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Abstract 

The study of material behavior in the presence of defects is one of the studies that can help us recognize 

and predict material behavior. Studying the behavior of materials in nanoscale illuminates a broad view 

of the behavior of materials. A variety of studies are available for such a study: numerical, experimental, 

and quasi-experimental methods. Molecular dynamics is one of the methods that can be used to study 
the behavior of materials. The vibrational behavior of structures has been the focus of many researchers 

to analyze and investigate mortar materials' properties. The study of vibrational behavior at the 

nanoscale can give us a broad view of materials' properties. Therefore, in this study, we study nanowires' 
vibrational behavior in the presence of edge cracks using molecular dynamics. The influence of crack 

position and depth on the natural frequencies and shape of iron nanobeam modes with BCC crystal 

structure have been investigated. Clamped-Clamped boundary conditions with different cracks position 

and depth have been applied by simulating molecular dynamics. Also, the data obtained from molecular 
dynamics simulations have been compared with the finite element method and different crack models 

in one dimensional beams . In order to extract the shape of natural modes and frequencies by molecular 

dynamics method, FFT applied on the  displacement history of nanobeam atoms after excitation of an 
amplitude in the center of nanobeam in x and y directions have been used. The crack models studied in 

this study were linear and rotational crack models on beams with Timoshenko theory. Molecular 

dynamics simulation data compared to other methods have shown a decrease in the value of natural 
frequencies in the presence of cracks. Also, finite element data and molecular dynamics are well 

matched. However, the molecular dynamics method has shown a more significant reduction in natural 

frequency values   than finite element methods and various crack models with Timoshenko theory. We 

have also found that in molecular dynamics bribery, the initial excitation type of nanobeams is very 
useful in extracting nanobeam modes' shape. 

Keywords: Cracked Nanobeam, Molecular Dynamics Simulation, Vibration Analysis, Finite 
Element Method. 

 

Introduction  

Nano- and micro-electromechanical systems (NEMS/MEMS) are extensively applied in 

mechanical resonators, chemical and biochemical sensors, and relays in logic devices. Many 

NEMS such as high-frequency resonators [1,2], pressure and force sensors [2], and nano 

switches [3] use nanobeams/nanowires as their active elements thanks to the unique mechanical 
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and vibrational properties of nanoscale objects. Hence, the vibrational behavior of nanobeams 

has been the subject of many experimental, theoretical, and computational research studies [4-

8]. On the theoretical and computational side, several works employed molecular dynamics 

(MD) and continuum mechanics to investigate their mechanical and vibrational properties [8-

12]. Several authors used the various analytical or computational approaches to the analysis of 

non-cracked nanobeam problem and surface properties estimation. [13 -17].   

The crack is a commonly observed structural defect that can decrease the stiffness and strength 

of the structures [18 -21]. Early-stage detection of the cracks is a vital inspection necessity that 

can lead to hazardous incidents, otherwise. Since the natural frequencies of the structures 

directly relate to their stiffness, they are frequently used to identify the location and depth of 

the crack. Chondros et al. [22] developed a continuum mechanics-based theory for the lateral 

vibration of cracked Euler–Bernoulli beams with single-edge or double-edge open cracks. They 

showed that the natural frequency of the cracked beam decreases as the crack depth increases.   

Also, some studies got natural frequencies for the detection of crack location and size or 

investigated the dynamic behavior of cracked beams [23-25]. Baradaran and Mousavi [24], due 

to the changes in natural frequencies in the presence of cracks compared to beams without 

cracks, with finite element method and applying the Ants colony optimization algorithm as an 

inverse problem, obtained the position and depth of surface cracks in the beam. Some studies 

define a reduced elastic modulus zone in the crack location and model this reduction by a 

rotational spring [21, 22, 26-32] or combined rotational and translational springs in the given 

position [30, 33]. In addition, many studies analyzed the vibration characteristics of the cracked 

beams using finite element method (FEM). They obtained the variation of natural frequencies 

vs. the crack depth and positions [34 -39]. Despite the extensive studies on the effects of cracks 

on the natural frequencies of macroscale structures, to the best of our knowledge, no research 

report in the literature analyzed the effects of crack on the vibrational behavior of metallic 

nanobeams. In this work, we want to shed light on the degrees of the appropriateness of the 

developed techniques to model such effects at macroscales to be used for nanoscale beams by 

comparison of the results from MD simulation, FEM, and analytical equations. 

 

Methodology 

This section provides detailed information of three techniques used to analyze the crack effects 

on the natural frequencies of the metallic, here Fe, nanowires. The first sub-section explains the 

steps of MD simulations to acquire the natural frequencies and mode shapes of the nanobeam. 

In the second sub-section, the theory of one-dimensional Timoshenko beam and spring models 

of the cracks are described. In the third sub-section, the details of the three-dimensional FE 

model of the nanobeam to obtain the mode shapes and frequencies are elaborated.  

 

Molecular dynamic simulation 

In the present work, the nanobeam with the length of 28.6 nm and the cross-section of 5.73 ×
2.86 nm2 is investigated (see Fig. 1). The interactions between the Fe atoms are modeled by 

the embedded atom method (EAM) potential function of the form: 

Ei = Fα (∑ ρβ(rij)

i≠j

) +
1

2
∑ ϕαβ(rij)

i≠j

                              (1) 

where rij is the distance between atoms i and j, ϕαβ is a pairwise potential function, ρβ is the 

contribution to electron charge density from atom j at the location of atom i and Fα is an 
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embedding function representing the energy required to place atom i into the electron cloud. 

Also, α and βare the element types of atom i and j, respectively. The EAM potential developed 

by Mendelev [31 ] is used in the MD simulations. 

The crack location normalized by nanobeam length is varied from 0.1 to 0.5 in steps of 0.1 and 

the crack depth normalized by nanobeam thickness is varied from 0.1 to 0.7 in steps of 0.1.  

  
Figure 1. The nanobeam for MD simulations.  

In the vibration tests, the nanobeams were minimized by iteratively adjusting atom coordinates 

based on the conjugate gradient method. After that, the nanobeams are thermally equilibrated 

using the NVT ensemble for 50 ps. A Nose–Hoover thermostat was employed to keep the 

temperature constant at 1 K. At this point, the two ends of the beams, i. e. two lattice constant 

lengths of atoms on each side, are kept rigid to simulate the clamped-clamped boundary 

condition. 

 

Figure 2. Cracked beam and the properties of induced crack. 

 

When the system was fully equilibrated, the ensemble was switched to NVE. In two separate 

simulations, we applied a "fix" displacement to move 1.5 Ȧ of the atoms' positions in the 

"excitation" zone in the x and y directions. To dumping the vibrations of the nanobeams, the 

samples equilibrated for 5 ns. After 5 ns equilibration, the time history of nanobeams' external 

atoms position was recorded as a time-domain response within the last 5 ns.  

The motion equations were solved using the velocity Verlet algorithm with a timestep of 1 fs 

for both excitation and vibrational tests to calculate atomic displacements. All the simulations 

were performed using LAMMPS [32], and visualization was done using Ovito [40]. 

 

Extraction of nanobeam mode shapes and frequencies 

The mode shapes and resonant frequencies of nanobeams were obtained from processing raw 

data of the MD simulations using the Fast Fourier Transform (FFT) of atomic displacement 

history. The resonant frequencies were determined based on the peaks of the frequency response 

diagrams obtained from the autocorrelation functions in the frequency domain in three 

directions as:  
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Fx−corr
i (ω) = Fx

i (ω)Fx
i (ω)

Fy−corr
i (ω) = Fy

i (ω)Fy
i (ω)

Fz−corr
i (ω) = Fz

i (ω)Fz
i (ω)

 (2) 

where ω is the frequency-dependent complex number, Fx
i (ω) , Fy

i (ω) and Fz
i (ω) are the outputs 

of FFT for the coordinates of the ith atom and the bar sign represents the complex conjugate. 

The frequency responses in the x, y, and z directions were plotted by the summation of these 

expressions for all atoms. To extract the vibrational mode shapes, the cross-correlations of 

atoms in the frequency domain (Eq. (3)) were used. 

Fx−cros
i (ωres) = Fx

i (ωres)FR
ref(ωres)

Fy−cros
i (ωres) = Fy

i (ωres)FR
ref(ωres)

Fz−cros
i (ωres) = Fz

i (ωres)FR
ref(ωres)

                              (3) 

where ωres is the resonant frequency and the subscript R refers to the maximum power 

component between (x, y, z) at the specified resonant frequency. By selecting a reference atom 

(ref superscript in Eq. (3)) which must be neither on the node of mode shape nor on the fixed 

end of the beams, the cross-correlations were calculated. The real part of each term on the left-

hand side of cross-correlation relations for each atom was divided by the maximum absolute 

value of the real parts of the cross-correlations for all atoms. The results of this part were three 

real numbers, corresponding to three displacements in the x, y, and z directions, for each atom 

in the range of [−1,1]. By multiplication to the normalized numbers and a proper scaling factor, 

the displacements of all atoms from their initial positions were obtained. Then, adding these 

displacements to the initial positions, the mode shape of each resonant frequency (ωres) were 

extracted. 

 

Timoshenko beam theory for cracked beams 

For a Timoshenko beam, the strain energy (U) with both bending and shear contributions and 

the kinetic energy (T) are given by: 

U =
1

2
∫ [EI(x) (

∂θ

∂x
)

2

+ κGA (
∂w

∂x
− θ)

2

]
L

0

dx (4) 

T =
1

2
∫ [ρA(x) (

∂w

∂t
)

2

+ ρI (
∂θ

∂t
)

2

]
L

0

dx (5) 

where L, I, and A are the length of the beam, the moment of inertia, and the cross-sectional area. 

Also, E, G, and ρ denote Young’s and shear moduli and mass density per unit length. The letter 

κ is the shape factor of cross-section (for square cross-section is 5/6), and w and θ are the 

transverse displacement and rotation of the beam. For a linear elastic beam, the bending moment 

and the shear force are [41]: 

 

𝐸𝐼
𝜕𝜃(𝑥)

𝜕𝑥
= 𝑀(𝑥) (6) 

𝜅𝐺𝐴 (
𝜕𝑤(𝑥)

𝜕𝑥
− 𝜃(𝑥)) = 𝑄(𝑥) (7) 

For a beam with a crack, additional strain energy (𝜋𝑐) is expressed as [42]: 



412  Souq et al. 

𝜋𝑐 = ∫ 𝐽
𝐴

𝑑𝐴 (8) 

where 𝐽 is the function of strain energy release rate depending on stress intensity factors for 

cracks as: 

𝐽 =
1

�́�
[𝐾𝐼𝑀

2 + 𝐾𝐼𝐼𝑄
2 ] (9) 

where 𝐸′ =
𝐸

1−𝑣2 for the plane strain and 𝐸′ = 𝐸 for the plane stress, 𝑣 is the Poisson’s ratio, 

and 𝐾𝐼 and 𝐾𝐼𝐼 are the stress intensity factors in fracture modes I and II, respectively. Then, 

𝐾𝐼𝑀 = 𝜎𝐹𝐼 (
𝑎

ℎ
) √𝜋𝑎,              𝜎 =

6𝑀

𝑏ℎ2
 (10) 

𝐾𝐼𝐼𝑄 = 𝜏𝐹𝐼𝐼 (
𝑎

ℎ
) √𝜋𝑎,            𝜏 =

𝜅𝑄

𝑏ℎ
 (11) 

where 𝐹𝐼 and 𝐹𝐼𝐼 are the correction factors of stress intensity factors and 𝑎 is the crack depth. 

Based on the Paris equation, the additional defection caused by the crack in the direction of 𝑃𝑖 

is: 

𝑤𝑖 =
𝜕𝜋𝑐(𝑃𝑖, 𝐴)

𝜕𝑃𝑖
=

𝜕

𝜕𝑃𝑖

∫ 𝐽(𝑃𝑖, 𝐴)
𝐴

𝑑𝐴 (12) 

The flexibility coefficients can be expressed as [38]: 

𝑐𝑖𝑗 =
𝜕𝑤𝑖

𝜕𝑃𝑖
=

𝜕2𝜋𝑐

𝜕𝑃𝑖𝑃𝑗
 (13) 

where Pi and Pj donate the sharing force Q and bending moment M, respectively. Based on 

Eqs. (9), (10) and (12), the flexibility coefficients are: 

 

𝑐11 =
2𝜋

𝐸𝑏2ℎ2
𝜅2 ∫ ∫ 𝜁𝐹𝐼𝐼

2 (
𝜁

ℎ
) 𝑑𝜁

𝑎

0

𝑑𝑧
𝑏

−𝑏

 (14) 

 

𝑐22 =
72𝜋

𝐸𝑏2ℎ4
∫ ∫ 𝜁𝐹𝐼

2 (
𝜁

ℎ
) 𝑑𝜁

𝑎

0

𝑑𝑧
𝑏

−𝑏

 (15) 

where 𝑐11 is the flexibility coefficient corresponding to fracture mode II due to shearing force 

and 𝑐22 is the flexibility coefficient corresponding to fracture mode I due to bending moment. 

In the cracked section of the beam, the spring stiffness coefficients are: 

𝐾𝑤𝑐 =
1

𝑐11
 (16) 

𝐾𝜃𝑐 =
1

𝑐22
 (17) 

where 𝐾𝜔𝑐  and 𝐾𝜃𝑐 are the translational and rotational spring stiffnesses, respectively. Each 

model in this paper is named by the selected correction factors. 

 

The Crack models 

Here, three models for rotational springs and one model for translational spring are introduced. 

The first model has two separated rotational and translational springs. For this model, we used 

the correction factors reported by Tada and Hiroshi [42] for all crack depth ( 0 < (
𝜁

ℎ
) < 1): 
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𝐹𝐼 (
𝜁

ℎ
) = √

2ℎ

𝜋𝜁
tan (

𝜋𝜁

2ℎ
)

0.923 + 0.199 (1 − sin (
𝜋𝜁
2ℎ)

2

)

cos (
𝜋𝜁
2ℎ)

 (18) 

𝐹𝐼𝐼 (
𝜁

ℎ
) =

1.122 − 0.561 (
𝜁
ℎ) + 0.085 (

𝜁
ℎ)

2

+ 0.180 (
𝜁
ℎ)

3

√1 − (
𝜁
ℎ

)

 (19) 

This research's second model is a rotational spring model of the brown correction factor, and a 

translational spring donates to Eq 19. The  rotational spring model of the brown was developed 

for a crack depth range of 0 < (
𝜁

ℎ
) < 0.7  [42]: 

𝐹𝐼 (
𝜁

ℎ
) = 1.122 − 1.40 (

𝜁

ℎ
) + 7.33 (

𝜁

ℎ
)

2

− 13.08 (
𝜁

ℎ
)

3

+ 14.0 (
𝜁

ℎ
)

4

 (20) 

The third crack model used in this study is a rotational spring model presented by Lellep [43] 

for a depth range of 0 < (
𝜁

ℎ
) < 0.7: 

𝐹𝐼 (
𝜁

ℎ
) = 1.93 − 3.07 (

𝜁

ℎ
) + 14.53 (

𝜁

ℎ
)

2

− 25.11 (
𝜁

ℎ
)

3

+ 25.8 (
𝜁

ℎ
)

4

 (21) 

Fig. 3. presents the shape of Eqs. (18) -(21). There is a difference between Eq. (21) and other 

equations in the start position. But it is seen that Eqs. (18) and (21) have the same trend. With 

increasing the crack depth, the differences increase, as well causing different behaviors of 

models for deeper cracks. 

 
Figure 3. Comparison of the correction factors vs. the crack depth. 

 

Finite element model 

To extract natural frequencies and their corresponding mode shapes of the 3D beam model with 

cracks, we employed the FE software COMSOL multiphysics version 5.4 [44]. The Eigen 

frequency study in the solid mechanic’s interface was used to compute Eigen modes 
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(vibrational mode shapes) and Eigen frequencies (vibrational frequencies) of the linear model. 

COMSOL Multiphysics utilizes four different element types: tetrahedral (tets), hexahedral 

(bricks), triangular prisms (prisms), and pyramids. In this study, all models were meshed by the 

tetrahedral element type. The size and elastic properties of the beam in COMSOL were 

considered based on the data from MD simulations. The Young’s modulus, Poisson ratio, and  

Density were selected  221 × 109 GPa, 0.3, and 7800 Kg/m3, respectively.  

Results and discussion 

In this section, we present data extracted from the MD, FEM, and theoretical crack models. 

First, the mode shapes are presented from the FE software, and then these shapes are compared 

with the data obtained from MD simulation. Afterward, the data from analytical crack models 

are compared with the MD and FEM results.  

 

Finite element method 

Nine vibrational mode shapes from FEM are observed in Fig. 4. The first, fourth, and sixth 

mode shapes are in the XZ-plane of the beam, the second, fifth, eighth, and ninth modes are in 

the YZ-plane, and others combinational. 

         
1 2 3 4 5 6 7 8 9 

Figure 4. Nine vibrational mode shapes of a nanobeam from COMSOL Multiphysics. 

 

Investigation of the mode shapes from MD simulations and their corresponding frequencies 

reveals that the three mode shapes shown in Fig. 5 are identical. The value of natural frequencies 

from MD and FEM in the non-cracked beam agree with each other (Table. 1). However, there 

are other modes in FE analysis that our MD simulation did not show them. The reason can be 

related to the excitation zone and directions on the center of the beam (see Fig. 1). According 

to Fig. 4, the displacements changes at this nanobeams section in modes 4,5, and 7 has zero 

value, so the MD simulation did not detect them.  
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MD 1 FEM 1 MD 2 FEM 2 MD 3 FEM 9 

Figure 5. The mode shapes from MD simulation and their counterparts from FEM 

simulations. 

 

Table 1. Comparison of natural frequency values obtained from FE and 

MD methods. 

 MD (GHz) FEM (GHz) Error (%) 

(1,1) 18.165 18.168 0.0165 

(2,2) 28.19 31.06 9.24 

(3,9) 113.57 118.8 4.40 

 

Fig. 6 compares the frequencies of nanobeams obtained from MD and FE methods vs. the crack 

depth and location. The general trend is to decrease the frequencies in all diagrams. Figures 6.a 

and 6.b also have more inconsistencies between the graphs. In the second and third modes, 

molecular dynamics simulations show a more significant percentage reduction in frequency 

values than the finite element simulation model (Figure 6.c -6.f).  

  
(a) (b) 
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(c) (d) 

  

(e) (f) 

Figure 6. Compare cracked beam frequencies value between FEM and MD. a: mode 1 from 

MD b: mode 1 from FEM. c: mode 2 From MD d: mode 2 from FEM. e: mode 3 from MD and 

f: mode 9 from FEM 

 

Figure 6. approve that the Finite element method data agreed with Molecular dynamics 

simulations. The slope of the graph at normalized depth equal to 0.1 in the first mode has 

changed (Figure 6. a-b). This change in the Finite element diagram is very clear, but molecular 

dynamic diagrams just show in crack position 0.2. there are some differences in the graphs, 

such as the ordering of decrease percent in the same depth. The finite element shows in a 

constant normalized depth, the crack at positions 0.1 and 0.5 have maximum effects in reducing 

frequencies, also crack at positions 0.2 and 0.3 has the same effects on the first natural 

frequencies. At the same time, the molecular dynamics graph can't be ordering effects of crack 

position on frequencies. The molecular dynamics show a larger reduction in natural 

frequencies. At the crack depth of 0.7, a larger percent reduction is occurring. The first mode 

shows a 20% and 16% reduction for the crack depth of 0.7 for the MD and FEM, respectively.   

The second mode (Figure 6. c-d) shows maximum effects on frequencies is from the crack 

position of 0.5. there is about 25% and 20% reduction at the depth 0.7 for FEM and MD, 

respectively. Also, for crack position 0.2, there is the domain, from depth 0.3 to 0.7, that 

reduction in frequencies are uniform. 

The third mode shows that the reduction in frequencies can be ordered based on crack 

positions—maximum and minimum reduction in a constant depth occur at crack positions 0.5 

and 0.2, respectively. also, in all depth domain, the third natural frequencies reduction ordered 

by 0.5 > 0.4> 0.1 > 0.3 > 0.2 of cracks positions (Figure 6. e-f). 
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The second and third modes will be studied and compared with spring models in Timoshenko 

beam theory.  

Crack models 

From Timoshenko beam theory (1D), we have two sets of frequencies values; the first values 

are from the XZ plane and the other values from the YZ plane. The XZ plane values are related 

to MD 1 mode shape frequencies and YZ plane values, associated with MD 2 and MD 3 modes 

frequencies. In the following, the main criteria for naming will be the molecular dynamics 

simulation modes.  

Figure 7 represent the dimensionless frequencies in the first and third mode of nanobeam. 

Model I and II (translational and rotational spring) have similar behavior in all domains (Fig 

7). In mode 2, there are three extremum points in the position of crack 0.1, 0.23, and 0.5 that 

repeated in all models. For Mode 3, the extremum points occur in 0.2, 0.32, and 0.5 positions 

of beam length. 

  
a1 a2 

  

b1 b2 
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c1 c2 

Figure 7. The mode graphs from (1D) models:  model I a1: mode 2 a2: mode 3,  model II b1: 

mode 2 b2: mode 3,  model III c1: mode 2 c2: mode 3  

 

 

In Model III, the value of frequencies in position 0.23 (Mode 2) and 0.32 (Mode 3) does not 

change, and they are equal to non-cracked of their values. For MODE I and Model I, the 

maximum, minimum, and Average error between Timoshenko theory and Molecular Dynamics 

results are 13.9 %, 0.13, and 4.22%, respectively. The most significant error occurs in the 

position equal to 0.5 and depth similar to 0.7. In the MODE I and Model III, in all domains, 

error occurs. 

For MODE III, MD results have more similarity to Model I and II over than Model III. In Model 

III, by increasing crack depth, in position 0.32, the frequency value is constant, which caused 

the larger average error compared to Model I and II. 

 Figure 8 shows a comparison of frequency values for the methods used in this paper. As can 

be seen for the second mode, all theoretical models' behavior is consistent with each other. For 

the crack position at 0.3, the frequency value shows the most considerable reduction value at 

this crack position. In contrast, in the finite element and molecular dynamics models, the 

maximum decrease in the frequency value occurs when the crack is in 0.5 places. Also can see, 

That Models II and III have an agreement trend with Molecular dynamics and Finite element. 

Of course, for the third mode, the order of decreasing the value of frequency in all models is 

consistent with the molecular dynamics model, and the farther the leaving position is from the 

boundaries and closer to the center of the beam, the more significant the decrease in the amount 

of frequency. 
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Figure 8.  Comparison  frequencies value for  crack nanobeam    

 

Conclusions 

In the present study, Fe cracked nanobeams' vibrational behavior with a BCC structure was 

investigated by the Molecular Dynamics method, Finite Element, and the multiple models of 

the crack in Timoshenko beam theory. The effects of crack position and depth were scrutinized. 

The following observations and results were obtained: 

  

1. the exiting zone and how the initial exiting nanobeam is important for detection mode 

shapes in molecular dynamics simulations.  

2. The 3d Finite element method results agreed with the molecular dynamics data.  

3. From MD and FEM results, the crack in the middle of the nanobeam has maximum 

effects on the value of natural frequencies.  

4. Spring models show that in the second mode, the biggest reduction occurs when cracks 

are in 0.3 lengths of nanobeam. These results disagree with MD and FEM data.  

5. When the crack is at the position of 0.2 lengths, in-depth range between 0.2 and 0.7, by 

increasing the depth, reduction of the second frequency in FEM and MD don't change, 

and it is constant at 5%, and 7% of nan cracked natural frequency of FEM and MD 

results, respectively.   
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