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Abstract  

If the quality of a process is described using a linear functional relationship between 

the response variable and independent variables, such a relationship is called the 

profile. Today, with the development of manufacturing technologies, multistage 

processes have found a special position in manufacturing companies and industries. 

In the present paper, we consider a multistage process with AR(1) auto-correlated 

simple linear profile in each stage and address the effect of both auto-correlation 

and cascade property on the efficiency of common monitoring procedures. To 

eliminate the effect of auto-correlation, we used a transformation method as a 

remedial measure at first. Then, an approach based on the U statistic is applied to 

eliminate the cascade effect. Next, a modified T2 control chart is proposed to 

monitor the process in the second stage. The performance of the proposed control 

chart is evaluated in terms of the average run length criterion. The simulation 

studies show that the proposed control chart perform satisfactorily.  
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Introduction 
 

Depending on the regression relationship between the response and independent variables, the 

profiles are divided into various models such as linear, multiple linear, polynomial and 

nonlinear models. Generally, simple linear profiles have many applications in the 

manufacturing industries. In the practical cases, Mestek et al. [1], Kang and Albin [2], 

Mahmoud and Woodall [3] applied linear profiles to study the stability of calibration tools.  

In certain cases that the independence assumption of residuals is violated, some model-fitting 

results may be questionable. Generally, time series models are applied to display the type of 

dependent relationship between the residuals in the auto-correlated profiles [4]. Amiri et al. [5] 

introduced a real case from the automotive industry, which can be modeled by a polynomial 

profile and the first order autoregressive model (AR(1)) correlation structure in the errors. The 

idea of eliminating the impact of auto-correlation on the monitoring of auto-correlated profiles 

caused that Jensen et al. [6], Soleimani et al. [7, 8, 9], Koosha and Amiri [10] and Keramatpour 

et al. [11] present new methods for Phase I and Phase II monitoring of the auto-correlated 

profiles. Amiri et al. [12] developed a self-starting control chart to monitor the AR(1) auto-

correlated simple linear profiles. Wang and Huang [13] used two charts to monitor the auto-

correlated linear profiles modeled by the AR (1) time series.  

Due to the development of manufacturing technologies, most products and services today 

are the results of several process stages and steps. Therefore, the products are produced in two 
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or more successive manufacturing stages and the quality characteristics are determined by one 

or more profile relationships. Thus, several methods have been proposed to monitor multi-stage 

processes with profile quality characteristics [14]. 

In multi-stage processes, the cascade property usually exists in different stages of a 

multistage process, where the quality of a stage influences the performance of the next stage. 

With this in mind, lack of attention to which will lead to wrong results when the control charts 

are applied in multi-stage processes. Accordingly, in relation to cascade property, Zhang [15] 

applied a cause-selecting control (CSC) chart to monitor such processes, which later developed 

this chart in other research. Asadzadeh et al. [16, 17, 18] studied the monitoring of multi-stage 

processes using cause-selecting control (CSC) charts. Using Hawkins' studies [19], Hauck et 

al. [20] presented a method based on the U statistic for monitoring multi-stage processes in the 

presence of cascade property. Esmaili et al. [21] considered a two-stage process with a normal 

quality characteristic in the first stage and a simple linear regression profile in the second stage 

and proposed two methods to monitor the quality characteristics in both stages. Eghbali et al. 

[22] and Khedmati and Niaki [23] presented a single max-EWMA-3 control statistic for 

monitoring all parameters of linear profiles in each stage of multi-stage processes taking into 

account the cascade effect in Phase II monitoring of these profiles. Ayad and Sibanda [24] 

proposed a new multi-stage multivariate control chart based on likelihood score equations to 

monitor the outcomes of health care procedures. Derakhshani et al. [25] developed four control 

charts for monitoring Poisson regression profiles in multi-stage processes in Phase II. 

When the time interval between the samples is short, the collected observations are auto-

correlated. Therefore, the lack of attention to auto-correlation within the profiles of multi-stage 

processes will result in the poor performance of existing control charts for monitoring these 

types of processes in terms of ARL and consequently the occurrence of false out-of-control 

signals for control charts.  

Thus, in this paper Phase II monitoring of auto-correlated simple linear profile (SLP) in 

multi-stage processes is addressed. To that end, the 1st order autoregressive model as a justified 

and broadly used auto-correlation model in manufacturing processes is applied to model the 

relationship between stages. Hence, it is assumed that profile error terms can be modeled 

according to AR(1) model and there is no correlation between SLPs. Also, we suppose that the 

parameters are known and we monitor the process in Phase II. In this study, first, the cascade 

effect on the Phase II monitoring of auto-correlated simple linear profiles in a two-stage process 

has been shown. Then, to monitor the auto-correlated simple linear profile in each stage, a 

transformation method is applied to eliminate the impact of auto-correlation within simple 

linear profiles and a remedial measure, which is the U statistic proposed by Hauck et al. [20], 

is applied to eliminate the effect of cascade property between stages. Next, a control chart for 

monitoring auto-correlated simple linear profiles is discussed and the performance is evaluated 

via the average run length (ARL) criterion. The remainder of this study is organized as follows: 

Assumptions and modeling of the problem are presented in Section 2. Using simulation studies, 

the impact of auto-correlation and cascade property on the performance of auto-correlated 

simple linear profiles in a multi-stage process has been presented in Section 3. The 

transformation method, remedial measure and monitoring method is discussed in Section 4. 

Extensive simulation studies are conducted to evaluate the performance of the proposed method 

in reduction of both effects of the auto-correlation and cascade property in Section 5. 

Managerial Insights are presented in Section 6. Finally, the concluding remarks and future 

research directions are presented in Section 7.  

 

Assumptions and modeling the problem 
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The model is an auto-correlated simple linear profile in a two-stage process, taking into account 

the presence of cascade property between the stages. Suppose that in the ths  stage for sample

j , the observations ( )is isx , y  for the ths  stage is collected over time, where 

1,2,..., ; 1,2,..., ; 1,2i = n j m s .   Furthermore, under in-control statistical conditions for the 

first stage of the process, the relationship between the response variable, and the independent 

variable, as well as the residuals, are defined as Eq. 1. 

 

ij1 01 11 i1 ij1,y = + x +                                                             (1) 

ij1 1 (i-1)j1 ij1.a     

 

Moreover, the relationship between the response variable and the independent variable, and 

the residuals of the second stage of the process are defined as Eq. 2. 

 

ij2 ij1 02 12 i2 ij2 ,y = y + x +                                                       (2) 

ij2 2 (i-1)j2 ij2.a     

 

In these two models, it has been assumed that 
thj  sample results from the collection of n  

observations over time, where 
ijy  is the quality characteristic of the 

thj  sample of the first 

stage of the process, 
ijy  is the quality characteristic of the 

thj  sample of the ths stage, 1  is 

the auto-correlation coefficient between the residuals of the profile of the first stage of the 

process, and s  is the auto-correlation coefficient between the residuals of the profile of the 
ths  stage and   is the auto-correlation parameter between the process stages. Moreover, 01  

and 02  denote the intercept and the slope of the simple linear profile in Eq. 1, respectively. 

The special impact of stage s on the intercept and the slope are denoted by 0s  and 1s , 

respectively. Furthermore, 
1ija  and 2ija  are independent and identically distributed (iid) normal 

random variables with mean zero and the variance 2 . It has been also supposed that the values 

of ix  are constant and identical in the profiles. In the next section, the impact of cascade 

property and auto-correlation on the sufficiency of control chart for monitoring the auto-

correlated simple linear profiles in the two-stage process is investigated. 

 

The impact of cascade property and auto-correlation on the performance of 

traditional control scheme for monitoring auto-correlated SLPs in multi-

stage processes 
 

To investigate the impact of the cascade property between the two stages, the first stage profile 

is defined as 1 13 2 ,ij i ijy x     01 11( 3, 2)    and the second stage profile is defined as 

2 1 22 ,ij i ij ijy x       where the variable ix  takes the values 2, 4, 6, and 8. Note that by 

substituting 1 1 3 2ij ij iy x     in 2 1 22 ,ij i ij ijy x       we have 

2 1 2(2 3 ) (1 2 ) ,ij i ij ijy x          where 02 012     and 12 111 ,    which shows the 

relationship between the intercept and slope of the profiles in the both stages. Auto-correlated 

error terms are 1 ( 1) 1 1ij i j ija     and 2 ( 1) 2 2ij i j ija     that are modeled by the first-order 
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autoregressive model (AR(1)), where 
1ija  and 

2ija  are independently and identically distributed 

normal random variables with mean zero and variance 2.  In this section, the performance of 
2T  chart [introduced by Kang and Albin [2]] has been compared under the simultaneous impact 

of the cascade property and auto-correlation within the profiles based on the ARL criterion. For 

this purpose, a simulation with a 10,000 times repeat has been applied. The upper control limit 

of the 2T  chart in the second stage is set to 
2

0.005,2  in order to achieve an in-control ARL of 200. 

To examine the simultaneous impact of the cascade property and auto-correlation parameter 

within each profile, the simulation has been done for different values of the cascade property

 0,0.1,0.5,0.9  , and different values of the auto-correlation parameter within each profile 

as  0,0.1,0.5,0.9   and the ARL values of 2T  chart in the 2nd stage under various values of 

a shift in the intercept and the standard deviation (SD) of both stages are reported in Tables 1-

4. Also, the standard error of ARL for different conditions is given below each ARL. Note that, 

the results of simulation for shifts in the slope are similar to the intercept shifts. Therefore, we 

ignore reporting the results related to shifts in the slope. 

 

Table 1. The impact of   and   on ARL(Standard error) of the traditional 
2

T  control chart when 011 shifts 

to
011  . 

    Chart 

 

  

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 

0 

0 T2 200 199.5 200.1 200 200.1 198.9 200.8 200.01 199.7 200 200 

(1.94) (1.90) (1.89) (1.92) (1.87) (1.74) (1.64) (1.66) (1.54) (1.44) (1.33) 

0.1 T2 200 199.2 193.4 186.1 180.2 176.2 172.2 160.4 152.4 142.4 134.8 

(1.95) (2.01) (2) (2.06) (2) (0.55) (0.38) (0.27) (0.20) (0.14) (0.10) 

0.5 T2 200 189.8 153.1 111.7 79.4 53.3 37.1 25.6 18.3 13.1 9.7 

(0.37) (0.24) (0.14) (0.13) (0.75) (0.57) (0.37) (0.37) (1.81) (1.86) (1.79) 

0.9 T2 200 171.2 111.5 64.8 37.3 22.38 13.31 8.52 5.64 4.03 2.95 

(1.84) (1.77) (1.69) (1.75) (1.90) (1.95) (1.87) (1.92) (2.03) (2) (2.06) 

0.1 

0.1 T2 200 200 198.35 196.42 192.25 190.35 188.7 184.1 172.8 163.8 155 

(1.45) (1.30) (1.09) (1.11) (1.69) (1.64) (1.53) (1.49) (1.97) (2.05) (2) 

0.5 T2 200 186.5 149.2 110.9 78.8 56.2 39.2 27.6 19.9 15.2 10.6 

(1.04) (0.84) (0.65) (0.65) (1.45) (1.31) (1.12) (1.10) (1.91) (1.96) (1.94) 

0.9 T2 200 165.73 109.5 65.9 38.9 23.1 14.5 9.6 6.4 4.4 3.4 

(0.73) (0.54) (0.38) (0.37) (1.20) (1) (0.78) (0.76) (1.93) (1.91) (1.90) 

0.5 

0.1 T2 200 199.8 197.25 196.74 192.4 186.8 181.8 174.5 167.1 163.8 155.6 

(0.51) (0.35) (0.23) (0.21) (0.94) (0.74) (0.56) (0.53) (1.86) (1.92) (1.84) 

0.5 T2 200 190.4 168.8 131.1 100.5 74.5 57.2 42.8 31.1 24.3 18.9 

(0.37) (0.24) (0.14) (0.13) (0.75) (0.57) (0.37) (0.37) (1.81) (1.86) (1.79) 

0.9 T2 200 177.9 129.9 86.9 53.9 37.2 24.1 16.7 11.5 8.7 6.2 

(0.26) (0.16) (0.09) (0.08) (0.59) (0.42) (0.26) (0.25) (1.76) (1.77) (1.69) 

0.9 

0.1 T2 200 189.4 189.2 189.5 184.3 175.3 182.6 175.3 166.2 168.2 160.9 

(0.19) (0.11) (0.06) (0.05) (0.47) (0.32) (0.20) (0.18) (1.77) (1.73) (1.58) 

0.5 T2 200 194.8 172.9 143.8 121.3 94.8 74.1 58.5 46.3 37.1 29.6 

(0.13) (0.08) (0.04) (0.03) (0.38) (0.23) (0.14) (0.12) (1.65) (1.63) (1.53) 

0.9 T2 200 183.1 143.9 104.3 74.2 51.8 36.5 25.7 19.3 14.9 10.9 

(0.10) (0.06) (0.03) (0.02) (0.29) (0.18) (0.11) (0.09) (1.64) (1.58) (1.42) 

 

Impact of cascade property and auto-correlation on ARL performance of 2T  chart in the 

second stage at various shifts in the intercept of the first stage from 01  to 02   is evaluated 

through 10,000 simulation runs and the results are summarized in Table 1. Based on the 

outcomes, by increasing the values of the auto-correlation parameters, the in-control ARL of 

the 2T  control method in the second stage significantly decreases. In addition, when there is no 
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correlation between two stages ( 0),   the shifts in the intercept of the first stage do not affect 

the ARL of the 2T  chart in stage 2. 

 

Table 2. The impact of   and   on ARL(Standard error) of the traditional 
2

T control chart when 011 shifts to 

011   and 02  shifts to 
02   

    Chart   
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 

0 

0 T2 200 137.4 63.6 27.6 13.2 6.9 4.0 2.6 1.9 1.4 1.2 

(2.03) (2.05) (2.02) (2.01) (1.94) (1.82) (1.84) (1.71) (1.68) (1.59) (1.54) 

0.1 T2 200 127.1 53.7 22.1 9.7 5.3 3.1 2.0 1.5 1.3 1.1 

(2.45) (1.55) (1.05) (0.66) (0.46) (0.32) (0.23) (0.17) (0.12) (0.09) (0.05) 

0.5 T2 200 107.6 37.0 13.2 5.6 2.9 1.8 1.3 1.1 1.0 1.0 

(2.44) (1.54) (0.99) (0.55) (0.36) (0.24) (0.16) (0.12) (0.08) (0.06) (0.03) 

0.9 T2 200 104.2 32.4 11.3 4.7 2.5 1.6 1.3 1.1 1.0 1.0 

(2.39) (1.41) (0.87) (0.44) (0.27) (0.17) (0.11) (0.08) (0.06) (0.04) (0.01) 

0.1 

0.1 T2 200 147.3 62.4 26.6 12.1 6.4 3.7 2.4 1.8 1.4 1.2 

(2.47) (1.52) (0.89) (0.44) (0.27) (0.16) (0.11) (0.07) (0.05) (0.04) (0.01) 

0.5 T2 200 109.9 40.3 14.6 6.4 3.4 2.1 1.5 1.2 1.1 1.1 

(2.49) (1.96) (1.53) (1.08) (0.83) (0.66) (0.51) (0.41) (0.32) (0.25) (0.14) 

0.9 T2 200 102.3 34.9 12.7 5.5 2.9 1.8 1.4 1.1 1.0 1.0 

(2.53) (2) (1.53) (0.98) (0.74) (0.55) (0.41) (0.31) (0.24) (0.18) (0.09) 

0.5 

0.1 T2 200 148.2 75.7 37.4 19.7 10.9 6.4 4.3 2.9 2.1 1.7 

(2.43) (1.91) (1.39) (0.85) (0.60) (0.44) (0.31) (0.23) (0.17) (0.14) (0.05) 

0.5 T2 200 129.8 56.1 24.5 11.6 6.3 3.7 2.5 1.8 1.4 1.2 

(2.50) (1.92) (1.41) (0.86) (0.60) (0.43) (0.31) (0.22) (0.17) (0.13) (0.05) 

0.9 T2 200 126.5 50.9 20.9 10.2 5.3 3.2 2.2 1.6 1.3 1.2 

(2.41) (2.39) (2.31) (2.27) (2.17) (2.12) (2.06) (1.99) (1.90) (1.84) (0.81) 

0.9 

0.1 T2 200 151.9 93.6 52.2 29.8 17.7 11.2 7.5 5.1 3.5 2.7 

(2.47) (2.43) (2.36) (2.31) (2.24) (2.13) (2.07) (1.95) (1.92) (1.77) (0.77) 

0.5 T2 200 147.5 73.9 37.4 18.5 10.8 6.5 4.2 2.9 2.2 1.7 

(2.42) (2.42) (2.41) (2.24) (2.18) (2.14) (2.03) (1.96) (1.85) (1.76) (0.71) 

0.9 T2 200 136.3 67.1 33.4 16.8 9.4 5.5 3.7 2.6 1.9 1.5 

(2.34) (2.36) (2.34) (2.21) (2.13) (2.06) (1.95) (1.85) (1.81) (1.70) (0.70) 

 

The ARLs of the 2T  control chart in stage 2 under simultaneous shifts in the intercept of 

both stages are presented in Table 2. The outcomes show that when the values of   and   

parameters increase, the in-control Average Run Length efficiency of the control chart 

decreases. Moreover, obtained results for shifts in the error standard deviation are the same. 

The impact of cascade property and auto-correlation on ARLs of the control method for 

various levels of the shift sizes in the error SD in the first stage is shown in Table 3 in terms of 

ARL. The results indicate that the in-control performance of the traditional 2T  control chart 

deteriorates. 

 

Table 3. The impact of   and   on ARL(Standard error) of the traditional 
2

T  chart when 01  shifts to 01  

    Chart   

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 

0 

0 T2 200 200.1 201.0 200.5 200.6 201.1 200.5 200.0 200.8 200.0 200.0 

(1.94) (2) (2.02) (2.10) (2.03) (2.08) (2.02) (2.05) (1.97) (2.03) (2.03) 

0.1 T2 200 189.5 187.5 181.1 177.1 172.1 162.1 155.1 149.1 135.6 135.6 

(1.97) (1.99) (1.96) (2.14) (1.98) (2.09) (2.03) (2.04) (1.96) (2.04) (2.04) 

0.5 T2 200 136.5 89.15 57.90 40.11 28.69 19.65 15.31 11.84 7.58 7.58 

(2.01) (2.01) (1.90) (2.03) (1.95) (2.11) (2.06) (2.09) (1.93) (2.07) (2.07) 

0.9 T2 200 84.45 41.06 22.87 14.12 9.68 7.13 5.55 4.30 3.26 3.26 

(2.05) (2.05) (1.95) (2.06) (2.02) (2.02) (2) (2.10) (2.01) (2.04) (2.04) 
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0.1 

0.1 T2 200 217.8 208.5 203.9 193.3 192.5 180.9 174.7 165.2 150.8 150.8 

(1.94) (2) (2.02) (2.10) (2.03) (2.08) (2.02) (2.05) (1.97) (2.03) (2.03) 

0.5 T2 200 131.7 85.74 57.01 37.84 27.20 20.64 15.37 11.80 7.79 7.79 

(1.98) (1.98) (1.98) (2.10) (2.02) (2.05) (2.01) (2.07) (1.97) (2.07) (2.07) 

0.9 T2 200 83.25 39.45 22.41 14.18 9.60 6.88 5.50 4.43 3.24 3.24 

(1.97) (1.99) (1.96) (2.14) (1.98) (2.09) (2.03) (2.04) (1.96) (2.04) (2.04) 

0.5 

0.1 T2 200 198.7 195.6 188.4 183.3 176.2 167.3 159.7 154.5 136.2 136.2 

(1.94) (2.04) (1.91) (2.04) (2.02) (2.05) (1.99) (2.03) (1.97) (2.01) (2.01) 

0.5 T2 200 138.7 90.05 60.03 41 28.55 21.56 16.13 12.64 8.39 8.39 

(1.99) (2.04) (1.93) (2.07) (1.99) (2.04) (2.07) (2.08) (1.94) (2.06) (2.06) 

0.9 T2 200 87.69 43.18 23.72 15 10.03 7.37 5.63 4.54 3.32 3.32 

(1.96) (2.05) (2) (2.07) (1.98) (2.08) (2.03) (2.08) (2) (2.05) (2.05) 

0.9 

0.1 T2 200 198.7 195.6 188.3 183.2 176.2 167.3 159.7 154.5 134.8 134.8 

(1.96) (2.04) (1.92) (2.09) (2.03) (2.06) (2) (1.99) (2.03) (2.03) (2.03) 

0.5 T2 200 135.9 89.98 61.99 41.70 30.41 21.88 16.67 13.26 8.27 8.27 

(2) (2.05) (1.98) (2.11) (2.02) (2.03) (2.05) (2.07) (1.91) (2) (2) 

0.9 T2 200 89.25 43.76 24.01 15.42 10.65 7.71 5.94 4.79 3.35 3.35 

(2) (1.99) (1.96) (2.07) (1.98) (2.06) (2.03) (2.01) (1.94) (2.01) (2.01) 

 

Table 4. The impact of   and   on ARL(Standard error) of the traditional 
2

T  chart when 01  shifts to 01  

and 02 shifts to 02  

    Chart 
  

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 

0 

0 T2 
200 40.0 15.2 7.8 5.1 3.8 3.0 2.5 2.2 1.9 1.8 

(0.003) (0.002) (0.002) (0.002) (0.003) (0.003) (0.002) (0.002) (0.002) (0.002) (0.003) 

0.1 T2 
200 39.2 14.9 7.8 5.1 3.8 2.9 2.5 2.2 2.0 1.8 

(0) (1.971) (0.032) (0.012) (0.007) (0.005) (0.004) (0.003) (0.003) (0.003) (0.002) 

0.5 T2 
200 40.8 15.2 7.8 5.3 3.8 3.1 2.6 2.2 2.0 1.8 

(1.995) (2.019) (2.016) (2.064) (1.971) (2.031) (2.013) (2.098) (2) (1.999) (2.009) 

0.9 T2 
200 40.6 15.3 8.0 5.1 3.8 3.0 2.5 2.2 1.9 1.8 

(0.035) (0.033) (0.032) (0.033) (0.036) (0.034) (0.032) (0.032) (0.035) (0.034) (0.032) 

0.1 

0.1 T2 
200 43.0 15.9 8.4 5.5 3.9 3.1 2.5 2.2 2.0 1.8 

(0.013) (0.013) (0.012) (0.012) (0.013) (0.013) (0.012) (0.012) (0.013) (0.012) (0.012) 

0.5 T2 
200 39.7 14.8 8.1 5.1 3.8 3.0 2.5 2.2 2.0 1.8 

(0.008) (0.008) (0.007) (0.008) (0.008) (0.008) (0.007) (0.007) (0.008) (0.008) (0.007) 

0.9 T2 
200 38.8 14.8 7.9 5.1 3.7 3.0 2.5 2.2 1.9 1.8 

(0.006) (0.005) (0.005) (0.005) (0.006) (0.006) (0.005) (0.006) (0.006) (0.006) (0.005) 

0.5 

0.1 T2 
200 42.3 15.8 8.4 5.3 3.9 3.1 2.6 2.2 2.0 1.8 

(0.004) (0.004) (0.004) (0.004) (0.005) (0.004) (0.004) (0.004) (0.004) (0.004) (0.004) 

0.5 T2 
200 43.2 16.1 8.6 5.5 3.9 3.1 2.6 2.2 2.0 1.9 

(0.004) (0.004) (0.004) (0.004) (0.004) (0.004) (0.004) (0.004) (0.004) (0.004) (0.004) 

0.9 T2 
200 41.6 15.9 8.3 5.4 3.9 3.1 2.6 2.2 2.0 1.8 

(0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) 

0.9 

0.1 T2 
200 41.7 16.0 8.4 5.6 4.0 3.1 2.6 2.3 2.0 1.9 

(0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) 

0.5 T2 
200 43.4 16.4 8.6 5.7 4.0 3.2 2.7 2.3 2.1 1.9 

(0.003) (0.003) (0.002) (0.002) (0.003) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) 

0.9 T2 
200 41.7 16.5 8.6 5.6 4.1 3.2 2.7 2.3 2.1 1.9 

(0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) 

 

In Table 4, the impact of cascade property and auto-correlation on the ARL of the traditional 

control method in the 2nd stage under simultaneous shifts in the error SD of stages 1 and 2 is 

summarized. Similar to the previous case, it should be noted that the performance of the control 

chart deteriorates dramatically. The impact of the cascade property and auto-correlation were 

the same when concurrent shifts occur in the error terms SD of the 1st and 2nd  stages were 

examined. 
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The proposed method 
 

In this segment, a transformation scheme is applied for the first-order autoregressive simple 

linear profiles to eliminate within-profile auto-correlation. Then, a remedial measure, which 

was proposed by Hauck et al. [20], is extended to remove the cascade effect involved in 

multistage processes. Finally, a modified control chart is extended to monitor the process in the 

second stage. The framework of the proposed method is shown in Fig. 1. 

 

 
Fig. 1. Framework of the proposed method 

 

The transformation method 

 

The transformation of the auto-correlated observations is proposed as a first step to eliminate 

the within profile auto-correlation. For this purpose, each observation in each stage is converted 

via the following transformation scheme: 

 

( 1) .ijs ijs s i jsY Y Y 
                                                               (3) 

 

If observations ijsY  and ( 1)i jsY   in Eq. 3 are replaced by their values from the regression 

model in Eq. 1, an SLP model with independent error terms is obtained as follows: 

 

01 11 1 ( 1)1 1 ( 1) 1(1 ) ( ) ( ),ijs s s i s i s ij s i j sY x x      
                                      (4) 

 

leading to: 
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01 11 ,ijs s s i ijsY x a                                                                (5) 

 

where 
( 1) ,ijs ijs s i jsY Y Y 

    
( 1) ,is is s i sx x x 

    01 01 (1 ),s s      11 11s s    and 
ijsa ’s are 

independent random variables with mean zero and variance 2.  Since we consider Phase II 

monitoring of simple linear profiles, the parameters 01 ,s  11s  and   are assumed to be known. 

As a second step of the proposed method, a remedial measure is used to eliminate the cascade 

property between two stages. 

 

Remedial measure 

 

The U  statistic, which was introduced by Hauck et al. [20], is used to reduce the impact of the 

correlation between stages. Based on the remedial measure proposed by Hauck et al. [20], for 

the 
thj  profile in the first stage of a multi-stage process, we have:  

 

1 011 111
ˆ ˆ[ , ]j   U                                                                   (6) 

 

And for the sth stage we have: 

 
1

01 11 , 1 1, 1 01( 1) 11( 1)
ˆ ˆ ˆ ˆ[ , ] [ , ];js s s s s s s s s   

    
    U Σ Σ  2,3,...,s S                           (7) 

 

where 011 111
ˆ ˆ[ , ],    01( 1) 11( 1)

ˆ ˆ[ , ]s s  
   and 01 11

ˆ ˆ[ , ]s s    denote the intercept and slope vector 

estimators of the transformed model in stage 1 , stage ( -1)s  and stage s, sequentially. , 1s sΣ  is 

the covariance matrix of 01 11
ˆ ˆ[ , ]s s    and 01( 1) 11( 1)

ˆ ˆ[ , ]s s  
  , and 1, 1s s Σ is the covariance matrix 

of 01( 1) 11( 1)
ˆ ˆ[ , ]s s  
  . The above-mentioned covariance matrices are obtained by using Eqs. 8, 9, 

and 10, respectively: 

 
2

2 2

1,1
2

2

1
( )

1
,x x x x

x x x x

n s s

s s

 




   

   

  
  

 

 

  
 

x x

Σ
x

                                                   (8) 

2

2 2

1
2 3 2[( 1) ] 1

, 1
2

2
2

1
( )

1
( ). ,

s
s s r x x x x

s s

r

x x x x

n s s

s s

 

 





       





   

  
  

 
 

 
  

 



x x

Σ
x

                                              (9) 

2

2 2

2

, 2
2

2

1
( )

11
( ). ,
1

s

x x x x
s s

x x x x

n s s

s s

 


 


   
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  
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    
 

x x
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Advances in Industrial Engineering, Autumn 2020, 54(4): 447-459 

 455 

 

where x  is the vector of transformed observations, x  is the mean of the transformed 

observations and  x xS   is the sum of the squares of the difference between x  and x . 

The vector of average values and the covariance matrix of U in the 1st stage are presented in 

Eq. 11 and Eq. 12, sequentially. 

 

1 011 111( ) [ , ]j   U                                                            (11) 

1 011 111, 1,1j    UΣ Σ Σ                                                       (12) 

 

For stage s, the vector of average values and the covariance matrix of U  are presented in 

Eq. 13 and Eq. 14, respectively. 

 
1

01 11 , 1 1, 1 ( 1)( ) [ , ] ( )js s s s s s s j s   

   
  U Σ Σ U                                      (13) 

1

, , 1 1, 1 1js s s s s s s s



    UΣ Σ Σ Σ Σ                                                 (14) 

 

The modified T2 method 

 

This control scheme is based on the 2T  method, which was suggested by Kang and Albin [2]. 

In this control chart, the intercept and slope parameters of the 1st stage and ths  stages in the 

traditional model are changed by the transformed ones in Eq. 5 and the U  statistic of the 
thj  

profile is attained by using Eq. 6 for the first stage and Eq. 7 for the ths  stage. Then, the 

improved 2T statistic for each stage is as Eq. 15: 

 
2 1T ( ( )) ( ( )) ,

js s

T

js s js s   U UU U Σ U U                                           (15) 

 

Where 
jsU  is the remedial measure of the intercept and slope vector estimators of the 

transformed model in stage s, 
1

s



UΣ  is the covariance matrix of jU in the ths  stage and ( )s U  

is the mean vector of jU  in the ths  stage. 

 

Performance evaluation 
 

In this section, similar to the example of Section 3, an example is considered to evaluate the 

suggested method for monitoring the 2nd stage of a two-stage process with AR(1) auto-

correlated simple linear profile in each stage. The simulation has been done for different values 

of [0,0.1,0.9]   and different values of [0,0.1,0.9]  . To achieve an in-control ARL of 

approximately 200 for 
2T chart in the second stage, the upper control limit is set to 

2

0.005,2
. The 

ARL performance of the proposed control chart under different shifts in the regression 

parameters of the first stage and the second stage are summarized in Tables 5–9.  

Tables 5 and 6 contain the ARL values of the proposed chart in the 2nd stage under various 

values of shifts in the intercept of profiles in both stages, sequentially. Based on the outcomes, 

by applying the modified method the performance of the second stage chart are unaffected by 

the shifts in the intercept of stage 1. Table 7 contains the ARL values of the proposed control 

chart in the 2nd stage under concurrent shifts in the intercepts of profiles in both stages. The 

results show that the control chart performs satisfactorily.  
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Table 5. ARL performance of the proposed control chart for monitoring the second stage when 011
 shifts to 

011 
 


   Chart 

  

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 

0.9 

0.9 

Modified T2 199.9 200.56 198.9 199.2 200.0 200.1 199.7 197.9 199.9 200.8 199.8 

0.1 Modified T2 200.0 200.02 200.1 199.7 197.9 200.0 198.9 199.0 197.9 200.0 197.9 

0.9 

0.1 

Modified T2 200.1 200.03 199.9 199.9 199.9 200.0 200.6 198.9 199.2 200.0 199.9 

0.1 Modified T2 199.9 200.01 199.9 199.7 197.9 199.9 200.8 199.8 199.0 199.9 199.7 

 

Table 6. ARL performance of the proposed chart for monitoring the second stage when 012
 shifts to 012 

 


   Chart 

  

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 

0.9 

0.9 

Modified T2 200.95 158.61 94.35 45.727 25.23 14.78 8.344 5.24 3.719 2.50 1.987 

0.1 Modified T2 200.01 199.42 198.5 196.89 195.6 193.2 190.2 189.7 188.0 186.3 184.6 

0.9 

0.1 

Modified T2 200.05 187.42 134.6 105.24 68.69 46.48 32.14 21.07 14.16 10.48 7.468 

0.1 Modified T2 200.05 200.1 199.4 197.87 195.2 193.9 192.2 191.1 190.9 190.9 190.9 

 

Table 7. ARL performance of the proposed chart for monitoring the second stage when 
011 shifts to 011 

and 
012  shifts to 012   


   Chart 

  

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 

0.1 

0.1 

Modified T2 200.0 165.55 97.929 48.275 25.34 13.914 8.739 5.154 3.557 2.455 1.98 

0.9 Modified T2 200.0 199.85 198.25 197.65 196.9 196.02 190.5 188.9 185.7 183.8 182.0 

0.1 

0.9 

Modified T2 201.3 197.57 152.04 111.07 69.33 45.236 33.19 21.51 15.82 10.52 7.5 

0.9 Modified T2 200.0 199.42 198.52 196.89 195.6 193.20 190.2 189.7 188.0 186.3 184.7 

 

Table 8 contains the ARL values of the control chart in the second stage under simultaneous 

shifts in the error standard deviations of profiles in both stages. According to the results, the 

performance of the proposed control chart under both strong and weak auto-correlation 

coefficients is reasonable. The results of Table 9 show the ARL values of the proposed control 

chart in the second stage at various values of shifts in the error SD term in the 2nd stage. These 

outcomes show that the modified control method performs suitable for all shifts and both auto-

correlation coefficients. In addition, according to the results (not shown here) for the changes 

in error standard deviations of stage 1, the monitoring method is passable and is not affected by 

the correlation between the stages. 
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Table 8. ARL performance of the proposed chart for monitoring the second stage when 01  shifts to 01  and 

02 shifts to 02  

    Chart 

  

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 

0.1 0.1 Modified T2 200 39.553 14.707 7.399 5.124 3.769 2.963 2.503 2.22 1.953 1.804 

0.9 0.1 Modified T2 201.02 50.355 19.41 10.255 6.497 4.655 3.486 2.996 2.63 2.254 1.983 

0.1 0.9 Modified T2 200.07 41.78 15.34 8.22 5.39 3.822 3.039 2.583 2.294 1.898 1.893 

0.9 0.9 Modified T2 199.95 45.898 18.337 10.01 6.713 4.76 3.635 2.99 2.51 2.166 1.981 

 

Table 9. ARL performance of the proposed chart for monitoring the second stage when
 02 shifts to

 02
 

    Chart 

  

1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 

0.1 0.1 Modified T2 199.93 40.946 15.224 8.27 5.386 3.866 3.033 2.512 2.189 1.985 1.827 

0.9 0.1 Modified T2 200.07 50.32 19.087 10.712 6.712 4.72 3.878 3.035 2.618 2.381 2.17 

0.1 0.9 Modified T2 199.56 92.1 48.161 27.552 17.049 11.57 8.893 6.417 5.094 4.241 3.652 

0.9 0.9 Modified T2 199.98 95.65 53.899 31.799 20.955 13.99 10.29 8.15 6.25 5.31 4.38 

 

Managerial insights 
 

1. If the quality characteristic is an auto-correlated simple linear profile, the auto-correlation 

effect first should be removed for monitoring. Because auto-correlation has a negative effect 

on the statistical performance of control charts. 

2. The cascade property exists in different stages of a multistage process, where the quality of 

a stage influences the quality of the next stages. Due to the cascade property, when a control 

chart in each stage signals and shows an out-of-control situation, it is not clear whether the 

problem is from that stage or has been transferred from the previous stages. Therefore, in order 

to correctly interpret the control chart signal and eliminate the assignable causes, first, the 

cascade effect must be removed, then the relevant control chart should be developed. 

3. Since simple linear profile monitoring requires monitoring the Y-intercept and the slope of 

the regression line, a multivariate control chart should be used after eliminating both effects of 

auto-correlation and cascade property. Because the Y-intercept and the slope estimators are 

correlated and must be monitored simultaneously. Using Hotelling’s T2 control chart due to its 

quadratic structure and using a variance-covariance matrix, can be a suitable choice for 

monitoring error of SD as well as the Y-intercept and the slope of a simple linear profile. 

 

Conclusion and future research  
 

In this study, a control method was introduced for Phase II monitoring of auto-correlated simple 

linear profile in a multi-stage process. The results showed that both auto-correlation and cascade 

property affect the efficiency of the traditional control chart, which is offered for monitoring 

SLPs in a multi-stage process. To eliminate this impact, a transformation method on the Y-
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values at the first step of the proposed method was applied. At the second step, the cascade 

effect of multi-stage processes was eliminated by using U statistic. Then, a control chart namely 

modified T2 was developed for monitoring auto-correlated simple linear profiles in a multi-

stage process. The results of simulation studies indicate that the proposed control chart is 

applicable for monitoring the auto-correlated simple linear profiles in multi-stage processes. 

The performance of the modified control method was sufficiently good, under different shifts. 

In this paper, a remedial measure to eliminate the cascade effect was considered, but other 

approaches such as using the state-space models can be applied for modeling and addressing 

this impact for future research. 
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