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ABSTRACT 

Advanced sparse coding-based image fusion methods use some prior information to fuse low-resolution 

multispectral (LR-MS) and panchromatic images to create a high-resolution multispectral image (HR-MS). 

This information mainly includes a sparsity term, spectral unmixing, and nonlocal similarities. These prior 

terms are usually considered in the sparse optimization problem as constraints with specific regularization 

parameters. During the optimization, the regularization parameter of each prior term is optimized by 

considering the other two prior terms as constants. This study aims to simultaneously optimize the 

regularization parameters of prior terms in a sparse coding image fusion method to construct an HR-MS 

from input LR-MS and Pan images. Several optimization methods, including particle swarm optimization, 

ant colony optimization, differential evolution, and genetic algorithm were used to optimize the 

regularization parameters. The results showed that particle swarm optimization had the highest 

performance in increasing the peak signal-to-noise ratio on the dataset available from the study area. The 

advantages of the proposed optimized sparse coding (OSC) approach are the ability to, 1) preserve spatial 

details while eliminating spectral distortions, 2) simultaneously optimize the regularization parameters of 

prior terms in a sparse coding image fusion framework, 3) considering nonlocal similarities to enhance 

fusion result, and 4) promising fusion results over heterogeneous regions with highly spectral variations. 

The relative dimensionless global error in synthesis, spectral angle mapper, universal image quality index, 

and peak signal to noise ratio criteria were at least 0.76, 1.16, 0.0257, and 2.68 better than those achieved 

by conventional PS methods, i.e., Gram-Schmidt, Brovey transform, generalized intensity-hue-saturation, 

smoothing filter-based intensity modulation, and a novel sparse coding-based image fusion method. 

According to the results, better preservation of spatial details and lower spectral distortions can be 

achieved using the proposed OSC approach. 
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1. Introduction 

Remote sensing image fusion involves integrating the 

highgeometric detail of a - e.g.,resolution image,

panchromatic (Pan), and spectral information of a low-

resolution image, e.g., multispectral (MS), to produce a 

high-resolution MS image (Zhang, 2004). Image fusion can 

be performed at three levels: pixel level, feature level, and 

decision level. Among them, decision-level fusion is a high-

level information fusion (Gunatilaka and Baertlein, 2001), 

which is less explored and is a hot spot in information 

fusion (Xiao et al., 2020a). 

Pixel-level image fusion directly combines the original 

information in the source images, aiming to synthesize a 

fused image that is more informative for visual perception 

and computer processing. Many applications that require 

analysis of two or more images of a scene have been 

benefited from pixel-level image fusion (Li et al., 2017; 

Kulkarni and Rege, 2020). Depending on the application, 

pixel-level image fusion methods fall into spatial, spectral, 

model-based, and hybrid categories (Kaur et al., 2021). 

Spatial fusion methods preserve spatial content and are used 
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when geometric information is required; However, spectral 

fusion methods are suitable for spectral unmixing when 

separation of object classes is essential (Witharana et al., 

2020). Hybrid fusion methods benefit from both spatial and 

spectral fusion methods and attempt to keep spectral 

characteristics while adding up geometric information to the 

fusion result (Yilmaz et al., 2020). Model-based fusion 

methods use statistical or numerical models to develop 

fused images (Dadrass Javan et al., 2021). 

Feature-level image fusion is an intermediate-level fusion 

process based on the feature information extracted from the 

original information of each source for comprehensive 

analysis and processing (Rajah et al., 2018). The main idea 

of this type of fusion is first to extract useful features from 

the original multi-modal image and then merge these 

features into new feature vectors for further processing 

(Xiao et al., 2020b). 

Regarding decision-level image fusion in remote sensing, 

researchers combine various types of current information 

and prior knowledge to provide suitable decisions on the 

gray levels of the resulting image (Li et al., 2018). In 

general, decision-level fusion is more reliable than the other 

two and can better overcome the shortcomings of each 

sensor. For other fusion levels, the failure of one sensor 

means the failure of the entire system. Compared with 

pixel-level fusion (Li et al., 2017) and feature-level fusion 

(Nirmala and Vaidehi, 2015), the decision-level fusion has 

the best real-time performance. However, the main 

drawback of this method is information loss. Before the 

fusion process, each sensor completes the goal of the 

decision-making. Then, according to some specific fusion 

criteria and the credibility of each decision-making process, 

it will make the best decision. Interested readers are 

encouraged to study the work of Dadrass Javan et al. (2021) 

for further background information in the field of image 

fusion methods. 

Many studies have been reported on the limitations of 

existing fusion techniques (Zhang, 2004). The most 

significant problem is spectral distortion (Metwalli et al., 

2009; Eghbalian and Ghassemian, 2018). Moreover, the 

fusion performance often depends on the operator’s fusion 

experience and the dataset being fused. No automatic 

solution has been reported to produce high-quality fusion 

results for all available datasets. A wide variety of 

techniques have been developed for reducing spectral 

distortion and improving the fusion quality, each specific to 

a particular fusion approach or image dataset. By selecting 

a proper fusion technique and applying an appropriate 

adjustment strategy, successful results can be achieved. 

Nonetheless, when traditional fusion and adjustment 

techniques are used for the newer imaging sensors, 

remarkable spectral distortion becomes critical. For the new 

satellite images, a major reason for spectral distortion is the 

wavelength extension of the Pan image. 

Bayesian frameworks have been introduced to minimize 

the drawbacks in spatial-spectral image fusion processes 

(Wei et al., 2015). These methods integrate posterior 

distribution based on prior knowledge to achieve accurate 

estimation. As a pioneering work, Hardie et al. (2004) used 

the maximum a posteriori (MAP)-based framework to fuse 

a low spatial resolution hyperspectral image (LR-HS) and a 

high spatial resolution multispectral image (HR-MS). 

Akhtar et al. (2015) used Bayesian sparse representation to 

solve the fusion problem. They provided the probability 

distributions of spectral basis with the Beta process and 

then utilized the resulting distributions to calculate sparse 

coefficients of the HR-HS. Xu et al. (2019) extracted the 

nonlocal similar patches to form a nonlocal patch tensor 

(NPT) for creating an HR-HS. They proposed a novel 

tensor-tensor product (t-product)-based tensor sparse 

representation to model the extracted NPTs. Then, they 

constructed the relationship between the HR-HS and LR-

HS using the t-product, which allowed to design a unified 

objective function to incorporate the nonlocal similarity, 

tensor dictionary learning, and tensor sparse coding. 

The matrix factorization has also been widely used to 

fuse LR-HS and HR-MS (Song et al., 2014). Since the HR-

HS only contains limited pure spectral signatures (Iordache 

et al., 2011), the HR-HS can be approximately obtained by 

the spectral basis multiplied by the coefficients. Kawakami 

et al. (2011) used a sparse representation before learning the 

spectral basis from the LR-HS and performed sparse coding 

on the HR-MS to estimate the coefficients. Some studies 

have utilized the spatial structures of the HR-HS to 

regularize the fusion problem for better using the prior 

information of the HR-HS. As an example, Akhtar et al. 

(2014) obtained the coefficients with the simultaneous 

greedy pursuit algorithm for each local patch, utilizing the 

similarities of spectral pixels in the local patch in the HR-

HS. Dong et al. (2016) used a nonnegative dictionary-

learning algorithm to learn the spectral basis and estimated 

the coefficients using the structured sparse coding 

approach. They utilized the nonlocal similarities of the HR-

HS and reported good fusion results. Dian et al. (2019) 

utilized sparsity, spectral (spectral unmixing), and spatial 

(nonlocal similarities) prior terms from the HR-HS in an 

optimization problem simultaneously. They proposed a 

spatial-spectral sparse representation technique to fuse an 

HR-MS and LR-HS with the same scenario. They 

formulated the fusion problem as the estimation of spectral 

basis and coefficients from the LR-HS and HR-MS. During 

the optimization process, the regularization parameter of 

each prior term was optimized by considering the other two 

prior terms as constants. 

Different methods were used in this paper to optimize the 

regularization parameters of prior terms to select the best 
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candidate in the optimization step. Particle swarm 

optimization (PSO), ant colony optimization (ACO), 

differential evolution (DE), and genetic algorithm (GA) are 

among the well-known optimization methods that are used 

in the optimization step of this paper. PSO is one of the 

well-known nature-inspired optimization methods starting 

with creating a random population where each component 

in nature is a different set of decision variables whose 

optimal values should be provided in an iterative way. Each 

component represents a vector in the problem-solving 

space. The algorithm includes a velocity vector in addition 

to the position vector, which forces the population to 

change their positions in the search space. The velocity 

consists of two vectors called p and pg. p is the best position 

that a particle has ever reached, and pg is the best position 

that another particle in its neighborhood has ever reached. 

In this algorithm, each particle provides a solution in each 

iteration. The best result in the population during the 

iterations is considered as the optimized value (Yang, 

2020). 

Ant colony optimization (ACO) considers a simulation of 

ants producing pheromone when they find food on their 

way back. Other ants follow the pheromone produced by 

the ants, eventually choosing a path with stronger 

pheromones, indicating the shortest path between food and 

the nest (Dorigo and Blum, 2005). The stronger 

pheromones in a path, the more ants have selected that path 

for moving. The process of selecting a path by an ant is 

probabilistic. The algorithm uses a probability density 

function with a Gaussian kernel. When a new solution is 

added to the archive, the worst of the solutions is removed. 

After reaching a certain number of iterations, the best path 

is considered the best optimization result. 

The differential evolution (DE) is based on a differential 

operator to generate new solutions exchanging information 

among the members of the population. All members of a 

population have an equal chance of being selected as a 

parent. The generation of the children is compared to the 

parent’s generation considering the objective function. The 

best members enter the next generation, while the rest are 

removed. DE is based on adjusting the mutation, crossover, 

and selection to reach the optimal point (Price et al., 2006). 

Genetic algorithm (GA) optimization works based on 

considering an initial set of random solutions called 

populations. Each individual is a chromosome, representing 

a solution for the problem. This method selects individuals 

with higher eligibility, being more likely to survive and 

crossover (Mirjalili, 2019). After several generations, the 

parent chromosomes produce better offspring by removing 

weak solutions based on the objective function. Decision-

making variables are similar to genes, a combination of 

which provides an answer as a chromosome-like string 

during the optimization. 

According to Dian et al. (2019), it seems that better 

results can be obtained by simultaneous optimization of all 

three prior terms, i.e., sparsity, spectral, and spatial prior 

terms. Therefore, this study aims to simultaneously 

optimize the regularization parameters of prior terms in a 

sparse coding image fusion framework to create an HR-MS 

from input LR-MS and Pan images. 

2. The Proposed Method 

The fusion problem can be written in the form of 

multiplication of spectral basis (D) and coefficients (A) to 

estimate the LR-MS (Y) and Pan (Z) (Eq. 1) 

Y=D A S B,

Z=R D A

  

 
                                                                 (1) 

where B is the blurring matrix that models the physical 

constraints of the LR-MS sensor using the nominal point 

spread function (PSF) of the imaging sensor, and S is the 

spatial Downsampling matrix. R is a transformation matrix 

from multispectral to panchromatic. Since the Pan and LR -

MS still preserve spectral information and spatial 

information, respectively, the spectral basis and coefficients 

can be estimated from both LR-MS and Pan. Therefore, the 

fusion problem can be written as Eq. (2). 

   
2 2

D,A
min Y D A S B Z R D A

F F
                              (2)

 

The optimizations for D and A are severely ill-posed, and 

they do not have a unique solution. Therefore, some prior 

information of the unknown HR-MS is required to 

regularize it. Similar to Dian et al. (2019), three essential 

prior terms, i.e., sparsity prior term, nonlocal similarities, 

and prior terms of spectral unmixing, were incorporated 

into a unified framework. A flowchart of the proposed 

approach is presented in Figure 1. 

Sparsity prior term is effective for dealing with various 

hyperspectral reconstruction problems (Lu et al., 2016). 

This prior term assumes each spectral pixel in a high 

spectral resolution image can be expressed as the linear 

combination of a few distinct spectral signatures. In this 

situation, each column of the coefficients A can be sparse if 

an appropriate spectral basis is available. The sparsity prior 

term can be added to Eq. (2) as Eq. (3) 

   
2 2

1 1D,A
min Y D A S B Z R D A A

F F
                  (3) 

where ||A||1 stands for the sum of absolute values of all 

elements of A, and η1 is the regularization parameter of 

sparsity prior term. A typical natural scene usually contains 

a collection of similar pixels from all over the image, and 

these nonlocal similarities can be effective for image 

recovery (Dong et al., 2011). 
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Figure 1. Flowchart of the proposed approach 

 

To exploit the nonlocal similarities in the HR-MS, it is 

assumed that a pixel xi in the HR-MS can be approximated 

by a linear combination of pixels, which are similar to xi. 

Incorporating this prior term, a nonlocal spatial prior term 

can be added to the optimization problem (Eq. 4) 

   
2 2

D,A

2

11 21

min Y D A S B Z R D A

A D A W D A

F F

N
i F

  

       

     

                    (4) 

where η2 is the regularization parameter of the spatial 

prior term. The vector W includes wij, which is the 

weighting coefficient based on the similarity between the 

pixel xi and xj. The pixels xi and xj are not known, and the 

weighting coefficients can be obtained from the Pan image 

since this image preserves the most spatial information of 

the HR-MS. To do this, the fuzzy C-Mean algorithm was 

performed for clustering on the Pan image to search for 

nearest neighbors for each pixel zi. 

The third prior term used in this study was the spectral 

prior term. Definition of this prior term helps to achieve 

better results over the regions with highly spectral 

variations such as heterogeneous regions, where the most 

spectral mixing happens. To define the prior term of 

spectral unmixing, the coefficient vectors satisfy the 

nonnegativity and sum-to-one constraints (Iordache et al., 

2011). Therefore, A should be a nonnegative matrix. As the 

spectral basis represents the reflectance of distinct 

materials, each element of the spectral basis is in the range 

of [0,1]. Eq. (5) shows the main optimization problem 

considering all three types of prior information. 

   
2 2

D,A

2

11 21

min Y D A S B Z R D A

A D A W D A

s.t. 0 D 1 and 0 A

F F

N
i F

  

       

     

  

                     (5) 

In this formulation, the prior terms of sparsity, spectral 

unmixing, and nonlocal similarities are incorporated into a 

unified framework. This optimization problem is highly 

nonconvex, and the solution is not unique. Similar to an 

approach presented by Dian et al. (2019), A was updated 

while D was considered constant, and then D was updated 

while A was considered constant. These two steps were 
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iterated for convergence. Finally, the desired HR-MS was 

obtained by the multiplication of D and A. 

In the optimization problem, there are three variables that 

their values affect the performance of the image fusion 

method: the size of matrix D, η1, and η2. Several 

evolutionary optimization methods were used to find the 

optimized values of D, η1, and η2. The objective function 

was to maximize the peak signal to noise ratio (PSNR), 

which is defined as the average PSNR of all bands for MS 

(Eq. 6), 

   
1

1ˆ ˆPSNR X,X PSNR X ,X
S

j

i i
S 

                                      (6) 

where X
i  and X̂

i  denote ith spectral band of ground 

truth and estimated MS, respectively, and both of them are 

scaled to the range [0,255]. The PSNR measures the 

similarity between the ground truth image and the 

reconstructed image. The higher the PSNR, the better the 

fusion result. Other quality metrics were also used along 

with PSNR to assess the performance of the proposed 

fusion method compared to traditional and new fusion 

methods. These methods are relative dimensionless global 

error in synthesis (ERGAS) (Wald, 2002), universal image 

quality index (UIQI) (Wang and Bovik, 2002), spectral 

angle mapper (SAM) (Nencini et al., 2007). In this study, 

PSO, ACO, DE, and GA were used to optimize the 

variables to improve the performance of the fusion task. 

Table 1 shows the parameters and specifications of the 

optimization methods. A description of parameters and 

specifications of conventional evolutionary optimization 

methods is provided by Ab-Wahab et al. (2015). 

Table 1. Parameters and specifications of the evolutionary optimization methods 

Value Parameter Method 

100 Maximum number of iterations 

PSO 

1000 Maximum number of particles 

1 Initial inertia weight (Wmin) 

0.99 Inertia weight damping ratio (Wdamp) 

1 Cognitive acceleration (C1) 

20 Population size 

ACO 
500 Maximum number of generations 

1 Deviation distance rate 

1000 Maximum number of epochs 

20 Population size 

DE 

200 Maximum number of generations 

0.2 Lower bound of scaling factor (βmin) 

0.8 Upper bound of scaling factor (βmax) 

0.1 Crossover probability (PCR) 

300 Maximum number of epochs 

100 Population size 

GA 

500 Maximum number of generations 

0.1 Mutation rate 

0.5 Crossover percentage 

500 Maximum number of epochs 

 

3. Dataset Description 

The regularization parameters of the implemented image 

fusion method were optimized for the fusion of actual 

satellite images acquired over Alberta (55° 0’ N, 115° 0’ 

W) during summer 2020 (Figure 2). 

These satellite images have been selected with a 

remarkable variety of land-use/land-cover for fusion 

purposes. Level-2 Pan and MS bands of the Landsat-8 OLI 

images were used for the fusion. Level-2 OLI images 

consist of surface reflectance data with nine spectral bands. 

They have a spatial resolution of 15 m for Pan (8th spectral 

band) and 30 m for MS (spectral bands 1 to 9 except for 8). 

All spectral bands are geo-referenced using orbit and 

altitude data from the satellite. 
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Figure 2. Satellite images of Alberta acquired during summer 2020. 

 

4. Experimental Results 

In this study, four optimization methods, namely, PSO, 

ACO, DE, and GA, have been used to provide the most 

efficient values of regularization parameters for the prior 

information in a sparse coding-based image fusion 

technique. The three regularization parameters should be 

optimized to achieve the most reliable fusion results. The 

former studies have presented the suitable value of each 

parameter by considering the other two parameters as 

constant (Dian et al., 2019). Table 2 shows the optimized 

values of the regularization parameters obtained by the 

implemented optimization methods. As can be seen in 

Table 2, various optimization methods have resulted in 

different values for the size of matrix D, η1, and η2. This 

caused various PSNR values obtained by the sparse coding 

image fusion based on sparsity, spatial, and spectral prior 

terms to creating the HR-MS image. 

Table 2. Optimized values of the regularization parameters obtained by the studied optimization methods 

PSNR η2 η1 Size of D Method  

62.43 0.002 0.0004 65 PSO 

Image 1 
58.43 0.007 0.0003 64 ACO 

60.55 0.003 0.0005 65 DE 

61.53 0.002 0.00008 61 GA 

63.01 0.006 0.0005 63 PSO 

Image 2 
58.84 0.009 0.0003 63 ACO 

59.21 0.005 0.0005 68 DE 

59.77 0.001 0.0001 63 GA 

59.78 0.004 0.0005 61 PSO 

Image 3 
57.71 0.007 0.0003 63 ACO 

55.84 0.004 0.0007 70 DE 

57.29 0.003 0.0001 60 GA 

60.06 0.005 0.0004 63 PSO 

Image 4 
58.33 0.008 0.0002 62 ACO 

58.00 0.008 0.0006 69 DE 

58.53 0.003 0.0002 63 GA 

 

According to Table 2, PSO has resulted in the highest 

PSNR values on the study dataset. The algorithm was 

implemented to fuse LR-MS and Pan images to create four 

HR-MS images. For the studied optimization algorithms, 

the optimized size of matrix D varied between 61 and 70, 

optimized η1 varied between 0.00008 and 0.0007, and 

optimized η2 varied between 0.001 and 0.009. The highest 

PSNR value was 63.01, obtained from the size of matrix D 
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of 63, η1 of 0.0005, and η2 of 0.006. The PSNR value 

approaches infinity as the mean square error (MSE) 

approaches zero; this shows that a higher PSNR value 

implies a higher image quality. At the other end of the 

scale, a small value of the PSNR implies high numerical 

differences between images. 

Several methods, including the sparse approach proposed 

by Dian et al. (2019), Gram-Schmidt (GS) (Laben and 

Brower, 2000), Brovey transform (BT) (Jiang et al., 2011), 

generalized intensity-hue-saturation (GIHS) (Tu et al., 

2001), and smoothing filter-based intensity modulation 

(SFIM) (Liu, 2000) were implemented, and their results on 

the dataset were investigated (Figure 3). 

 

 

 
Figure 3. (A) input MS, (B) input PAN, (C to H) Fused images using GIHS, SFIM, GS, BT, Sparse, and the proposed OSC 

method, respectively 
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The results of ERGAS, SAM, UIQI, and PSNR values 

obtained by different methods are presented in Figure 4 to 

Figure 7. OSC stands for optimized sparse coding, which is 

introduced in this study. The average PSNR values on the 

images of the study area using the OSC approach was 

62.12, which was higher than that of the other methods. The 

implemented methods are among the efficient image fusion 

algorithms. Implemented classic fusion methods resulted in 

PSNR values lower than that of OSC. According to Figure 

4 toFigure 7, the proposed fusion method showed better 

values for ERGAS, SAM, UIQI, and PSNR than the sparse 

approach proposed by Dian et al. (2019), which is due to 

the proposed strategy for the optimization problem. This 

means that the proposed OSC approach can preserve spatial 

details while eliminating spectral distortions. The reason for 

efficient image fusion results using the OSC approach is 

that the spectral basis and sparse coefficients are estimated 

from the LR-MS and Pan by exploiting the nonlocal self-

similarities, prior knowledge of the spectral unmixing, and 

a sparsity prior term. A typical natural scenario is often self-

similar, and therefore it usually contains similar pixels from 

all over the image, which has been proved to be effective 

for image restoration. Besides, based on the spectral 

mixture model, the spectral basis and coefficients are 

nonnegative, and the coefficients often satisfy the sum-to-

one constraint. Furthermore, under the appropriate spectral 

basis, the coefficients can be sparse, which is helpful in 

many multispectral image reconstruction problems. 

 

 
Figure 4. Average ERGAS values obtained from different fusion methods over input images 

 

 
Figure 5. Average SAM values obtained from different fusion methods over input images 
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Figure 6. Average UIQI values obtained from different fusion methods over input images 

 

 
Figure 7. Average PSNR values obtained from different fusion methods over input images 

 

5. Conclusions 

Several optimization algorithms were introduced to 

optimize the regularization parameters of sparsity, spatial, 

and spectral prior terms in sparse coding-based multispectral 

image fusion prior terms, among which, PSO resulted in the 

highest PSNR values (63.01) on the studied dataset. The 

findings of this study show that better fusion results could be 

obtained by simultaneous optimization of the prior terms. 

The main benefit of the proposed OSC approach compared 

to conventional fusion methods is the outstanding ability to 

preserve spatial details while eliminating spectral distortions. 

This is due to considering nonlocal similarities from all over 

the image instead of focusing on the neighboring pixels. The 

object-based approach toward the fusion problem in the 

proposed method is the key to achieve more reliable results 

over more heterogeneous regions and eliminate spectral 

distortions. The results of this study can be used in sparse 

coding-based image fusion methods to create HR-MS 

images. 
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