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The displacement of the contact line (CL) between two arbitrary immiscible 

flowing fluids was modeled. The present model is valid for a wide range of 

viscosity ratios of the phases. The previously developed models reported in 

the literature were devoted to special cases, i.e., high viscosity fluid pushing 

the low viscosity fluid. The present model reveals a direct relationship 

among the dynamic contact angle, the dimensionless pressure difference in 

the channel/tube, the Capillary numbers of both phases, and the 

characteristic length ratios of the channel/tube. The model was validated by 

agreeing with its predictions for the dynamic contact angle with the 

available data for a case of water-air flow inside a tube. Then, it was applied 

to more general cases with different viscosity ratios. According to the 

results, by increasing the ratio of the advancing phase's viscosity to the 

receding phase's viscosity, the dynamic contact angle reaches more quickly 

to its final value. It was also seen that by increasing the ratio of the length 

to the diameter of the tube the evolution of the dynamic contact, angle 

becomes slower. The most interesting point is that a unique behavior is seen 

and a master curve is achieved if the time becomes dimensionless with a 

changing parameter (not a fixed parameter). This facilitates the way to 

predict and interpret the dynamic contact angle in the most general way. 

 

 

Introduction 

Different fluids exhibit different behaviors in contact with solid surfaces. These differences 

are due to the difference in their willingness to wet the solid surface. This tendency is called 

fluid wetting or surface wettability. When two different immiscible (two phases) and static 

fluids are adjacent to the solid surface, the difference in their wettability results in a contact 

angle (θ), as shown in Fig. 1. 

 
Fig. 1. The schematic of the contact line between two fluids and the observed contact angle 
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When the two fluids are stationary, the observed contact angle is the static contact angle (θs). 

The static contact angle is well known and computable based on the Young-Laplace equation. 

The contact angle is again observed in the relative motion state of the phases and the solid 

surface. It is called the dynamic contact angle (θd) which its quantity is different from the static 

one depending on different factors [1]. In the relative motion mode of the phases, one phase 

moves forward, and the other is naturally pushed back. Hence, for each CL between the two 

phases, there will be two advancing and receding contact angles. 

Many researchers have investigated the dynamic contact angle, most of which experimental 

studies [2-5]. These studies provide relations to predict the dynamic contact angle. However, 

as some of the most important ones will be shown below, they are only able to predict the 

dynamic contact angle in a limited range. Several studies concluded that the dynamic contact 

angle is dependent on some large-scale flow parameters such as the capillary number [6-8] and 

others believe that such a study should be conducted in the microscale by the use of molecular 

dynamics [9]. The difference between apparent and microscopic dynamic contacts was 

highlighted by Omori and Kajishima [10]. 

Hoffman [7] designed a device to measure the dynamic contact angle observed in a liquid-

air flow passing through a capillary tube. He did it for several liquids and obtained the results 

for a relatively wide range of conditions, covering both viscous and inertial dominated regimes. 

This work showed that the advancing contact angle in the liquid-air flow is a function of the 

Capillary number and the static contact angle and a universal function. The well-known law of 

Hoffman-Tanner suggests that for a completely wetting fluid (i.e., the static contact angle is 

approximately zero), the dynamic contact angle follows the relation of 𝜃𝑑
3 = 9𝐶𝑎 where Ca is 

the capillary number. This relationship holds for small contact angles [11]. Also, when the static 

contact angle is not zero, the well-known Hoffman-Vinoff-Tanner relation was found 

applicable as,𝜃𝑑
3 − 𝜃𝑠

3 = 72𝐶𝑎 although its constant is in principle slightly dependent on the 

size of the flow system [12].  

Jiang et al. [13] collected various available data for the dynamic contact angle and  provided 

the Eq. 1 for predicting the dynamic contact angle for the viscous flow regime: 

(1) 
cos θs − cos θd
cos θs + 1

= tanh⁡(4.96⁡Ca0.702) 

Bracke et al. [14] also obtained the Eq. 2 based on the results of a series of their own 

experiments: 

𝑐𝑜𝑠 𝜃𝑑 =𝑐𝑜𝑠 𝜃𝑠 − 2(1 + 𝑐𝑜𝑠𝜃𝑠)𝐶𝑎
1/2 (2) 

As it is clear, although many experimental studies were conducted to investigate the dynamic 

contact angle, no definitive and exact relationship has been derived yet from laboratory data 

that is true for all materials in all geometrical and physical conditions. Moreover, it has been 

shown that such relations are not applicable to predict the dynamic contact angle, especially at 

relatively high Capillary numbers [12,15]. All this adds up that laboratory measurements of 

dynamic contact angles are very difficult, especially at points very close to the CL. 

Modeling is another way to study the dynamic contact angle. The major difficulty 

encountered in modeling the shape of the CL (and therefore the contact angle) is applying the 

no-slip wall boundary condition (which is a reasonable and widely used boundary condition for 

large-scale modeling) for such fluid-fluid-solid interface geometries which are very small in 

scale. This leads to the singularity in equations right at the CL, and consequently, the solution 

diverges [11, 16]. This issue was solved in different modeling works by supposing a slip in very 
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close distances of the CL, e.g., distances less than S [17, 18]. However, no convincing 

experiment or theory has yet been found to support or reject these kinds of methods [9].  

Cox [17] developed an approximate method and assumed that in the distances less than S 

(slip length) the dynamic contact angle tends to the static contact angle, and finally reached to 

Eq. 3: 

𝑔(𝜃𝑑⁡, 𝑀) − 𝑔(𝜃𝑠⁡, 𝑀) ⁡= 𝐶𝑎⁡[ln(𝜀−1) + 𝑄] + 𝑂(𝐶𝑎2) )3( 

where ε=S/R, Q depends on the slip model and imposed boundary condition, g is a simple 

function which tends to the Hoffman universal function as the viscosity ratio of the fluids tends 

to the infinity.  

Eggers and Stone [11] showed the importance of the characteristic lengths in predicting the 

dynamic contact angle. They concluded that for the full wetted state (i.e., when θs=0), the 

dynamic contact angle at a distance of x from the CL is predicted with the Eq. 4:  

𝜃𝑑
3(𝑥) = 9𝐶𝑎⁡𝑙𝑛⁡(

𝑥

𝑆
𝑐𝑎𝛽) )4( 

where β is a positive constant and depends on the type of the physical slip mechanism (such 

as Van der Waals, Navier slip, nonlinear slip, etc.), which is assumed to be applicable at the 

locations close to the CL (distances less than S), although this relation provides a good physical 

view of the dynamic contact angle, it has a great deal of uncertainty due to how the β constant 

and the microscope length (S) are taken into account. 

Accurate prediction of most large-scale models is dependentlarge-scale models depend on 

some microscale parameters, such as slip length (S). Hence, microscale (molecular) models 

were mostly dedicated to predicting the slip length. These models were also used to predicting 

the relationship of dynamic contact angle with flow velocity or Capillary number [19, 20]. They 

have also been developed in order to predict the effects of the uneven solid surfaces on the 

dynamic contact angle [21]. 

As it was seen, most studies on the dynamic contact angle considered the steady flow of a 

case of two-phase liquid-air. It means the viscosity of one phase was deliberately ignored in 

comparison with the other phase. However, by conducting experiments on the two-phase flows 

of different liquid-air and liquid-liquid systems, Fermigier and Jenffer [22] found that their 

results of dynamic contact angle for liquid-air systems are in good agreement with the well-

known Hoffman-Tanner relation as well as Cox's theory predictions. Still, the data obtained for 

the dynamic contact angle in liquid-liquid systems was greater than predictions by existing 

theories. They noticed the influence of the viscosity ratio of the phases (i.e., the effect of the 

Capillary number of both phases) on the dynamic contact angle. 

According to what is known so far, the effects of viscosity ratio and characteristic lengths 

on the dynamic contact angle should not be underestimated by the capillary number of only one 

phase. However, no definitive theoretical equation or comprehensive experimental relationship 

has yet been derived that encompasses all these parameters together. The current study tried to 

start the development of such a relation, although with some simplification assumptions at first. 

The model considers the two phases separately and starts with the famous Hagen-Poiseuille 

equation for the single-phase flows in tubes and the equivalent equation for the channels. This 

idea was first suggested by Washburn [23] and then widely used in a series of publications by 

Hilpert [24-27] where the liquid infiltration into and liquid withdrawal from capillary tubes was 

modeled. Using the Young-Laplace equation for predicting the contact angle as the function of 

pressure drop across the CL, the model was completed to obtain the final relation for the 

dynamic contact angle.  Cai et al. [28, 29] also used the same idea for predicting spontaneous 

inhibition in capillaries. Although these studies examined different geometric and physical 

states in great detail, the viscosity of the second phase was ignored. They also assumed the 

pressure difference between the two ends of the capillary to be zero and used the experimental 
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models mentioned earlier to predict the dynamic contact angle. However, in the present study, 

this problem is tried to be investigated in its most general case of two-phase flow without 

mentioned limitations. The effects of the viscosity ratio and characteristic length ratio will be 

quantified for the first time. 

Theory  

According to Fig. 2, it was assumed that the two fluids flow from left to right in a capillary 

channel and a capillary tube. The dynamic contact angle was defined as the contact angle 

between the wetting fluid (e.g., fluid 1) and the solid surface, as shown in this figure. P1, P2, 

P3, and P4 were the pressures at the places shown in this figure. 

 

Fig. 2. The simplified geometries of the channel flow and the tube flow  

To study the fluids flow in such conditions, the following assumptions were intended: 

1. Fluids are immiscible, and fluid 1 (according to Fig. 1) is the wetting phase.  

2. Fluids are Newtonian, and flows are incompressible (Because of low Mach number). 

3. The surface tension between the fluids as well as between the fluid and the solid wall is 

constant. 

4. The flows are laminar (i.e., the dense regime is dominant due to low Reynolds numbers). 

5. The pressure at each point of any cross-sectional area is constant and only changes along 

the channel/tube length. 

6. The flows are fully developed, and the pressure changes linearly in each phase. 

7. Gravity is neglected (Because the Bond number (𝐵𝑜 =
(𝑃1−𝑃4)𝑔𝐿

2

𝜎
⁡) is low for such 

assumed microscale flows). 

8. The interface moves at a constant velocity   

9. Fluids flow from left to right at a quasi-steady-state condition. 

Applying Navier-Stokes equations in the flow direction for each fluid, by considering the 

above assumptions, along with using mass conservation equation, the Eq. 5 and Eq. 6 are 

obtained: 

For channel flow: {
for⁡fluid⁡1:⁡

P1−P2

L1
+ μ1

d2u1

dy2
= 0

for⁡fluid⁡2:⁡
P3−P4

L2
+ μ2

d2u2

dy2
= 0

 )5) 

For tube flow: {
for⁡fluid⁡1:⁡

P1−P2

L1
+

μ1

r

d

dr
(r

du1

dr
) = 0

for⁡fluid⁡2:⁡
P1−P2

L2
+

μ2

r

d

dr
(r

du2

dr
) = 0

 (6) 

Supposing that no-slip boundary condition is valid on the wall surfaces for both fluids, the 

solutions of Eqs. 5 and 6 are Eq. 7 and Eq. 8: 
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For channel flow: {
P1 − P2 =

3U̅L1μ1

H2

P3 − P4 =
3U̅L2μ2

H2

 (7) 

For tube flow: {
P1 − P2 =

8μ1L1U̅

R2

P3 − P4 =
8μ2L2U̅

R2

 (8) 

where 𝑈̅ is the average velocity of the fluids inside the tube/channel. Since the average 

velocity is the same for both fluids, it has no indexes. As expected, the obtained equation for 

the capillary tube flow is the popular equation of Hagen-Poiseuille. 

Now, by applying force balance to the CL and using the Young-Laplace equation, Eq. 9 and 

Eq. 10 are obtained: 

For channel flow: P2 − P3 = −
σcos(θd)

H
 (9) 

For tube flow: P2 − P3 = −
2σcos(θd)

R
 (10) 

By adding Eqs. 9 and 10 to Eqs. 7 and 8, respectively, the following Eqs. 11 and 12 are 

derived:  

For channel flow: 𝑐𝑜𝑠(𝜃𝑑) = ⁡
3

𝐻
(𝐶𝑎2𝐿2 + 𝐶𝑎1𝐿1) −

(𝑃1−𝑃4)𝐻

𝜎
 (11) 

For tube flow:⁡𝑐𝑜𝑠(𝜃𝑑) = ⁡
4

𝑅
(𝐶𝑎2𝐿2 + 𝐶𝑎1𝐿1) −

(𝑃1−𝑃4)𝑅

2𝜎
 (12) 

where Ca1=⁡
𝜇1𝑈̅

𝜎
 and Ca2=⁡

𝜇2𝑈̅

𝜎
 mean the Capillary numbers based on the viscosities of fluids 1 

and 2, respectively. 

The terms 
(𝑃1−𝑃4)𝐻

𝜎
 and 

(𝑃1−𝑃4)𝑅

2𝜎
 can be assumed as the dimensionless pressure differences in 

the whole channel and the tube, respectively. Therefore, Eqs. 11 and 12 show an explicit 

relationship among the dynamic contact angle observed in the channel/tube, the dimensionless 

pressure differences between the two sides of the channel/tube, the Capillary numbers of both 

phases and the characteristic lengths of the channel/tube. Eqs. 11 and 12are the main ones and 

all the following relations developed for the dynamic contact angle are based on these two 

equations. 

As a simpler case, the length of the channel/tube (L1+L2) can be assumed long. Therefore, it 

can be assumed that L1=L2≅L is not changed notably at short time intervals. Therefore, Eqs. 11 

and 12 converts to the Eqs. 13 and 14 as: 

For channel flow: 𝑐𝑜𝑠(𝜃𝑑) = ⁡
3𝐿

𝐻
(𝐶𝑎2 + 𝐶𝑎1) −

(𝑃1−𝑃4)𝐻

𝜎
 (13) 

For tube flow:⁡𝑐𝑜𝑠(𝜃𝑑) = ⁡
4𝐿

𝑅
(𝐶𝑎2 + 𝐶𝑎1) −

(𝑃1−𝑃4)𝑅

2𝜎
 (14) 

Eqs. 13 and 14 are valid at the conditions were steady assumption is not far from reality. 

However, these equations demonstrate the effect of the ratio of the characteristic lengths 

(vividly 𝐿 𝐻⁄  for the channel and 𝐿 𝑅⁄ for the tube) on the dynamic contact angle.  

However, in transient conditions, as the fluids flow through the channel/tube, the lengths of 

L1 and L2 change so that at a certain time of t from the beginning of the flow, 𝐿1 = 𝐿1,0 + 𝑈̅𝑡 

and 𝐿2 = 𝐿2,0 − 𝑈̅𝑡 where 𝐿1,0 and 𝐿2,0 are the initial values of 𝐿1⁡and 𝐿2 respectively. 

Therefore, Eqs. 11 and 12convert to the Eqs. 15 and 16, respectively: 

For channel flow:𝑐𝑜𝑠(𝜃𝑑) = ⁡
3

𝐻
[𝐶𝑎2(𝐿2,0 − 𝑈̅𝑡⁡) + 𝐶𝑎1(𝐿1,0 + 𝑈̅𝑡⁡)] −

(𝑃1−𝑃4)𝐻

𝜎
 (15) 
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For tube flow: cos(θd) = ⁡
4

R
[Ca2(L2,0 − U̅t⁡) + Ca1(L1,0 + U̅t⁡)] −

(P1−P4)R

2σ
 (16) 

Using weather Eqs. 13 and 14 or Eqs. 15 and 16 depends on the real test conditions (steady 

or transient), which one may apply in the laboratory to obtain data. However, we continue with 

the Eqs. 13 and 14 hereafters, although all following equations can also be re-derived for Eqs. 

15 and 16. 

It is expected that the fluids do not flow for a certain value of pressure difference between 

the two ends of the channel/tube (e.g., for P4-P1 = P3-P2= ΔPst-lr). For the pressure differences 

(P4-P1) less than ΔPst-lr the fluids flow from left to the right, and for the pressure differences 

higher than ΔPst-lr the fluids flow from right to the left. According to this argument, at the states 

that the fluids do not flow (where P4-P1 = ΔPst-lr), the pressure difference can be related to the 

static contact angle using the Young-Laplace relation as Eqs. 17 and 18:  

For channel flow: 𝛥𝑃𝑠𝑡−𝑙𝑟 =
𝜎𝑐𝑜𝑠(𝜃𝑠)

𝐻
 (17) 

For tube flow:⁡𝛥𝑃𝑠𝑡−𝑙𝑟 ⁡=
2𝜎𝑐𝑜𝑠(𝜃𝑠)

𝑅
 (18) 

Normally, for the general situations where the fluids are either flowing from left to right or 

they are stationary, the pressure difference can be written as Eq. 19: 

P1-P4 = - ΔPst-lr + ΔPD (19) 

where ΔPD ≥ 0. (ΔPD=0 means the fluids do not flow). 

Therefore, by substituting Eqs. 17 and 19 in Eq. 13 and Eqs. 18 and 19 in Eq. 14, the Eqs. 

20 and 21 are derived: 

For channel flow:⁡𝑐𝑜𝑠(𝜃𝑑) − 𝑐𝑜𝑠(𝜃𝑠) =
3𝐿

𝐻
(𝐶𝑎2 + 𝐶𝑎1) −

𝐻𝛥𝑃𝐷

𝜎
 (20) 

 

For tube flow:⁡𝑐𝑜𝑠(𝜃𝑑) − 𝑐𝑜𝑠(𝜃𝑠) =
4𝐿

𝑅
(𝐶𝑎2 + 𝐶𝑎1) −

𝑅𝛥𝑃𝐷

2𝜎
 (21) 

For the cases where 𝐶𝑎2 ≪ 𝐶𝑎1 (e.g., the viscosity of the receding fluid (μ2) is negligible in 

comparison with the viscosity of the advancing fluid (μ1)), the equations simplify to Eqs. 22 

and 23: 

For channel flow:⁡𝑐𝑜𝑠(𝜃𝑑) − 𝑐𝑜𝑠(𝜃𝑠) =
3𝐿𝐶𝑎1

𝐻
−

𝐻𝛥𝑃𝐷

𝜎
 (22) 

For tube flow:⁡𝑐𝑜𝑠(𝜃𝑑) − 𝑐𝑜𝑠(𝜃𝑠) =
4𝐿𝐶𝑎1

𝑅
−

𝑅𝛥𝑃𝐷

2𝜎
 (23) 

And for the cases where 𝐶𝑎1 ≪ 𝐶𝑎2⁡(e.g. the viscosity of the advancing fluid (μ1) is 

negligible in comparison with the viscosity of the receding fluid (μ2)), the equations are 

simplified to Eqs. 24 and 25: 

For channel flow:⁡𝑐𝑜𝑠(𝜃𝑑) − 𝑐𝑜𝑠(𝜃𝑠) =
3𝐿𝐶𝑎2

𝐻
−

𝐻𝛥𝑃𝐷

𝜎
 (24) 

For tube flow:⁡𝑐𝑜𝑠(𝜃𝑑) − 𝑐𝑜𝑠(𝜃𝑠) =
4𝐿𝐶𝑎2

𝑅
−

𝑅𝛥𝑃𝐷

2𝜎
 (25) 

All the above equations for θd, make a relation among three unknown parameters of dynamic 

contact angle, pressure difference, and average velocity. Therefore, another two relations are 

needed among these three variables to close the system of equations. One additional equation 

can be the same as the experimental relationships obtained for the dynamic contact angle, some 

of which were mentioned in the introduction section (e.g., Eqs. 1 and 2). Moreover, almost all 
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previous researches have considered the conditions in such a way that the pressure at the inlet 

and outlet of the capillary is the same as the atmospheric pressure and as a result one of the 

unknowns have also been removed (because⁡𝑃1 − 𝑃4 = 0). Therefore, the system of equations 

can be solved now with two remained unknowns and two equations. 

Model Validation 

Hilpert [24] solved the quasi-steady problem of liquid infiltration into a capillary tube where 

it was assumed that the initial dynamic contact angle was 900 (𝜃𝑑,0 = 900), L1,0=0, 𝑃1 − 𝑃4 =
0 and 𝜃𝑠 = 400. Because of the low viscosity of the air (as the receding phase), a single-phase 

flow was assumed by Hilpert [24]. The same problem was solved numerically by combining 

Bracke’s model (Eq. 2) with Eq. 16 by assuming that⁡Ca2 ≪ Ca1. This was because the 

viscosity of the air is much lower than the liquid.  

Fig. 3 compares the results of the obtained dynamic contact angle as a function of 

dimensionless time (τ =
tσ

µR
) between the present work and Hilpert’s study [24]. As it is clear, 

the results are in fair agreement. This approves the validity of the present method. The results 

obtained by Li et al. [30] were also shown in the same figure. 

  

Fig. 3. Comparison among the results of the present study for the dynamic contact angle as a function of 

dimensionless time with the results of Hilpert [24] and Li et al. [30]  

By proving the validity of the model, it was used for a variety of situations. 

Results and Discussion 

Eqs. 11 and 12 show relations in the most general way for the dynamic contact angles 

observed in a two-phase flow inside the capillary channel and tube, respectively. According to 

these equations, the dynamic contact angle is a function of the dimensionless pressure 

differences between the two ends of the channel/tube, the Capillary numbers of both phases, 

and the characteristic lengths of the channel/tube. It is necessary to mention that the pressure 

difference (P1-P4), the average velocity (𝑈̅) and the contact angle (θd) are not independent of 

each other. Actually, according to these relations, an increase in P1-P4 is compensated by the 

tolerable decrease in the dynamic contact angle (θd) and an increase in the value of the average 

velocity of the flows (𝑈̅). However, the main point is that the instantaneous values of these 

variables satisfy Eqs. 11 and 12 for the channel and the tube, respectively. 
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Eqs. 13 and 14 express the same relations for the steady flows, and Eqs. 15 and 16 do the 

same for the time-dependent flows. Eqs. 20 and 21 provide a clearer picture of the relationship 

between the dynamic (θd) and the static (θs) contact angles. Eqs. 22 to 25 simplify the mentioned 

relations for the special cases where the Capillary number of one of the fluids is much lower 

than the other.  

Showing the results obtained by these equations in graphical format is useful. Therefore, in 

following, the effects of viscosity ratio and length to radius ratio on the dynamic contact angle 

will be discussed. 

Effect of Viscosity Ratio 

Unlike the single-phase flows, no experimental relation has been provided so far to predict 

the dynamic contact angle in two-phase flows with comparable viscosities. Therefore, solving 

Eqs. 11 and 12 is not possible in its general form because of the smaller number of equations 

(equal to 1) than the variables (equal to 3). However, it is possible to reduce the variables by 

investigating a simpler case where 𝑃1 − 𝑃4 = 0. For such a case still two unknowns (θd and 𝑈̅) 

exist. As a simple first-order estimation, it is possible to assume that Bracke’s model (Eq.2) is 

still usable. However, Bracke’s model is dedicated to the tube flows. Therefore, only Eq. 12 

was solved numerically for such a case, and the results are shown in Figs. 4 to 8. 

In Figs. 4 to 6, the evolution of the dynamic contact angle inside a tube is shown versus 

dimensionless time at different values of viscosity ratios of the phases (
µ1

µ2⁄ ) for initial values 

of, 𝜃𝑑,0 = 900, 750, 600 respectively. The static contact angle (θs) was equal to 400 for all these 

cases. As it is clear, with increasing in viscosity ratio(
µ1

µ2⁄ ), the evolution of the contact angle 

with dimensionless time become faster. In fact, when the first fluid does not change (means 

constant values of µ1) while the second fluid becomes less viscous, the dynamic contact angle 

changes occur faster to reach the final value. This is because the resistance against the flow in 

the second phase decreases by the decrease of µ2.  

  

Fig. 4. Dynamic contact angle in a tube as a function of dimensionless time for different values of 
µ1

µ2⁄  for a 

case with an initial dynamic contact angle of 900 

30

40

50

60

70

80

90

100

0 2000 4000 6000 8000 10000

µ1/µ2 =10

µ1/µ2 =100

µ1/µ2 =1000

θ
d

tσ/µ1R



Journal of Chemical and Petroleum Engineering 2021, 55(2): 243-256. 251 

  

Fig. 5. Dynamic contact angle in a tube as a function of dimensionless time for different values of ⁡
µ1

µ2⁄  for a 

case with an initial dynamic contact angle of 750 

  

Fig. 6. Dynamic contact angle in a tube as a function of dimensionless time for different values of 
µ1

µ2⁄  for a 

case with an initial dynamic contact angle of 600 

For all those cases shown in Figs. 4 to 6, the time was dimensionless by the value of µ1 as a 

constant parameter. However, the time can become dimensionless by using µ2 (as a changing 

parameter) instead of µ1. Fig. 7 shows such data for a case of initial dynamic contact angle of 

900 and static contact angle of 400. Comparing Fig.7 with Fig. 4, the graphs with different values 

of µ1/µ2 are superimposed, and the differences are faded. This indicates that although by 

keeping μ1 constant and μ2 decreasing, the real time of equilibrium decreases, these differences, 

if examined in the context of dimensionless time by the changing factor (here μ2) will disappear. 

A master curve is obtained that summarizes all the data. Other master curves can also be 

achieved for the data shown in Figs. 5 and 6. 
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Fig. 7. Dynamic contact angle in a tube when the time has become dimensionless with the changing parameter 

(here μ2) 

Effect of Length Ratio 

Characteristic lengths are also effective parameters on the dynamic contact angle according 

to Eqs. 11 and 12. Fig. 8 shows the effect of the ratio of length to the diameter of the tube (L/R) 

on the evolution of the dynamic contact angle for a case with 𝜃𝑑,0 = 900 and 
µ1

µ2⁄ = 100. 

According to this figure, increasing the value of L/R leads to a slower process of reduction of 

the contact angle with time. Actually, for the tubes with larger L/R⁡ratios, the contact angle has 

more time to change from its initial value to its final value. 

 

 Fig. 8. Dynamic contact angle in a tube as a function of dimensionless time for different values of  L/R for a 

case with initial dynamic contact angle of 900 
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The same data are shown in Fig.9, but the time became dimensionless by the tube's length 

(L) rather than its radius (R). Again a master curve is observed. It is needed to notice that L was 

the changing parameter in all the graphs. 

 

Fig. 9. Dynamic contact angle in a tube when the time has become dimensionless with the changing parameter 

(here L) 

According to Figs. 7 and 9, it can be claimed that a master curve and a unique behavior is 

expected for the evolution of the dynamic contact with the dimensionless time if the time was 

become dimensionless by the changing parameter. 

Conclusion 

In the present study, using a simplified mathematical model based on the Navier-Stokes 

equations, along with the Young-Laplace equation, the problem of quasi-steady motion of the 

contact line between two immiscible fluids within a capillary channel and a capillary tube was 

solved. For this model, several common assumptions, including Newtonian fluid, 

incompressible, laminar, and fully developed flow were assumed. In addition, the quasi-steady-

state condition and linear pressure drop for each fluid along the channel/tube were assumed. 

The effect of gravity was also ignored due to the low Bond number. 

Based on the model predictions, it was found that the dynamic contact angle observed in a 

two-phase flow has a direct relation with the dimensionless pressure difference between the two 

ends of the channel/tube, the Capillary numbers of both phases and the ratio of the geometric 

characteristic lengths of the channel (L/H) and of the tube (L/R). The effects of these parameters, 

although some of them were previously qualitatively proven, were never explicitly expressed 

quantitatively before. It was also useful to divide the dimensionless pressure difference to the 

two terms of the static contact angle and the remaining pressure. This clarifies the role of the 

static contact angle in determining the dynamic contact angle.  

The model was validated by comparing its results for the dynamic contact angle versus 

dimensionless time for a case of water-air flow with the literature data. After validation, it was 

applied for situations with different viscosity ratios (
µ1

µ2⁄ ) and different characteristic length 

ratios (L/R). It was found that the evolution of the dynamic contact angle (from the initial value 

to the equilibrium value) slows down with decreasing in µ1/µ2⁡and vice versa. However, it was 

found that if the time becomes dimensionless with the changing parameter (here μ2), a master 

curve is obtained that holds all the data together. Also, it was seen that with increasing the value 

of the ratio of the length to the radius of the tube (L/R), the evolution of the dynamic contact 
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angle slows down. Again, a master curve was obtained when the time was become 

dimensionless by the changing parameter (here L). Finding master curves facilitates predicting 

and interpreting the dynamic contact angle results that may be obtained in a variety of 

experimental or modeling ways. 

The presented model proves that in a two-phase flow inside a confined media (e.g., a tube 

or channel), the changes in the time context of the dynamic contact angle are not only influenced 

by the properties (e.g. viscosity or Ca number) of the advancing phase but also by the properties 

of the preceding phase. Moreover, the characteristic length ratios are also effective parameters 

for the evolution of the dynamic contact angle. These findings, although came from a simplified 

model and a first-order solution, make new insights into the understanding of the evolution of 

the dynamic contact angle in two-phase microscale flows. 

Nomenclature 
 

Bo 

Ca 

Ca1 

Ca2 

H 

L1 

L1,0    

L2      

L2,0        

P1 

P2 

P3 

P4 

R 

r 

S 

y 

t 

𝑈̅ 

u1 

u2 

g 

β 

ΔPst-lr 

ΔPD 

θd  

θd,0  

θs  

μ1   

μ2  

σ 

Bond number 

Capillary number  

Capillary number of fluid 1 

Capillary number of fluid 2 

Half the width of the channel 

Channel/tube length of the left side  
Initial value of L1 

Channel/tube length of the right side 

Initial value of L2 

Pressure at the inlet 

Pressure at the left side of the interface 

Pressure at the right side of the interface 

Pressure at the outlet 

Radius of the tube 

Radial coordinate   

Microscopic length 

Y-component of Cartesian coordinate  

Time 

Average velocity of the fluid 

Velocity of fluid 1 

Velocity of fluid 2 

Gravity acceleration  

A constant in Eq. 4 

Pressure difference at which fluids do not flow 

Remaining pressure difference 

Dynamic contact angle 

Initial value of dynamic contact angle 

Static contact angle 

Viscosity of fluid 1 

Viscosity of fluid 2 

Surface tension coefficient 
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