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Abstract

The study of material behavior in the presence of defects is one of the studies that can befmirere

and predict material behavior. Studying the behavior of materials in nanoscale illuminates a broad view
of the behavior of materials. A variety of studies are available for such a study: numerical, experimental,
and quasexperimental methods. Malelar dynamics is one of the methods that can be used to study
the behavior of materials. The vibrational behavior of structures has been the focus of many researchers
to analyze and investigate mortar materials' properties. The study of vibrational obefiathe
nanoscale can give us a broad view of materials' properties. Therefore, in this study, we study nanowires'
vibrational behavior in the presence of edge cracks using molecular dynamics. The influence of crack
position and depth on the natural fabeqcies and shape of iron nanobeam modes with BCC crystal
structure have been investigated. Clam@tamimped boundary conditions with different cracks position

and depth have been applied by simulating molecular dynamics. Also, the data obtained frofamolecu
dynamics simulations have been compared with the finite element method and different crack models
in one dimensional beams . In order to extract the shape of natural modes and frequencies by molecular
dynamics method, FFT applied on the displacemisibrly of nanobeam atoms after excitation of an
amplitude in the center of nanobeam in x and y directions have been used. The crack models studied in
this study were linear and rotational crack models on beams with Timoshenko theory. Molecular
dynamics simlation data compared to other methods have shown a decrease in the value of natural
frequencies in the presence of cracks. Also, finite element data and molecular dynamics are well
matched. However, the molecular dynamics method has shown a more sigméthaction in natural
frequency values than finite element methods and various crack models with Timoshenko theory. We
have also found that in molecular dynamics bribery, the initial excitation type of nanobeams is very
useful in extracting nanobeam des' shape.

Keywords: Cracked Nanobeam, Molecular Dynamics Simulation, Vibra#omalysis, Finite
Element Methd.

Introduction

Nano and micreelectromechanical systems (NEMS/MEMS) are extensively applied in
mechanical resonators, chemical and biochemical sensorselagd in logic devices. Many

NEMS such as higfrequency resonators [1,2], pressure and force sensors [2], and nano
switches [3] use nanobeams/nanowires as their active elements thanks to the unique mechanical
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and vibrational properties of nanoscale olgeHence, the vibrational behavior of nanobeams

has been the subject of many experimental, theoretical, and computational research studies [4
8]. On the theoretical and computational side, several works employed molecular dynamics
(MD) and continuum me@nics to investigate their mechanical and vibrational properties [8
12]. Several authors used the various analytical or computational approaches to the analysis of
noncracked nanobeam problem and surface properties estimatioi7]13

The crack is a@mmonly observed structural defect that can decrease the stiffness and strength
of the structures [181]. Earlystage detection of the cracks is a vital inspection necessity that
can lead to hazardous incidents, otherwBmce thenatural frequenciesfahe structures
directly relate to their stiffness, they are frequently used to identify the location and depth of
the crack.Chondros et al. [224leveloped a continuum mechanlmased theory for the lateral
vibration of cracked EuleBernoulli beams witlsingleedge or doubledge open cracks. They
showed that the natural frequency of the cracked beam decreases as the crack depth increases.
Also, some studies got natural frequencies for the detection of crack location and size or
investigated the dynamimehavior of cracked beams [25]. Baradaran and Mousavi [24], due

to the changes in natural frequencies in the presence of cracks compared to beams without
cracks, with finite element method and applying the Ants colony optimization algorithm as an
inverse problem, obtained the position and depth of surface cracks in theSmamstudies

define a reduced elastic modulus zone in the crack location and model this reduction by a
rotational spring [21, 22, 282] or combined rotational and translationalisgs in the given
position [30, 33]In addition,many studies analyzed the vibration characteristics of the cracked
beams using finite element method (FEM). They obtained the variation of natural frequencies
vs. the crack depth and positions [38]. Degpite the extensive studies on the effects of cracks

on the natural frequencies of macroscale structures, to the best of our knowledge, no research
report in the literature analyzed the effects of crack on the vibrational behavior of metallic
nanobeams. Ithis work, we want to shed light on the degrees of the appropriateness of the
developed techniques to model such effects at macroscales to be used for nanoscale beams by
comparison of the results from MD simulation, FEM, and analytical equations.

Methodology

This section provides detailed information of three techniques used to analyze the crack effects
on the natural frequencies of the metallic, here Fe, nanowires. The faststidn explains the

steps of MD simulations to acquire the natural frequenarel mode shapes of the nanobeam.

In the second subection, the theory of ordimensional Timoshenko beam and spring models

of the cracks are described. In the third-sebtion, the details of the thrd@nensional FE

model of the nanobeam to obtain thede shapes and frequencies are elaborated.

Molecular dynamic simulation

In the present work, the nanobeam with the lengic @1 | and the crossection ofu& ¢
c® @i is investigated (see Fig. 1). The interactions between the Fe atoms aredvimdel
the embedded atom method (EAM) potential function of the form:

. p R
% & m O c n O (1)
whereQ is the distance between atoEsndEn  is a pairwise potential functiow is the
contribution to electron charge density from athiat the location of atorkEand & is an
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embedding function representing the energy required to placeEitbothe electron cloud.
Also, | andr are the element types of atEEmndE respectively. The EAM potential developed
by Mendelev [31 ] is used in the MD simulations.

The crack locatiomormalized by nanobeam length is varied firgto T@® in steps o and
the crack depth normalized by nanobeam thickness is variecrito 1 in steps oT.

:,_ ‘ bounady condition exitation zone

Figure 1. The nanobeam for MD simulations.
In the vibration tests, the nanobeamsevwainimized by iteratively adjusting atom coordinates
based on the conjugate gradient method. After that, the nanobeams are thermally equilibrated
using the NVT ensemble fcv ™O A Nose-Hoover thermostat was employed to keep the
temperature constant p +. At this point, the two ends of the beams, i. e. two lattice constant
lengths of atoms on each side, are kept rigid to simulate the clactgmaged boundary
condition.

A

Y

a z
1 —

Figure 2. Cracked beam and the properties of induced crack.

When the system wasliy equilibrated, the ensemble was switched to NVE. In two separate
simulations, we applied a "fix" displacement to mqp® ! of the atoms' positions in the
"excitation” zone in the x and y direction& dumping the vibrations of the nanobeams, the
sanples equilibrated for 5 ns. After 5 ns equilibration, the time history of nanobeams' external
atoms position was recorded as a tidognain response within the last 5 ns.

The motion equations were solved using the velocity Verlet algorithm with a timafsp £0
for both excitation and vibrational tests to calculate atomic displacements. All the simulations
were performed using LAMMPS [32], and visualization was done using Ovito [40].

Extraction of nanobeam mode shapes and frequencies

The mode shapes angsonant frequencies of nanobeams were obtained from processing raw
data of the MD simulations using the Fast Fourier Transform (FFT) of atomic displacement
history. The resonant frequencies were determined based on the peaks of the frequency response
diagams obtained from the autocorrelation functions in the frequency domain in three
directions as:
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& 5 & 5 &)
& 5 & 5 &) (2)

& b & 5 & 5

where) is the frequencylependent complex numb& 5 ,& 5 and& S5 arethe outputs

of FFT for the coordinates dlfie " atom and the bar sign represents the complex conjugate.
The frequency responses in the x, y, and z directions were plotted by the summation of these
expressions for all atoms. To extract the vibrational mode shapes, theanedations of
atomsin the frequency domain (Eg. (3)) were used.

& 5 &S5 & b
& 5 &S5 & ) (3)
& 5 &5 & b

where 5 is the resonant frequency and the subscript R refers to tkenora power
component between (X, y, z) at the specified resonant frequency. By selecting a reference atom
(ref superscript in Eqg. (3)) which must be neither on the node of mode shape nor on the fixed
end of the beams, the cressrrelations were calculadeThe real part of each term on the-left

hand side of crossorrelation relationgor each atom was divided by the maximum absolute
value of the real parts of the cressrelations for all atoms. The results of this part were three
real numbers, correspding to three displacements in the x, y, and z directions, for each atom
inthe range ¢ plp . By multiplication to the normalized numbers and a proper scaling factor,
the displacements of all atoms from their initial positions were obtained. Thengatidse
displacements to the initial positions, the mode shape of each resonant frey ~ cwére
extracted.

Timoshenko beam theory for cracked beams

For a Timoshenko beam, the strain energy (U) with both bending and shear contributions and
the kinetic energy (T) are given by:

p 0 H - Tx 3
= — — 4
5 . 6 )D = [ = [ AQ (4)
p Tx H 3
- - —N 5
4 . MG = M= AO (5)
where,, ﬁ)F}&T IAare the length of the beam, the moment of inertia, and the seotisnal area.
Also,%' handwd enot e Young’'s and shear moduli and

[ is the shape factor of craessction (for square crosection is 5/6), anx and[ are the
transverse displacement and rotation of the beam. For a linear edasticthe bending moment
and the shear force are [41]:

—
0 Te— 0 (6)
T W
YN .
I "OE‘)T —® 0 W (7)

!

For a beam with a crack, additional strain ene“~y (s expressed as [42]:
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“ Q6 (8)

whereU is the function of strain energy release rate depending on stress intensity factors for
cracks as:

. P .
U = U v 9
% (9)
whereG —— for the plane strain arOx ‘Ofor the plane strest,i s t he Poi sson’
and0 ard 0 are the stress intensity factors in fracture modes | and Il, respectively. Then,
. S @0
’ _ i - 10
U ” O !g I/I @ ” "(b'!Q ( )
W . v
) A —_ Ve R e 11
0 TO 7 U & b= (11)

where"Oand 0 are the correction factors of stress intensity factorsaaisdhe crack depth.
Based on the Paris equation, the additional defection caused by the crack in the dire0 tion of
is:

?

T 0 T

0 .
Tu Tu

The flexibility coefficients can be expressed as [38]:

~ 10 T°

® T 1TT 12

whereP; andP; donate the sharing for€@ and bending momemd, respectively. Based on
Egs. (9), (10pand (12)the flexibility coefficients are:

¥ C - ;
— —“ - ’ ’ 14
@ .:,,,QII o) ,,QQ—QQ( (14)
ol Xc ” - ) D ]
o — 15
© o5 o) ,,QQ—QQ( (15)

Wher~e(7‘ is the flexibility coefficient coresponding to fracture mode Il due to shearing force
andc is the flexibility coefficient corresponding to fracture mode | due to bending moment.
In the cracked section of the beam, the spring stiffness coefficients are:

P

o - (16)
‘ p

where0 and0 are the translational and rotational spring stiffnesses, respectively. Each
model in this paper is named by the selected correction factors.

The Crack models
Here, three models for rotational sgnand one model for translational spring are introduced.
The first model has two separated rotational and translational springs. For this model, we used

the correction factors reported by Tada and Hiroshi [42] for all crack dit - p):
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This research'’s second model is a rotational spring model of the bayvection factor, and a
translational spring donates to Eq T8@e rotational spring model of the brown was developed

for a crack depthrangem - 1& [42]:

O PHCGCPB My X&Om, PBIYL P8l (20)
The third crack model used in this study is a rotational spring model presented by Lellep [43]

foradepthrangeat - T

O, P®O oBiXzy PBOL C®pr @ (21)
Fig. 3. presents the ape of Egs. (18)(21). There is a difference between Eq. (24jl other
equations in the start position. But it is seen that Eqgs. (18) and (21) have the same trend. With
increasing the crack depth, the differences increase, as well causing differeribrsebfyv

models for deeper cracks.

.
—— Eq.18
61 Eq.19
—— Eq.20
5{ —— Eq2l
4_

0 T T T T T T T
0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

Crack depth
Figure 3. Comparison of the correction factors vs. the crack depth.

Finite element model

To extract natural frequencies and their corresponding mode shapes of the 3D beam model with
cracks, we employed the FE softwaCOMSOL multiphysics version 5.4 [44]. The Eigen
frequency study I n t he sol id mechanic’ s
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(vibrational mode shapes) and Eigen frequencies (vibrational frequencies) of the linear model.
COMSOL Multiphysics utilizesfour different element types: tetrahedral (tets), hexahedral
(bricks), triangular prisms (prisms), and pyramids. In this study, all models were meshed by the
tetrahedral element type. The size and elastic properties of the beam in COMSOL were
considered bsed on the data from MD simulatiofishe Young’' s modul us, Po
Density were selecte¢ ¢ , p 1tGPa, 0.3, and 7800 Kg/m3, respectively.

Results and discussion

In this section, we present data extracted from the MD, FEM, and theopetcl models.

First, the mode shapes are presented from the FE software, and then these shapes are compared
with the data obtained from MD simulation. Afterward, the data from analytical crack models

are compared with the MD and FEM results.

Finite element method

Nine vibrational mode shapes from FEM are observed in Fig. 4. The first, fourth, and sixth
mode shapes are in the XMane of the beam, the second, fifth, eighth, and ninth modes are in
the YZplane, and others combinational.

R =
,.'. ,13 ¥ :

5 6 7 8 9
Figure 4. Nine vibrational mode shapes of a nanobeam from COMSOL Multiphysic

Investigation of the mode shapes from MD simulations and their corresponding frequencies
reveals that the three mode shapes shown in Fig. 5 are ideftieatalue of natural frequencies

from MD and FEM in the nowracked beam agree with each other (TableH&yvever,there

are other modes in FE analysis that our MD simulation did not show them. The reason can be
related to the excitation zone and direatian the center of the beam (see FigAtkording

to Fig. 4, the displacements changes at this nanobeams section in modes 4,5, and 7 has zero
value, so the MD simulation did not detect them.
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MD 1 FEM 1 MD 2 FEM 2 MD 3 FEM 9
Figure 5. The moa@ shapes from MD simulation and their counterparts from FEM
simulations.

Table 1. Comparison of natural frequency values obtained from F

MD methods.
{ MD (GHz) FEM (GHz) Error (%)
(1,1) 18.165 18.168 0.0165
(2,2) { 28.19 31.06 9.24
(3,9) 113.57 1188 4.40

Fig. 6 compares the frequencies of nanobeams obtained from MD and FE methods vs. the crack
depth and location. The general trend is to decrease the frequencies in all diagrams. Figures 6.a
and 6.b also have more inconsistencies between the ghaptie second and third modes,
molecular dynamics simulations show a more significant percentage reduction in frequency
values than the finite element simulation model (Figure@f
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Figure 6. Compare crackeddam frequencies value between FEM and Dmode 1 from
MD b: mode 1 from FEMc: mode 2 From MOd: mode 2 from FEMe: mode 3 from MD an
f. mode 9 from FEM

Figure 6. approve that the Finite element method data agreed with Molecular dynamics
simulatiors. The slope of the graph at normalized depth equal to 0.1 in the first mode has
changed (Figure 6-k). This change in the Finite element diagram is very clear, but molecular
dynamic diagrams just show in crack position 0.2. there are some differentesgraphs,

such as the ordering of decrease percent in the same depth. The finite element shows in a
constant normalized depth, the crack at positions 0.0 &ndave maximum effects in reducing
frequencies, also crack at positions 0.2 and 0.3 has the same effects on the first natural
frequencies. At the same time, the molecular dynamics graph can't be ordering effects of crack
position on frequencies. The molgar dynamics show a larger reduction in natural
frequencies. At the crack depth of 0.7, a larger percent reduction is occurring. The first mode
shows a 20% and 16% reduction for the crack depth of 0.7 for the MD and FEM, respectively.

The second modeFigure 6. ed) shows maximum effects on frequencies is from the crack
position of 0.5. there is about 25% and 20% reduction at the depth 0.7 for FEM and MD,
respectively. Also, for crack position 0.2, there is the domain, from depth 0.3 to 0.7, that
reducton in frequencies are uniform.

The third mode shows that the reduction in frequencies can be ordered based on crack
positions—maximum and minimum reduction in a constant depth occur at crack positions 0.5
and 0.2, respectively. also, in all depth domtie, third natural frequencies reduction ordered

by 0.5 > 0.4> 0.1 > 0.3 > 0.2 of cracks positions (Figureff. e
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The second and third modes will be studied and compared with spring models in Timoshenko
beam theory.

Crack models

From Timoshenko beam tbey (1D), we have two sets of frequencies values; the first values
are from the XZ plane and the other values from the YZ plane. The XZ plane values are related
to MD 1 mode shape frequencies and YZ plane values, associated with MD 2 and MD 3 modes
frequerties. In the following, the main criteria for naming will be the molecular dynamics
simulation modes.

Figure 7 represent the dimensionless frequencies in the first and third mode of nanobeam.
Model | and Il (translational and rotational spring) have simiilehavior in all domains (Fig

7). In mode 2, there are three extremum points in the position of crack 0.1, 0.23, and 0.5 that
repeated in all models. For Mode 3, the extremum points occur in 0.2, 0.32, and 0.5 positions
of beam length.
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Figure 7. The mode graphs from (1D) models: modell mode 2 a2: mode 3, modeldl:
mode 2b2: mode 3, model IIt1: mode 2c2: mode 3

In Model Ill, the value of frequencies in position 0.23 (Mode 2) and 0.32 (Mode 3) does not
charge, and they are equal to noracked of their values. For MODE | and Model I, the
maximum, minimum, and Average error between Timoshenko theory and Molecular Dynamics
results are 13.9 %, 0.13, and 4.22%, respectively. The most significant error octhes in
position equal to 0.5 and depth similar to 0.7. In the MODE | and Model Ill, in all domains,
error occurs.

For MODE IlI, MD results have more similarity to Model | and 1l over than Model I1l. In Model
[, by increasing crack depth, in position 0.38¢ tfrequency value is constant, which caused
the larger average error compared to Model | and II.

Figure 8 shows a comparison of frequency values for the methods used in this paper. As can
be seen for the second mode, all theoretical models' behavamsstent with each other. For

the crack position at 0.3, the frequency value shows the most considerable reduction value at
this crack position. In contrast, in the finite element and molecular dynamics models, the
maximum decrease in the frequency valaeurs when the crack is in 0.5 places. Also can see,
That Models Il and Il have an agreement trend with Molecular dynamics and Finite element.

Of course, for the third mode, the order of decreasing the value of frequency in all models is
consistent withthe molecular dynamics model, and the farther the leaving position is from the
boundaries and closer to the center of the beam, the more significant the decrease in the amount
of frequency.
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Figure 8. Comparison frequencies value for crack nanobeam

Conclusions

In the present study, Fe cracked nanobeams' vibrational behavior with a BCC structure was
investigated by the Molecular Dynamics method, Finite Element, anchdligole models of

the crack in Timoshenko beam theory. The effects of crack position and depth were scrutinized.
The following observations and results were obtained:

1. the exiting zone and how the initial exiting nanobeam is important for detection mode

shapes in molecular dynamics simulations.

The 3d Finite element method results agreed with the molecular dynamics data.

From MD and FEM results, the crack in the middle of the nanobeam has maximum

effects on the value of natural frequencies.

4. Spring modés show that in the second mode, the biggest reduction occurs when cracks
are in 0.3 lengths of nanobeam. These results disagree with MD and FEM data.

5. When the crack is at the position of 0.2 lengthsjepth range between 0.2 and 0.7, by
increasing thelepth, reduction of the second frequency in FEM and MD don't change,
and it is constant at 5%, and 7% of nan cracked natural frequency of FEM and MD
results, respectively.

wn
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