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Abstract

If the quality of a process is described using a linear functional relationship between | Keywords:

the response variable and independent variables, such a relationship is called the | Auto-Correlation;
profile. Today, with the development of manufacturing technologies, multistage | Cascade Property;
processes have found a special position in manufacturing companies and industries. | Phase II;

In the present paper, we consider a multistage process with AR(1) auto-correlated | Average Run Length
simple linear profile in each stage and address the effect of both auto-correlation
and cascade property on the efficiency of common monitoring procedures. To
eliminate the effect of auto-correlation, we used a transformation method as a
remedial measure at first. Then, an approach based on the U statistic is applied to
eliminate the cascade effect. Next, a modified T2 control chart is proposed to
monitor the process in the second stage. The performance of the proposed control
chart is evaluated in terms of the average run length criterion. The simulation
studies show that the proposed control chart perform satisfactorily.

Introduction

Depending on the regression relationship between the response and independent variables, the
profiles are divided into various models such as linear, multiple linear, polynomial and
nonlinear models. Generally, simple linear profiles have many applications in the
manufacturing industries. In the practical cases, Mestek et al. [1], Kang and Albin [2],
Mahmoud and Woodall [3] applied linear profiles to study the stability of calibration tools.

In certain cases that the independence assumption of residuals is violated, some model-fitting
results may be questionable. Generally, time series models are applied to display the type of
dependent relationship between the residuals in the auto-correlated profiles [4]. Amiri et al. [5]
introduced a real case from the automotive industry, which can be modeled by a polynomial
profile and the first order autoregressive model (AR(1)) correlation structure in the errors. The
idea of eliminating the impact of auto-correlation on the monitoring of auto-correlated profiles
caused that Jensen et al. [6], Soleimani et al. [7, 8, 9], Koosha and Amiri [10] and Keramatpour
et al. [11] present new methods for Phase | and Phase Il monitoring of the auto-correlated
profiles. Amiri et al. [12] developed a self-starting control chart to monitor the AR(1) auto-
correlated simple linear profiles. Wang and Huang [13] used two charts to monitor the auto-
correlated linear profiles modeled by the AR (1) time series.

Due to the development of manufacturing technologies, most products and services today
are the results of several process stages and steps. Therefore, the products are produced in two
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or more successive manufacturing stages and the quality characteristics are determined by one
or more profile relationships. Thus, several methods have been proposed to monitor multi-stage
processes with profile quality characteristics [14].

In multi-stage processes, the cascade property usually exists in different stages of a
multistage process, where the quality of a stage influences the performance of the next stage.
With this in mind, lack of attention to which will lead to wrong results when the control charts
are applied in multi-stage processes. Accordingly, in relation to cascade property, Zhang [15]
applied a cause-selecting control (CSC) chart to monitor such processes, which later developed
this chart in other research. Asadzadeh et al. [16, 17, 18] studied the monitoring of multi-stage
processes using cause-selecting control (CSC) charts. Using Hawkins' studies [19], Hauck et
al. [20] presented a method based on the U statistic for monitoring multi-stage processes in the
presence of cascade property. Esmaili et al. [21] considered a two-stage process with a normal
quality characteristic in the first stage and a simple linear regression profile in the second stage
and proposed two methods to monitor the quality characteristics in both stages. Eghbali et al.
[22] and Khedmati and Niaki [23] presented a single max-EWMA-3 control statistic for
monitoring all parameters of linear profiles in each stage of multi-stage processes taking into
account the cascade effect in Phase Il monitoring of these profiles. Ayad and Sibanda [24]
proposed a new multi-stage multivariate control chart based on likelihood score equations to
monitor the outcomes of health care procedures. Derakhshani et al. [25] developed four control
charts for monitoring Poisson regression profiles in multi-stage processes in Phase 1.

When the time interval between the samples is short, the collected observations are auto-
correlated. Therefore, the lack of attention to auto-correlation within the profiles of multi-stage
processes will result in the poor performance of existing control charts for monitoring these
types of processes in terms of ARL and consequently the occurrence of false out-of-control
signals for control charts.

Thus, in this paper Phase Il monitoring of auto-correlated simple linear profile (SLP) in
multi-stage processes is addressed. To that end, the 1% order autoregressive model as a justified
and broadly used auto-correlation model in manufacturing processes is applied to model the
relationship between stages. Hence, it is assumed that profile error terms can be modeled
according to AR(1) model and there is no correlation between SLPs. Also, we suppose that the
parameters are known and we monitor the process in Phase 1l. In this study, first, the cascade
effect on the Phase 1l monitoring of auto-correlated simple linear profiles in a two-stage process
has been shown. Then, to monitor the auto-correlated simple linear profile in each stage, a
transformation method is applied to eliminate the impact of auto-correlation within simple
linear profiles and a remedial measure, which is the U statistic proposed by Hauck et al. [20],
is applied to eliminate the effect of cascade property between stages. Next, a control chart for
monitoring auto-correlated simple linear profiles is discussed and the performance is evaluated
via the average run length (ARL) criterion. The remainder of this study is organized as follows:
Assumptions and modeling of the problem are presented in Section 2. Using simulation studies,
the impact of auto-correlation and cascade property on the performance of auto-correlated
simple linear profiles in a multi-stage process has been presented in Section 3. The
transformation method, remedial measure and monitoring method is discussed in Section 4.
Extensive simulation studies are conducted to evaluate the performance of the proposed method
in reduction of both effects of the auto-correlation and cascade property in Section 5.
Managerial Insights are presented in Section 6. Finally, the concluding remarks and future
research directions are presented in Section 7.

Assumptions and modeling the problem
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The model is an auto-correlated simple linear profile in a two-stage process, taking into account
the presence of cascade property between the stages. Suppose that in the s™ stage for sample
j, the observations (x,,y,) for the s" stage is collected over time, where
i=12,..,n;j=12,..,m;s =12 Furthermore, under in-control statistical conditions for the

first stage of the process, the relationship between the response variable, and the independent
variable, as well as the residuals, are defined as Eq. 1.

Yin= Bt BuXut & 1)
Eijn = Pr€ip T -

Moreover, the relationship between the response variable and the independent variable, and
the residuals of the second stage of the process are defined as Eq. 2.

Yip = @Y Qo + QX ip + )
Eijp = Pz T 8p-

In these two models, it has been assumed that j™ sample results from the collection of n
observations over time, where y; is the quality characteristic of the j™ sample of the first

stage of the process, y;; is the quality characteristic of the j™ sample of the s" stage, P, is

the auto-correlation coefficient between the residuals of the profile of the first stage of the

process, and p, is the auto-correlation coefficient between the residuals of the profile of the

Sth

stage and ¢ is the auto-correlation parameter between the process stages. Moreover, S,
and f,, denote the intercept and the slope of the simple linear profile in Eq. 1, respectively.
The special impact of stage S on the intercept and the slope are denoted by «, and «,
respectively. Furthermore, a;, and a;, are independent and identically distributed (iid) normal
random variables with mean zero and the variance . It has been also supposed that the values
of X, are constant and identical in the profiles. In the next section, the impact of cascade

property and auto-correlation on the sufficiency of control chart for monitoring the auto-
correlated simple linear profiles in the two-stage process is investigated.

The impact of cascade property and auto-correlation on the performance of
traditional control scheme for monitoring auto-correlated SLPs in multi-
stage processes

To investigate the impact of the cascade property between the two stages, the first stage profile
is defined as y,, =3+2x; +&;,, (&, =3,&,=2) and the second stage profile is defined as

Yii2 =2+X, +Pg, + Ejas

where the variable X, takes the values 2, 4, 6, and 8. Note that by
substituting i1 =Yij1—3—2X, in Yi2=2+X; + &5, + &5, we have
Yi2=(2-38)+(1-20)X, +dg;, +&;,, Where a, =2-a,, and &, =1-¢,, which shows the
relationship between the intercept and slope of the profiles in the both stages. Auto-correlated
error terms are &, = pg; y;, +&;; and &;, = pg; 4;, +8;, thatare modeled by the first-order
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autoregressive model (AR(1)), where a;, and a;, are independently and identically distributed

normal random variables with mean zero and variance o”. In this section, the performance of
T2 chart [introduced by Kang and Albin [2]] has been compared under the simultaneous impact
of the cascade property and auto-correlation within the profiles based on the ARL criterion. For
this purpose, a simulation with a 10,000 times repeat has been applied. The upper control limit

of the T? chart in the second stage is set to ;(5005,2 in order to achieve an in-control ARL of 200.

To examine the simultaneous impact of the cascade property and auto-correlation parameter
within each profile, the simulation has been done for different values of the cascade property

¢= [0,0.1,0.5,0.9], and different values of the auto-correlation parameter within each profile

as p= [0,0.1,0.5,0.9] and the ARL values of T2 chart in the 2" stage under various values of

a shift in the intercept and the standard deviation (SD) of both stages are reported in Tables 1-
4. Also, the standard error of ARL for different conditions is given below each ARL. Note that,
the results of simulation for shifts in the slope are similar to the intercept shifts. Therefore, we
ignore reporting the results related to shifts in the slope.

Table 1. The impact of ¢ and p on ARL(Standard error) of the traditional T2 control chart when By, shifts

to B, +40.

P ¢ Chart y)
0 0.2 04 0.6 0.8 1 1.2 14 1.6 1.8 2
0 T2 200 1995  200.1 200 2001 1989  200.8 20001 199.7 200 200
(1.94)  (1.90) (1.89) (1.92) (1.87) (L.74) (1.64) (1.66) (1.54) (1.44) (1.33)
01 T2 200 199.2 1934 1861 1802 1762 1722 1604 1524 1424 1348
0 (1.95)  (2.01) 2 (2.06) 2 (055)  (0.38) (0.27)  (0.20) (0.14) (0.10)
05 T2 200 189.8 1531 1117 79.4 53.3 37.1 25.6 18.3 131 9.7
(0.37) (0.24) (0.14) (0.13) (0.75) (057) (0.37) (0.37) (1.81) (1.86) (1.79)
09 T2 200 1712 1115 64.8 37.3 2238 1331 852 564 403 295
(1.84) (L77) (169 (175  (1.90) (195 (1.87) (1.92) (203) (2  (2.06)
01 T2 200 200  198.35 19642 19225 19035 1887 1841 1728 1638 155
(1.45)  (1.30)  (1.09)  (L11)  (1.69)  (1.64) (1.53) (1.49) (L.97) (205 (2
01 05 T2 200 1865  149.2 1109 78.8 56.2 39.2 27.6 19.9 15.2 10.6
(1.04) (084) (065  (0.65)  (145) (1.31) (L12) (1100 (1.91) (1.96) (1.94)
09 T2 200 16573  109.5 65.9 38.9 23.1 145 9.6 6.4 44 34
(0.73)  (0.54)  (0.38)  (0.37)  (1.20) 1) (0.78)  (0.76)  (1.93) (1.91)  (1.90)
01 T2 200 199.8 19725 19674 1924 1868 1818 1745 1671 1638 1556
(051) (0.35) (0.23) (0.21) (0.94) (0.74) (0.56) (0.53) (1.86) (1.92) (1.84)
05 05 T2 200 1904 1688 1311  100.5 74.5 57.2 4238 311 243 18.9
(037) (0.24) (0.14) (0.13) (0.75) (057) (0.37) (0.37) (1.81) (1.86) (1.79)
09 T2 200 1779 129.9 86.9 53.9 37.2 24.1 16.7 115 8.7 6.2
(0.26) (0.16) (0.09)  (0.08)  (0.59)  (0.42) (0.26) (0.25)  (1.76) (1.77)  (1.69)
01 T2 200 189.4  189.2 1895 1843 1753 1826 1753 1662 168.2  160.9
(0.19) (0.11)  (0.06)  (0.05) (047) (0.32) (0.20) (0.18) (1.77) (1.73) (1.58)
09 05 T2 200 1948 1729 1438 1213 94.8 74.1 58.5 463 371 296
(0.13)  (0.08)  (0.04) (0.03) (0.38) (0.23) (0.14) (0.12) (165) (1.63) (1.53)
09 T2 200 1831 1439 1043 74.2 51.8 36.5 25.7 19.3 14.9 10.9

(0.10)  (0.06)  (0.03)  (0.02) (0.29)  (0.18)  (0.11)  (0.09)  (1.64) (158) (1.42)

Impact of cascade property and auto-correlation on ARL performance of T? chart in the
second stage at various shifts in the intercept of the first stage from S, to S, + Ao isevaluated
through 10,000 simulation runs and the results are summarized in Table 1. Based on the
outcomes, by increasing the values of the auto-correlation parameters, the in-control ARL of
the T2 control method in the second stage significantly decreases. In addition, when there is no
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correlation between two stages (¢ = 0), the shifts in the intercept of the first stage do not affect
the ARL of the T? chart in stage 2.

Table 2. The impact of ¢ and p on ARL(Standard error) of the traditional T2 control chart when By shifts to
foui + A0 and B, shiftsto B, + Ao

p ¢ Chart A
0 0.2 0.4 0.6 0.8 1 1.2 14 1.6 18 2
0 T2 200 137.4 63.6 27.6 13.2 6.9 4.0 2.6 19 14 1.2
(2.03) (2.05) (2.02) (2.01) (1.94) (1.82) (1.84) (1.71) (1.68) (1.59) (1.54)
0.1 T2 200 127.1 53.7 221 9.7 53 3.1 2.0 15 13 11
0 (245) (1.55) (1.05) (0.66) (0.46) (0.32) (0.23) (0.17) (0.12) (0.09)  (0.05)
05 T? 200 107.6 37.0 13.2 5.6 29 18 13 11 1.0 1.0
(2.44) (154) (0.99) (0.55) (0.36) (0.24) (0.16) (0.12) (0.08) (0.06) (0.03)
0.9 T2 200 1042 324 113 47 25 16 13 11 10 10
(239) (1.41) (0.87) (0.44) (0.27) (0.17) (0.11) (0.08) (0.06) (0.04) (0.01)
01 T2 200 1473 624 266 121 64 37 24 18 14 12
(247) (152) (0.89) (0.44) (0.27) (0.16) (0.11) (0.07) (0.05) (0.04) (0.01)
01 05 T2 200 1099 403 146 64 34 2.1 15 12 11 11
(249) (1.96) (1.53) (1.08) (0.83) (0.66) (0.51) (0.41) (0.32) (0.25) (0.14)
0.9 T2 200 102.3 34.9 12.7 55 29 1.8 1.4 11 1.0 1.0
(253) (2) (1.53) (0.98) (0.74) (0.55) (0.41) (0.31) (0.24) (0.18)  (0.09)
0.1 T2 200 148.2 75.7 374 19.7 10.9 6.4 43 2.9 2.1 1.7
(243) (1.91) (1.39) (0.85) (0.60) (0.44) (0.31) (0.23) (0.17) (0.14) (0.05)
05 05 T2 200 1298 561 245 116 63 37 25 18 14 12
(250) (1.92) (1.41) (0.86) (0.60) (0.43) (0.31) (0.22) (0.17) (0.13) (0.05)
0.9 T2 200 126.5 50.9 20.9 10.2 53 3.2 2.2 16 13 1.2
(241) (239) (2.31) (2.27) (217) (212) (2.06) (1.99) (1.90) (1.84) (0.81)
0.1 T2 200 151.9 93.6 52.2 29.8 17.7 11.2 75 51 35 2.7
(247) (243) (2.36) (2.31) (2.24) (213) (2.07) (1.95) (1.92) (L77) (0.77)
09 05 T2 200 1475 739 374 185 108 65 42 29 22 17
(242) (242) (241) (2.24) (2.18) (2.14) (2.03) (1L96) (1.85) (1.76) (0.71)
0.9 T2 200 1363 671 334 168 94 55 37 26 19 15

(234) (236) (2.34) (2.21) (2.13) (2.06) (195 (1.85) (1.81) (1.70) (0.70)

The ARLs of the T? control chart in stage 2 under simultaneous shifts in the intercept of
both stages are presented in Table 2. The outcomes show that when the values of ¢ and p
parameters increase, the in-control Average Run Length efficiency of the control chart
decreases. Moreover, obtained results for shifts in the error standard deviation are the same.

The impact of cascade property and auto-correlation on ARLs of the control method for
various levels of the shift sizes in the error SD in the first stage is shown in Table 3 in terms of
ARL. The results indicate that the in-control performance of the traditional T> control chart
deteriorates.

Table 3. The impact of ¢ and p on ARL(Standard error) of the traditional T? chart when Oy, shiftsto Y0y

p ¢ Chart 4
1 1.2 14 1.6 18 2 2.2 24 2.6 2.8 3
0 T2 200 200.1 201.0 2005 2006 2011 2005 2000 200.8 200.0 200.0
(1.94) (2 (202) (210) (2.03) (2.08) (2.02) (205 (1.97) (2.03) (2.03)
0.1 T2 200 1895 1875 1811 1771 1721 1621 1551 1491 1356 135.6
0 (1.97) (1.99) (1.96) (2.14) (1.98) (2.09) (2.03) (2.04) (1.96) (2.04) (2.04)
05 T2 200 136.5 89.15 57.90 40.11 28,69 19.65 1531 11.84 7.58 7.58
(201) (201) (1.90) (2.03) (1.95) (2.11) (206) (2.09) (1.93) (2.07) (2.07)
0.9 T2 200 8445 41.06 2287 1412 968 713 555 430 326  3.26

(2.05) (2.05) (1.95) (2.06) (2.02) (202) (20 (210) (2.01) (2.04) (2.04)
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01 T 200 2178 2085 2039 1933 1925 1809 1747 1652 1508  150.8
(194) (2 (202) (210) (2.03) (208 (2.02) (2.05) (1.97) (2.03) (2.03)

01 05 T 200 1317 8574 5701 37.84 2720 2064 1537 1180 7.79  7.79
(1.98) (1.98) (1.98) (2.10) (2.02) (205) (2.01) (2.07) (L97) (2.07) (2.07)

0.9 T2 200 8325 3945 2241 1418 960 688 550 443 324 324
(1.97)  (1.99) (1.96) (2.14) (1.98) (2.09) (2.03) (2.04) (1.96) (2.04) (2.04)

01 T 200 1987 1056 1884 1833 1762 1673 159.7 1545 1362 1362
(1.94) (2.04) (1.91) (2.04) (2.02) (205 (1.99) (2.03) (1.97) (2.01) (2.01)

05 05 T2 200 1387 90.05 60.03 41 2855 2156 1613 1264 839  8.39
(1.99) (2.04) (1.93) (2.07) (1.99) (2.04) (2.07) (2.08) (1.94) (2.06) (2.06)

09 T 200 8769 4318 2372 15 1003 737 563 454 332 332
(1.96) (2.05) (2) (207) (1.98) (208) (2.03) (2.08) (2) (2.05) (2.05)

01 T 200 1987 1056 188.3 1832 1762 1673 159.7 1545 1348 1348
(1.96) (2.04) (1.92) (2.09) (2.03) (206) (2) (1.99) (2.03) (2.03) (2.03)

09 05 T2 200 1359 89.98 6199 4170 3041 2188 1667 13.26 827 827
() (205 (1.98) (2.11) (202) (203) (205 (2.07) (1.91) (2 @

0.9 T2 200 8925 4376 2401 1542 1065 771 594 479 335 335

@)  (1L99) (1.96) (207) (1.98) (2.06) (203) (2.01) (1L94) (2.01) (2.01)

Table 4. The impact of ¢ and o on ARL(Standard error) of the traditional T? chart when Oy, shiftsto Joy,

and Oy, shiftsto J0y,

4
p ¢4 Chart — 12 14 16 18 2 22 24 26 28 3
0 T2 200 40.0 15.2 7.8 5.1 3.8 3.0 25 2.2 1.9 1.8
(0.003) (0.002) (0.002) (0.002) (0.003) (0.003) (0.002) (0.002) (0.002) (0.002) (0.003)
01 T 200 39.2 14.9 7.8 5.1 3.8 2.9 2.5 2.2 2.0 1.8
0 ©)  (1.971) (0.032) (0.012) (0.007) (0.005) (0.004) (0.003) (0.003) (0.003) (0.002)
05 T2 200 40.8 15.2 7.8 5.3 3.8 3.1 2.6 2.2 2.0 1.8
' (1995) (2.019) (2.016) (2.064) (L971) (2.031) (2013) (2.098) (2)  (1.999) (2.009)
09 T2 200 40.6 15.3 8.0 5.1 3.8 3.0 25 2.2 1.9 1.8
: (0.035) (0.033) (0.032) (0.033) (0.036) (0.034) (0.032) (0.032) (0.035) (0.034) (0.032)
01 T 200 43.0 15.9 8.4 55 3.9 3.1 25 2.2 2.0 1.8
' (0.013) (0013) (0.012) (0012) (0.013) (0.013) (0.012) (0.012) (0.013) (0.012) (0.012)
01 05 T2 200 39.7 14.8 8.1 5.1 38 3.0 25 2.2 2.0 1.8
40 (0.008) (0.008) (0.007) (0.008) (0.008) (0.008) (0.007) (0.007) (0.008) (0.008) (0.007)
0.9 T2 200 38.8 14.8 79 5.1 3.7 3.0 25 2.2 1.9 1.8
' (0.006) (0.005) (0.005) (0.005) (0.006) (0.006) (0.005) (0.006) (0.006) (0.006) (0.005)
01 T2 200 42.3 15.8 8.4 5.3 3.9 3.1 2.6 2.2 2.0 1.8
: (0.004) (0.004) (0.004) (0.004) (0.005 (0.004) (0.004) (0.004) (0.004) (0.004) (0.004)
05 05 T2 200 43.2 16.1 8.6 55 39 31 2.6 2.2 2.0 1.9
(0.004) (0.004) (0.004) (0.004) (0.004) (0.004) (0.004) (0.004) (0.004) (0.004) (0.004)
0.9 T2 200 41.6 15.9 8.3 54 3.9 3.1 2.6 2.2 2.0 1.8
' (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003)
01 T2 200 41.7 16.0 8.4 5.6 4.0 31 2.6 2.3 2.0 1.9
' (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003) (0.003)
09 05 T2 200 43.4 16.4 8.6 5.7 4.0 3.2 2.7 2.3 2.1 1.9
(0.003) (0.003) (0.002) (0.002) (0.003) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002)
0.9 T2 200 41.7 16.5 8.6 5.6 4.1 3.2 2.7 2.3 2.1 1.9

(0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002) (0.002)

In Table 4, the impact of cascade property and auto-correlation on the ARL of the traditional
control method in the 2" stage under simultaneous shifts in the error SD of stages 1 and 2 is
summarized. Similar to the previous case, it should be noted that the performance of the control
chart deteriorates dramatically. The impact of the cascade property and auto-correlation were
the same when concurrent shifts occur in the error terms SD of the 1%t and 2" stages were
examined.
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The proposed method

In this segment, a transformation scheme is applied for the first-order autoregressive simple
linear profiles to eliminate within-profile auto-correlation. Then, a remedial measure, which
was proposed by Hauck et al. [20], is extended to remove the cascade effect involved in
multistage processes. Finally, a modified control chart is extended to monitor the process in the
second stage. The framework of the proposed method is shown in Fig. 1.

Start

/ Eliminate
| within-profile |
|auto-correlation/
‘.in each stage/

/ Remove the impact of |
| the cascade property |

| involved in multistage |

processes
— /Extend a control chart!
 to monitor the process |
in the last stage.
End

Fig. 1. Framework of the proposed method

The transformation method

The transformation of the auto-correlated observations is proposed as a first step to eliminate
the within profile auto-correlation. For this purpose, each observation in each stage is converted
via the following transformation scheme:

Yie =Y i = 2Y i yjs- &)

ijs

If observations Y ;. and Y ; ,,c in Eq. 3 are replaced by their values from the regression
model in Eg. 1, an SLP model with independent error terms is obtained as follows:

ijs

Y ij,s = By U= p) + By (X1 — X (i-D)ls )+ (gijls ~PEipjis ): 4

leading to:
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Yij’s zﬂéls +ﬂl’1sxi, +a1'js’ (5)

’ ! 9
where Yij,s =Y iis - pY (i-Djs Xis = Xis — P Xy Bos = Bus A=p), By =By and Qs S are
independent random variables with mean zero and variance . Since we consider Phase Il
monitoring of simple linear profiles, the parameters £,,,, B, and p are assumed to be known.

As a second step of the proposed method, a remedial measure is used to eliminate the cascade
property between two stages.

Remedial measure

The U statistic, which was introduced by Hauck et al. [20], is used to reduce the impact of the
correlation between stages. Based on the remedial measure proposed by Hauck et al. [20], for

the j™ profile in the first stage of a multi-stage process, we have:

U 1= [ﬁén’ Bl’ll] (6)
And for the s stage we have:

Ujs = [ﬁ(;ls ’ﬁllls ] - z“s ,s—lzil,sfl[ﬁ(;l(s—l) ! Blrl(s—l)]; S = 21 31 A S (7)

where [Bi., Bl sy Bies] and [B,Bi] denote the intercept and slope vector
estimators of the transformed model in stage 1, stage (s -1) and stage s, sequentially. X, is
the covariance matrix of [, , 3. ] and [,3(;1(5_1), ,Bl’l(s_l)], and X, ., is the covariance matrix

of [B(;l(s,l), ,31'1(571)]. The above-mentioned covariance matrices are obtained by using Egs. 8, 9,
and 10, respectively:

1 X X'
0'2(—1+—) —o?
n-1 s, S,y
Zl,l = — X 2x y (8)
52 X o
SXX' Sxk’
_2 E—
1 Xl !
0'2(—+—) —c*
S (B S 2f(s1) 1] n-1 s, Syxr
ss-1 (¢ + Z¢ ) - 2 ' (9)
r=2 2 (o}
_G — —
Sxk’ SXS(
1 X X'
1-¢* 2(n—1+s ) _Uzs
=) _ Rt (10)
—¢ , X o
_a —
Sxk’ SxS(’
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where X' is the vector of transformed observations, x’ is the mean of the transformed
observations and S, is the sum of the squares of the difference between x’ and x’.

The vector of average values and the covariance matrix of U in the 1% stage are presented in
Eq. 11 and Eq. 12, sequentially.

,U(Ujl) =[S Bl (11)
)2 2, 12)

i T huwBu

For stage s, the vector of average values and the covariance matrix of U are presented in
Eq. 13 and Eq. 14, respectively.

u(U js ) =B Bl 1- X ,sflzs_il,s—llu(Uj (s—l)) (13)
ZUS = Zs s )2 2’siil,s—lzs—l (14)

I s,s-1

The modified T2 method

This control scheme is based on the T* method, which was suggested by Kang and Albin [2].
In this control chart, the intercept and slope parameters of the 1 stage and s™ stages in the
traditional model are changed by the transformed ones in Eq. 5 and the U  statistic of the j

profile is attained by using Eq. 6 for the first stage and Eq. 7 for the s™ stage. Then, the
improved T?statistic for each stage is as Eq. 15:

TS = (U —u(U))EG (U, —u(U,)) )

Where U, is the remedial measure of the intercept and slope vector estimators of the
transformed model in stage s, ):[,1s is the covariance matrix of U, inthe s stage and x(U;)
is the mean vector of U, inthe s" stage.

Performance evaluation

In this section, similar to the example of Section 3, an example is considered to evaluate the
suggested method for monitoring the 2" stage of a two-stage process with AR(1) auto-
correlated simple linear profile in each stage. The simulation has been done for different values

of ¢=[0,0.1,0.9] and different values of p=[0,0.1,0.9]. To achieve an in-control ARL of

2
approximately 200 for T*chart in the second stage, the upper control limit is set to Hoos2 The
ARL performance of the proposed control chart under different shifts in the regression
parameters of the first stage and the second stage are summarized in Tables 5-9.

Tables 5 and 6 contain the ARL values of the proposed chart in the 2" stage under various
values of shifts in the intercept of profiles in both stages, sequentially. Based on the outcomes,
by applying the modified method the performance of the second stage chart are unaffected by
the shifts in the intercept of stage 1. Table 7 contains the ARL values of the proposed control
chart in the 2" stage under concurrent shifts in the intercepts of profiles in both stages. The
results show that the control chart performs satisfactorily.
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Table 5. ARL performance of the proposed control chart for monitoring the second stage when Pou shifts to

B t4o
A
p ¢ Chart
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0.9 Modified T? 199.9 | 200.56 | 198.9 | 199.2 | 200.0 | 200.1 | 199.7 | 197.9 | 199.9 | 200.8 | 199.8
0.9
0.1 Modified T? 200.0 | 200.02 | 200.1 | 199.7 | 197.9 | 200.0 | 198.9 | 199.0 | 197.9 | 200.0 | 197.9
0.9 Modified T? 200.1 | 200.03 | 199.9 | 199.9 | 199.9 | 200.0 | 200.6 | 198.9 | 199.2 | 200.0 | 199.9
0.1
0.1 Modified T? 199.9 | 200.01 | 199.9 | 199.7 | 197.9 | 199.9 | 200.8 | 199.8 | 199.0 | 199.9 | 199.7

Table 6. ARL performance of the proposed chart for monitoring the second stage when F 012 shifts to Pz + A0

A
p ¢ Chart
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0.9 Modified T2 200.95 | 158.61 | 94.35 | 45.727 | 25.23 | 14.78 | 8.344 | 524 | 3.719 | 2.50 | 1.987

0.9
0.1 Modified T2 200.01 | 199.42 | 198.5 | 196.89 | 195.6 | 193.2 | 190.2 | 189.7 | 188.0 | 186.3 | 184.6
0.9 Modified T2 200.05 | 187.42 | 134.6 | 105.24 | 68.69 | 46.48 | 32.14 | 21.07 | 14.16 | 10.48 | 7.468

0.1
0.1 Modified T2 200.05 | 200.1 | 199.4 | 197.87 | 195.2 | 193.9 | 192.2 | 191.1 | 190.9 | 190.9 | 190.9

Table 7. ARL performance of the proposed chart for monitoring the second stage when f, shiftsto f,, + 1o

and 4, shiftsto £, + 1o

A

p ¢ Chart

0 0.2

0.4

0.6

0.8

1

1.2

14

1.6

1.8

0.1 Modified T2

200.0 | 165.55

97.929

48.275

25.34

13.914

8.739

5.154 | 3.557

2.455

1.98

0.1
0.9 Modified T?

200.0 | 199.85

198.25

197.65

196.9

196.02

190.5

188.9 | 185.7

183.8

182.0

0.1 Modified T?

201.3 | 197.57

152.04

111.07

69.33

45.236

33.19

21.51 | 15.82

10.52

7.5

0.9
0.9 Modified T2

200.0 | 199.42

198.52

196.89

195.6

193.20

190.2

189.7 | 188.0

186.3

184.7

Table 8 contains the ARL values of the control chart in the second stage under simultaneous
shifts in the error standard deviations of profiles in both stages. According to the results, the
performance of the proposed control chart under both strong and weak auto-correlation
coefficients is reasonable. The results of Table 9 show the ARL values of the proposed control
chart in the second stage at various values of shifts in the error SD term in the 2" stage. These
outcomes show that the modified control method performs suitable for all shifts and both auto-
correlation coefficients. In addition, according to the results (not shown here) for the changes
in error standard deviations of stage 1, the monitoring method is passable and is not affected by
the correlation between the stages.
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Table 8. ARL performance of the proposed chart for monitoring the second stage when 0y shifts to Y0, and

0-02 shifts to 7/0-02

p ¢ Chart
1 1.2 14 1.6 1.8 2 2.2 2.4 2.6 2.8 3

011 01 Modified T2 200 39.553 | 14.707 | 7.399 | 5.124 | 3.769 | 2.963 | 2.503 | 2.22 | 1.953 | 1.804

09 | 01 Modified T2 201.02 | 50.355 | 19.41 | 10.255 | 6.497 | 4.655 | 3.486 | 2.996 | 2.63 | 2.254 | 1.983

01| 09 Modified T2 200.07 | 41.78 | 15.34 8.22 539 | 3.822 | 3.039 | 2.583 | 2.294 | 1.898 | 1.893

09 | 09 Modified T2 199.95 | 45.898 | 18.337 | 10.01 | 6.713 | 4.76 | 3.635 | 2.99 251 | 2.166 | 1.981

Table 9. ARL performance of the proposed chart for monitoring the second stage when Oy, shifts to Y0y,
¥
p ¢ Chart
1 12 14 1.6 18 2 2.2 24 2.6 2.8 3

01| 01 Modified T2 199.93 | 40.946 | 15.224 8.27 5.386 3.866 | 3.033 | 2512 | 2.189 | 1.985 | 1.827
09 | 01 Modified T2 200.07 | 50.32 | 19.087 | 10.712 | 6.712 4.72 3.878 | 3.035 | 2.618 | 2.381 217
01| 09 Modified T2 199.56 92.1 48.161 | 27.552 | 17.049 | 1157 | 8.893 | 6.417 | 5.094 | 4.241 | 3.652
09 | 09 Modified T2 199.98 | 95.65 | 53.899 | 31.799 | 20.955 | 13.99 | 10.29 8.15 6.25 5.31 4.38

Managerial insights

1. If the quality characteristic is an auto-correlated simple linear profile, the auto-correlation
effect first should be removed for monitoring. Because auto-correlation has a negative effect
on the statistical performance of control charts.

2. The cascade property exists in different stages of a multistage process, where the quality of
a stage influences the quality of the next stages. Due to the cascade property, when a control
chart in each stage signals and shows an out-of-control situation, it is not clear whether the
problem is from that stage or has been transferred from the previous stages. Therefore, in order
to correctly interpret the control chart signal and eliminate the assignable causes, first, the
cascade effect must be removed, then the relevant control chart should be developed.

3. Since simple linear profile monitoring requires monitoring the Y-intercept and the slope of
the regression line, a multivariate control chart should be used after eliminating both effects of
auto-correlation and cascade property. Because the Y-intercept and the slope estimators are
correlated and must be monitored simultaneously. Using Hotelling’s T2 control chart due to its
quadratic structure and using a variance-covariance matrix, can be a suitable choice for
monitoring error of SD as well as the Y-intercept and the slope of a simple linear profile.

Conclusion and future research

In this study, a control method was introduced for Phase |1 monitoring of auto-correlated simple
linear profile in a multi-stage process. The results showed that both auto-correlation and cascade
property affect the efficiency of the traditional control chart, which is offered for monitoring
SLPs in a multi-stage process. To eliminate this impact, a transformation method on the Y-
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values at the first step of the proposed method was applied. At the second step, the cascade
effect of multi-stage processes was eliminated by using U statistic. Then, a control chart namely
modified T2 was developed for monitoring auto-correlated simple linear profiles in a multi-
stage process. The results of simulation studies indicate that the proposed control chart is
applicable for monitoring the auto-correlated simple linear profiles in multi-stage processes.
The performance of the modified control method was sufficiently good, under different shifts.
In this paper, a remedial measure to eliminate the cascade effect was considered, but other
approaches such as using the state-space models can be applied for modeling and addressing
this impact for future research.
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