x1, x2, . . ., xT) as input 
sequence in period of T, where xi is the data 
at ith time step, an RNN updates its recurrent 
hidden state ht at time step t by 
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ℎ௧ = 𝐻(𝑊௛௛ℎ௧ିଵ + 𝑊௛௫𝑥௧ + 𝑏௛);     𝑡 > 0      (5) 

where the W terms denote weight matrices. 
𝑊௛௛ is the weight matrix connecting the 
hidden state from the previous step to the 
current step, and 𝑊௛௫ is the weight matrix 
connecting the input data in the current step 
to the hidden state. Also, 𝑏௛ is bias term and 
H (.) is the nonlinear activation function. 
Tanh and sometimes ReLU are common 
choices for H(.) in RNNs. Every recurrent 
block can also be estimated the output 𝑦ො௧ that 
is calculated by: 

𝑦ො௧ = 𝑔൫𝑊௬௛ℎ௧ + 𝑏௬൯; 𝑡 > 0                       (6) 

where g(.) is the nonlinear activation function 
depending on the form of the output can be 
logistic sigmoid or Softmax (Graves, 2013).  
 
2-4. Long-Short Term Memory (LSTM) 
Long-Short Term Memory networks are a 
more advanced version of Recurrent Neural 
Networks (RNN). One of the main problems 
of RNNs is that they cannot access 
information from a long range of sequences. 
Also, the exploding and vanishing gradient 
problems due to small or large values of the 
gradient as it cycles around the recurrent 
connections are addressed in LSTMs.  
LSTM architecture contains multiple 
recurrently connected memory blocks. These 
memory blocks have one or more self-
connected cells and three units called input 
gate, output gate and forget gate. The gates 
allow the memory blocks to store and access 
information over long periods of time 
(Graves, 2012).  
Each cell in an LSTM is similar to a vanilla 
recurrent network but has more parameters 
and a set of gating units that control the flow 
of information (Goodfellow et al., 2016). The 
forward equations in an LSTM are presented 
below. At first, the state unit's weight is 
computed using a sigmoid function (h). bf, Uf 

and Wf are the forget gates' bias, recurrent 
weights, and input weights respectively. xt 

and ht are the input and the hidden layer 
vectors at time t. 

ℎ௧.௜
௙

= ℎ(𝑏௜
௙

+ ∑ 𝑈௜.௝
௙

௝ 𝑥௧.௝ + ∑ 𝑊௜.௝
௙

௝ ℎ௧.௝)    (7) 

The LSTM cell state is updated as follows: 
𝑠௧ାଵ.௜ = 
ℎ௧.௜

௙
𝑠௧.௜ℎ௧.௜

௘ 𝜎൫𝑏௜ + ∑ 𝑈௜௝𝑥௧.௝ + ∑ 𝑊௜௝ℎ௧.௝௝௝ ൯  (8) 

In Equation (8), σ denotes the non-linearity 
(tanh or logistic sigmoid). Parameters b, U, 
W are the bias, recurrent weights, and input 
weights to the cell. ℎ௧.௜

௘  is the output of the 
input gate and is computed using a sigmoid 
function (h). 

ℎ௧.௜
௘ = ℎ(𝑏௜

௘ + ∑ 𝑈௜.௝
௘

௝ 𝑥௧.௝ + ∑ 𝑊௜.௝
௘

௝ ℎ௧.௝)    (9) 

We have control over how much of the 
output can be passed out of the cell using a 
sigmoid function.  𝑏௜

௢.  𝑈௜௝
௢ . 𝑊௜௝

௢  are the bias, 
recurrent weights and input weights of the 
output gate. Parameter  ℎ௧.௜

௢  can prevent 
computed output pass the cell ( ℎ௧.௜

௢ =0). 

ℎ௧ାଵ.௜ = g(𝑠௧ାଵ.௜)ℎ௧.௜
௢                                  (10) 

ℎ௧.௜
௢ = ℎ(𝑏௜

௢ + ∑ 𝑈௜௝
௢

௝ 𝑥௧.௝ + ∑ 𝑊௜௝
௢

௝ ℎ௧.௝)    (11) 

LSTM has the ability to preserve the gradient 
information within time. As long as the 
forget gate is open and the input gate is 
closed, the network remembers the 
corresponding input. The sensitivity of the 
output layer can be switched on and off by 
the output gate. Figure 1 shows the state of 
input, output and forget gate as open (‘o’) or 
closed (‘_’) below, up and to the left of the 
hidden layer respectively. 
To predict the TEC values, we designed one 
LSTM layer including 200 neurons and 
sigmoid as the activation function. Also, two 
fully connected layers, one with 100 and the 
other with 1 neuron, were prepared in the last 
two layers. 
 
2-5. Gated Recurrent Unit (GRU) 
GRU is one of the solutions to vanishing 
gradient problem of simple recurrent network 
(according to backpropagation process) 
(Chung et al., 2014). Therefore, it helps for 
better capturing of long-range connections in 
sequential data (Goodfellow et al., 2016).  
GRU contains update gates that determine 
how much of hidden states need to be 
updated. These logistic gates are computed 
by: 

𝑢௧ = 𝜎(𝑊௨௛ℎ௧ିଵ + 𝑊௨௫𝑥௧ + 𝑏௨)             (12) 

where 𝑢௧ denotes update gate and 𝜎(.) 
denotes logistic sigmoid function that 
nonlinearly determines update proportion. 
Therefore, hidden state at each step of GRU 
network can be updated by: 
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ℎ௧ = (1 − 𝑢௧)ℎ௧ିଵ + 𝑢௧ℎ෨௧                       (13) 

where ℎ௧ିଵ is the hidden state at previous 
step and ℎ෨௧ is the candidate hidden state at 
current step that is computed similar to the 
simple RNN hidden state by: 
 

ℎ෨௧ = 
𝐻(𝑊௛௛(𝑟௧⨀ℎ௧ିଵ + 𝑊௛௫𝑥௧ + 𝑏௛); 𝑡 > 0  (14) 
 

where 𝑟௧ denotes reset gates that can be 
computed, similar to update gate, by: 

𝑟௧ = 𝜎(𝑊௥௛ℎ௧ିଵ + 𝑊௥௫𝑥௧) + 𝑏௥              (15) 

 
2-6. CNN-LSTM model 
Figure 1 shows the architecture of the 
proposed CNN-LSTM model. Each row of 
the state matrix containing 1×8 time 
sequences of TEC values, [t1, t2, t3, t4, t5, …, 
t8], was divided into two 1×4 subsequences 
and imported to the proposed network. We 
used two 1-D convolutional layers with 100 
1×2 filters (Huang and Kuo, 2018). Rectified 
Linear Unit (ReLU) was considered as the 
activation. First, the mentioned 1-D 
convolutional layers and a 1-D 1×2 
MaxPooling layer extracted the relevant 
features. Then the extracted feature maps fed 
into an LSTM layer with 200 memory units 
and a ReLU as the activation function to 
predict the TEC value at one time-step ahead. 
All methods mentioned in this section were 
implemented using the Keras library of the 
Python programming language 
(https://keras.io/). Also, it should be noted 
that 65% of the initial data were considered 
as the train and the rest as the test. 
 

3. Observations 
In this study, four time-steps were considered 
([ti-4, ti-3, ti-2, ti-1]) as network input vector, 
and our aim is to predict the TEC value at 
one time-step ahead (ti). All the networks are 
trained in a supervised manner by 65% of the 
time-series. The list of the implemented 
neural networks in this study and their 
corresponding architecture are gathered in 
Table 1. MLP NN contains two hidden layers 
with 100 neurons at each layers and ReLU 
activation function. Convolutional network 
contains two 1-D convolutional layers with 
100 1×2 filters and one 1×2 1-D Max 
Pooling layer. In addition, a fully connected 
layer was also devised in the last layer. Our 
proposed RNN and GRU networks, both, 
contain one layer with 100 memory units and 
fully-connected neurons with tanh activation 
function. Also, in all networks, the output 
layer contains a single neuron that is 
predicted value at t+1. The designed LSTM 
network contains one layer including 200 
memory units and sigmoid as the activation 
function. Also, two fully connected layers 
one with 100 and the other with 1 neuron 
were prepared in the last two layers. We used 
two 1-D convolutional layers with 100 1×2 
filters (Huang and Kuo, 2018). Rectified 
Linear Unit (ReLU) was considered as the 
activation. First, the mentioned 1-D 
convolutional layers and a 1-D 1×2 
MaxPooling layer extracted the relevant 
features. Then, the extracted feature maps fed 
into an LSTM layer with 200 memory units 
and a ReLU as activation function to predict 
the TEC value at one time-step ahead. 

 
Figure 1. The proposed CNN-LSTM neural network. 
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Table 1. The list of the proposed neural networks and their corresponding architecture. 

Proposed Neural 
Network 

Architecture 

MLP 2 hidden layers with 100 neurons at each layer and ReLU activation function 

CNN 
2 one-dimensional conv. layers with 100 1×2 filters and ReLU activation function and a 

Maxpooling unit 
RNN 1 layer with 100 RNN memory units and Tanh activation function 

LSTM 1 layer with 200 LSTM memory units and sigmoid activation function 
GRU 1 layer with 100 memory units and Tanh activation function 

CNN+LSTM 
2 one-dimensional conv. layers with 100 1×2 filters and ReLU activation function and a 

Maxpooling unit, integrated with 1 layer of the LSTM network with 100 memory units and 
ReLU activation function 

 

3-1. Solar and geomagnetic data 
To discriminate the seismo-ionospheric 
perturbations from solar geomagnetic 
disturbances, the indices of Kp, Ap, Dst, and 
F10.7 were checked. The ionospheric effect 
of a geomagnetic storm has a global impact 
being observed all over the world, while the 
seismogenic effect is observed only by 
stations with distance less than 2000 km from 
the potential epicenter. It should be noted that 
an ionospheric storm usually lasts 8 – 48 h 
while the seismoionospheric disturbances 
have a duration of 3 – 4 h, a few days before 
the earthquake. The Kp index monitors the 
planetary activity on a worldwide scale while 
the Dst index records the equatorial ring 
current variations (Pulinets and Boyarchuk, 
2004).  
The detected irregular variations of the 
ionosphere in quiet solar geomagnetic 
conditions (Kp<2.5, Ap<25,  nt 20- Dst ,

 nt 20Dst and F10.7 <120) may be 
associated with seismic activities.  
Figure 2 illustrates the variations of Kp, Ap, 
Dst , and F10.7 indices, during the period of 

September 01 to November 30, 2017 
(http://spider.ngdc.noaa.gov). An asterisk 
indicates the earthquake time. The X-axis 
represents the days relative to the earthquake 
day. The Y-axis represents the universal time 
coordinate.  
The high geomagnetic activities are clearly 
observed on September 08, 2017, when the 
Kp and Ap indices reach the maximum values 
of 8.3 and 236, respectively, between 13:00 
and 15:00 UTC. The unusual variations of 
the Kp and Ap indices are also seen on four 
days before the earthquake between 13:00 
and 15:00 UTC with the values of 5 and 48. 
The irregular Dst values are observed on four 
days before the event when this parameter 
exceeds the lower boundary value (i.e. -20 
nT), reaching the value of -65 nT at 17:00 
UTC. Dst value has a minimum value of -142 
nT during the studied time period on 
September 08, 2017 at 02:00 UTC. The 
F10.7 value gradually increases from about 
September 01 and reaches the maximum 
value of 182.50 SFU on September 04, 2017 
(69 days before the event). 

 

  
(a) (b) 

  
(c) (d) 

Figure 2. a), b), c) and d) show respectively, the variations of Kp, Ap, Dst and solar radio flux (F10.7) indices during the 
period of September 01 to November 30, 2017. An asterisk indicates the earthquake time. The X-axis 
represents the days relative to the Iran earthquake day.  
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3-2. GPS-TEC data 
Figure 3 (a) shows TEC variations derived 
from GIM data and the closest node (35 N, 
45 E) to the epicenter during the period of 
September 01 to November 30, 2017. The 
earthquake time is indicated by an asterisk. 
The x-axis represents the day relative to the 
earthquake day. The y-axis represents the 
time UTC (LT=UTC-5:00). By visual 
inspection and without performing any 
special analysis, unusual TEC values are 
clearly seen around September 8, but as 
mentioned before the geomagnetic indices 
show high activities on this time,  
and therefore, the observed unusual TEC 
variations during this period cannot  
be associated to a seismic event. Figure 3 (b) 
shows variations of the predicted TEC  
values using the MLP neural network 
algorithm. Figure 3 (c) illustrates the 
differences between the normalized and 
predicted TEC values using MLP during the 
period of September 01 to November 30, 
2017. Figure 3 (d) indicates DTEC values 

where 𝐷𝑇𝐸𝐶 =
∆்ா஼ିெ௘ௗ௜௔௡

ூ௡௧௘௥௤௨௔௥௧௜௟௘
, where ∆𝑇𝐸𝐶 is 

the difference between the observed and 
predicted TEC values using MLP method. 
Figure 3(e) shows detected TEC anomalies 
using the MLP method when 5.1DTEC  

and without considering the non-quiet 
conditions of solar and geomagnetic 
activities. To distinguish the likely seismo-
ionospheric perturbations from the solar and 
geomagnetic activities, five conditions 
including Kp<2.5, Ap<25,  nt 20- Dst ,

 nt 20Dst and F10.7 <120 are joined to 
 equation using AND operator. 

Figure 3(e) indicates striking TEC anomalies 
9 and 10 days before the main shock at 09:00 
and 24:00 UTC, when the DTEC reaches the 
values 2.16 and 1.95, respectively. Table 2 
shows a list of the detected anomalies using 
different algorithms. 
Different panels of Figures 4 and 5 are  
the same as Figure 13, but they  
were obtained using RNN and GRU 

algorithms, respectively. Both of these 
algorithms detect clear anomalies 9 and 10 
days prior to the event at 9:00 and 24:00 
UTC (Table 1). 
Figure 6 illustrates the time-series of 
observed (blue curve) and predicted TEC 
(red curve) values using CNN method at 
different times (UTC). The earthquake time 
is indicated by a vertical dotted line. The x-
axis represents the day relative to the 
earthquake day. The y-axis represents the 
TEC values. It is seen that the predicted TEC 
values using CNN method follow the 
observed TEC values with a good 
approximation. 
The differences between the observed  
and predicted TEC values using CNN 
method from September 1 to November 30, 
2017 are seen in Figure 7. The x-axis 
represents the day relative to the earthquake 
day. The y-axis represents the time UTC 
(LT=UTC-5:00).  
Figure 8 shows the DTEC values, where 
DTEC variations obtained by equation of 

𝐷𝑇𝐸𝐶 =
∆்ா஼ିெ௘ௗ௜௔

ூ௡௧௘௥௤௨௔௥௧௜௟௘
, where ∆𝑇𝐸𝐶  is the 

differences between the observed and 
predicted TEC values using CNN method. 
The x-axis represents the day relative to the 
earthquake day. Figure 9 shows the results of 
detected TEC anomalies using CNN method 
when  for the Iran earthquake 

(November 12, 2017) from September 1 to 
November 30, 2017. The earthquake  
time and also clear anomalies on 9 and  
10 days before earthquake after considering 
the quiet solar-geomagnetic conditions 
(Figure 2) are indicated by vertical dotted 
lines. Figures 10 and 11 are the same  
as Figure 9 but were obtained using LSTM 
and CNN-LSTM algorithms, respectively.  
By considering the quiet solar-geomagnetic 
conditions (Kp<2.5, Ap<25,  nt 20- Dst ,

 nt 20Dst and F10.7 <120) all the  
three methods show clear anomalies nine 
days preceding the earthquake at 9:00 UTC 
(Table 2). 
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Table 2. The list of the detected anomalies. 

Method Day Date Time (UTC) DTEC 

MLP 
-9 03 Nov. 2017 

1 -1.84 
2 -2.21 
3 -2.40 
8 -1.69 
9 -2.16 

15 -1.64 
20 -1.64 
21 -1.72 
22 -1.75 

-10 02 Nov. 2017 24 -1.95 

RNN 
-9 03 Nov. 2017 

1 -1.69 
2 -2.2 
3 -2.25 
8 -1.68 
9 -2.51 

10 -1.53 
20 -1.72 
21 -2.02 
22 -1.81 

-10 02 Nov. 2017 24 -1.56 

GRU 
-9 03 Nov. 2017 

1 -1.71 
2 -1.90 
3 -2.00 
8 -1.60 
9 -2.17 

12 -1.81 
20 -1.60 
21 -1.71 
22 -1.70 

-10 02 Nov. 2017 24 -1.89 

LSTM 
-9 03 Nov. 2017 

1 1.86 
2 1.76 
3 1.59 
8 1.24 

12 1.47 
19 1.22 
20 1.56 
21 1.91 
22 1.86 
23 1.60 

-10 02 Nov. 2017 
24 1.89 
24 1.31 

CNN -9 03 Nov. 2017 
3 1.53 
9 2.27 

15 1.68 

CNN-LSTM 

-8 04 Nov. 2017 23 -3.80 

-9 03 Nov. 2017 

2 2.60 
5 1.54 
9 1.74 

13 1.59 
16 1.73 

-11 01 Nov. 2017 2 -1.60 
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(b) 
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(d) 

 
(e) 

 

Figure 3. Results of TEC analysis using MLP Method for the Iran earthquake (November 12, 2017) from September 1 to 
November 30, 2017. a) Normalized TEC variations, b) Predicted TEC values using MLP algorithm, c) The 
differences between the normalized and predicted TEC values, d) DTEC variations, e) Detected TEC 
anomalies when . 

 

4. Discussion and Conclusions 
It is true that the many studies have been 
done in the field of ionospheric precursors, 
but the complexity and unpredictability of 
ionosphere makes use of the intelligent 
methods such as NN to model and recognize 
the pattern of precursor’s time-series. 
Therefore, in this study, six different NN 
algorithms including MLP, RNN, GRU, 
CNN, LSTM , and CNN-LSTM were 
implemented to observe seismo-TEC 
anomalies around the time and location  
of Sarpol-e Zahab earthquake in Iran.  

Every six methods detect very striking 
irregular variations, nine days before the 
earthquake in quiet solar and geomagnetic 
conditions.  
This study aims to provide substantial 
evidences on the efficiency of deep neural 
networks in non-linear time series modelling. 
As a neural network is non-parametric 
method and do not require any assumptions 
about the underlying model, it could be a 
powerful tools in modeling complex 
phenomena such as earthquake precursor 
time series that we may not know what the 
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underlying data generating process is.  
Although different hypotheses have been 
proposed about the mechanism of seismic 
LAI precursors based on the geophysical and 
geochemical processes, but none of them 
have been accepted among the majority of 
scientists (Freund, 2009; Pulinets and 
Ouzounov, 2011). To better understand the 
preparatory phase of the Iran's November 12, 
2017 earthquake Akhoondzadeh et al. (2019) 
also investigated four atmospheric 
meteorological/climatological parameters to 
detect possible chemical/physical alteration 
of the atmosphere: skin temperature, total 
column water vapour, aerosol optical 

thickness and sulphur dioxide. All 
investigated parameters present some 
anomalies distributed in different times, but 
most of all seem to indicate a final 
disturbance of the atmosphere that precedes 
by some days the ionospheric disturbance in 
TEC, Ne and magnetic data. This is a very 
interesting feature, as a lithospheric activity 
is expected to be disturbed before the 
atmosphere and then the ionosphere as it 
propagates upwards. It should be noted that 
statistical, multi-precursors and multi 
predictor’s analyses are key factors to detect 
the real anomalies and to understand the 
earthquake precursor’s mechanism. 

 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 

Figure 4. The same as Figure 3 but using RNN algorithm. 
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Figure 5. The same as Figure 3 but using GRU algorithm. 
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Figure 6. Time series of TEC (blue curve) and predicted TEC (red curve) values using CNN method at different times 
(UTC). The earthquake time is indicated by a vertical dotted line. The x-axis represents the day relative to the 
earthquake day. The y-axis represents the TEC values. 

 

 
Figure 7. Results of TEC analysis indicating the differences between the observed and predicted TEC values using CNN 

method for the earthquake (November 12, 2017) from 1st September 1 to November 30, 2017.  
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Figure 8. Results of DTEC variations. 

 

 
Figure 9. Results of detected TEC anomalies using CNN method when  for the earthquake (November 12, 

2017) from September 1 to November 30, 2017.  
 

 
Figure 10. The same as Figure 10 but for LSTM method. 

 

 
Figure 11. The same as Figure 10 but for CNN-LSTM method. 
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