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Abstract 
Activin A is a member of transforming growth factor β (TGF-β) superfamily. It plays 

numerous roles in the body such as cell growth regulation and differentiation, wound 
repairing and modulation of inflammatory responses. More importantly, it can be used 
as a therapeutic agent; so recombinant production of it, especially in the periplasm of E. 
coli as an economical bacterium is of great value. The aim of this study is large- scale 
production of activin A with a correct structure. For this purpose, three strategies were 
used. First, an efficient and appropriate signal peptide, modified Iranian Bacillus 
Licheniformis α-amylase signal peptide, was selected to secrete activin A to the E. coli 
periplasm as a suitable environment for correct protein folding. Second, cytoplasmic 
chaperones, Dnak, DnaJ, GroEL/ GroES, TF (trigger factor) were expressed 
simultaneously with activin A. Finally, the agitation rate was optimized to achieve the 
highest production of Activin A at the bioreactor scale. Our results indicated that by the 
co-expression of TF with activin A and using agitation rate of 1000 rpm maximum 
expression of activin A in E. coli was obtained. More importantly, based on the CD 
spectroscopy results and bioassay test the produced activin A had the correct secondary 
structure as the commercial type and was fully active.  
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Introduction 
Activin A belongs to the superfamily of 

transforming growth factor β, and consists of two βA 
subunits connected by a single disulfide bond (1). 
Because this protein naturally has different functions, 
such as anti-inflammatory, and wound healing roles and 
also participation in the maintenance, and survival of 
the neurons, recombinant production of it is beneficial 
(2-5). Today this therapeutic protein is expressed in 
several eukaryotic and prokaryotic hosts (6-8). 

Production in prokaryotic hosts e.g. E. coli is affordable 
and simple, with the ability to scale up easily 
(9). Nevertheless, correct formation of disulfide bonds 
and proper folding are the main challenges of protein 
production in these hosts (10). Of course, periplasmic 
space of bacteria is a suitable environment in terms of 
oxidative conditions and the presence of molecular 
chaperones for production of proteins with disulfide 
bonds (11, 12). Thus, in this study, activin A was 
secreted to the periplasm of E. coli using efficient and 
modified signal peptide of Bacillus licheniformis α-
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amylase enzyme (7).  
It should be noted that in some cases, the co-

expression of cytoplasmic chaperones not only has 
affected the protein solubility and folding but also has 
increased the periplasmic production of the interest 
protein (13-15). Therefore, in this study, in order to 
increase periplasmic production of activin A with the 
correct structure first, co-expression of cytoplasmic 
chaperones was used and then, the agitation rate, which 
is an effective factor in the success of protein expression 
in the bioreactor scale (16), was optimized. 

 

Materials and Methods 
Materials 

Luria-Bertani medium (LB), Ampicillin, 
Chloramphenicol, anti polyhistidine peroxidase-
conjugated monoclonal antibody (Cat No. 
SAB5300168), commercial recombinant activin A and 
isopropyl thio-β-D-galactoside (IPTG) were purchased 
from Sigma Aldrich Company (USA). Ni+2-NTA 
chromatography resin was purchased from ABT 
(Spain). DAB was purchased from Biobasic Inc. 
(Canada). Other reagents were prepared from Merck 
Company (Germany). Plasmids with inserted 
cytoplasmic chaperones genes were purchased from 
Takara Company (Japan). Table 1 shows the properties 
of plasmids and chaperones used in this study. 
 
Bacterial strain and expression vector  

The BL21 (DE3) strain (Novagene, USA), with the 
T7 RNA polymerase gene inserted in it, and pET21a(+) 
vector (Novagene, USA) with His-tag sequence as an 
affinity tag were selected respectively, as an expression 
host and vector in this experiment. 

The cDNA of human activin A (Accession No in 
NCBI gene bank: NM_002192) and modified Bacillus 
licheniformis α-amylase signal sequence were 
synthesized and cloned into pET21a vector using NdeI 
and XhoI enzymes by Shinegene company (China) (7). 
Sequencing was used to verify cloning accuracy (data 
not shown here). 
 

Transformation and culture conditions 
CaCl2 and heat shock procedure was used to 

transform the vector to BL21 (DE3) strain (17). 
Transformed cells were cultured in LB medium (10 g/L 
tryptone, 5 g/L yeast extract, 10 g/L NaCl) with 100 
mg/ml Ampicillin, at 37˚C and 180 rpm. 
 
Culture conditions in the bioreactor  

A 5-L bioreactor (Sabaferm110, Zist Farayand 
Sanat, Iran) filled with 2 L medium was used for batch 
fermentation. Throughout the experiment, the pH was 
kept constant at 7.0 by the automatic addition of 
2N NaOH or 2N HCl solution. The compressed air was 
sterilized through a cellulose filter and delivered to the 
bioreactor tank. Also, different agitation speeds 
(rotation speed of the mixer) of 200, 400, 600, 800, 
1000, and 12000 rpm and constant aeration speed of 
1vvm were used.  
 
Co-expression of cytoplasmic chaperones and 
recombinant vector 

In order to express the cytoplasmic chaperones with 
the recombinant vector carrying the activin A cDNA, 
first desired chaperone plasmids were transformed to 
the DE3 strain (17). For selection of transformed cells, 
bacteria were grown in LB medium containing 
chloramphenicol antibiotic. In the next step, the 
recombinant vector carrying activin A sequence was 
transformed to the previous strains and then cultivation 
was done overnight in LB medium containing the 
Ampicillin and Chloramphenicol antibiotics. Then, 1% 
dilution of an overnight culture of transformed cells was 
added to fresh LB medium containing special inducer 
for each chaperone plasmid according to Table 1. The 
cells were cultured at 37ºC until the absorbance at 
600nm reached 0.6 and then incubation continued for 15 
minutes at 15ºC. Finally, 0.5 mmol/L of IPTG was 
added for induction of the promoter. The incubation 
continued for about 24 h at 15ºC and a centrifugation 
step was performed at 5000×g for 15 min at 4˚C to 
collect the cells. Also, periplasmic proteins  were 
extracted with osmotic shock method (18). 
 

 
Table 1. The properties of plasmids used in this study. 

No. Plasmid Chaperone Promoter Resistant Marker Inducer 
(final concentration) 

1 pG-KJE8 dnaK-dnaJ-grpE-groES -
groEL 

araB 
Pzt-1 

Chloramphenicol L-Arabinose (0.5mg/ml) 
Tetracycline (1-5ng/ml) 

2 pGro7 groES-groEL araB Chloramphenicol L-Arabinose (0.5mg/ml) 
3 pKJE7 dnaK-dnaJ-grpE araB Chloramphenicol L-Arabinose (0.5mg/ml) 
4 pG-Tf2 groES-groEL-tig Pzt-1 Chloramphenicol Tetracycline (1-5ng/ml) 
5 pTf16 tig araB Chloramphenicol L-Arabinose (0.5mg/ml) 
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activin A in the fermenter. According to our results, the 
best and most suitable agitation speed was 1000 rpm. 
These results are consistent with data provided by 
Zaslona et al. in 2015 which showed that recombinant 
production of 1,3-β-glucanase in E. coli  increased with 
moderate stirring and oxygenation speed (46); because 
at high agitation speeds cell disruption takes place (47).  

Finally, as the correct structure of the recombinant 
protein and more importantly its functionality is 
important, the secondary structure of produced activin A 
was determined and its ability to induce differentiation 
of K562 cells to red blood cells was studied and 
compared to a commercial one. The results showed that 
recombinant activin A had correct secondary structure 
and was fully functional. 
 
Conclusion 

Briefly, in this study, in addition to using an 
appropriate signal peptide, two other approaches were 
used to achieve a high level of activin A production in 
the periplasmic space. One method was the use of 
different cytoplasmic chaperones, and the other was 
agitation rate optimization in the bioreactor. The results 
showed that by co-expression of TF with activin A and 
using agitation rate of 1000 rpm, maximum expression 
of activin A in E. coli was obtained. 
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