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1. Introduction
Recently, there are growing demands to improve 

of the properties of composite coating especially 
for surface engineering. Generally, such composite 
coating contains two phases (viz. matrix and 
reinforcement), which are combined to enhance 
their properties [1, 2]. Metal matrix composite 
(MMC) is one of the most common composites in 
which the matrix is in the form of pure metal or alloy 
and the reinforcement is fabricated from ceramic 
particles, metals or organic compounds [3]. In 
the case of ceramic particles as the reinforcement, 
mainly oxides or carbides are considered as 
the various types of the particles. MMCs have 

A new proposing model based on gene expression programming (GEP) to predict microhardness of Ni/
Al2O3 nanocomposite coating was the subject of the present study. Accordingly, a series of the laboratory 
experiments was designed by the factorial D-optimal array. This was accomplished by considering the most 
effecting practical electrodeposition parameters including the amount of Al2O3 nanoparticles in the bath, 
current density, temperature, magnetic stirring rate, time of stirring, and plating time as the input and the 
microhardness of the coating as the output of model. Various performance criteria including determination 
(R2) coefficient, the mean absolute error (MAE), and the root relative squared error (RRSE) were utilized 
to evaluate the developed models. Finally, the model with R2 = 0.9752, MAE = 0.030 and RRSE = 0.158 was 
developed as the optimum proposed function. Also, the results of the sensitivity analysis confirmed that 
the current density was the most effective parameter, while the amount of Al2O3 nanoparticles in the 
bath, plating time, magnetic stirring rate, time of stirring, and temperature had relatively lower effect. 
In conclusion, the exclusive features of the GEP simulation have been approved to determine Ni/Al2O3 
nanocomposite coatings microhardness. 
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widespread applications in automotive, military 
and aerospace industries due to their excellent 
isotropic physicochemical characteristics [4].

There are various approaches to prepare 
of MMCs, e.g. electrodeposition, vacuum 
infiltration, powder metallurgy and thermal 
spray [1, 5]. Electrodeposition, has outstanding 
advantageous compared to the others such as low 
practical pressures or temperatures, high ability 
to dope the inert particles as reinforcement in the 
metallic matrix during the deposition process. 
Uniform coating preparation, low operating cost, 
acceptable efficiency as well as the production 
rate at industrial scales are feasible [6]. Also, the 
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electrodeposition technique provides a suitable 
substrate to improve the nanostructures with 
completely novel and superior properties respect 
to the coarse-grained structures [1]. Preparation of 
nanocomposites by applying the electrodeposition 
technique has been widely reported [7-9]. In this 
work, we used Al2O3 nanoparticle as reinforcement 
due to the chemical stability, wear resistance at 
high temperatures, and high hardness. Ni was used 
as the metallic matrix. This nanocomposite offers 
the possibility of enhancement of mechanical and 
tribological characteristics [8]. This idea has been 
extensively investigated in other investigations 
[9-11]. Unfortunately, the chemical composition 
and properties of the electrodeposited composites 
cannot be properly predicted, and from the 
practical parameters are changed in a wide range. 
Such limitations are the main drawbacks to 
prepare such nanocomposite by electrodeposition. 
However, optimizing electrodeposition parameters 
has a key role to improve the nanocomposite 
characteristics. In this regard, determination of 
the optimal combination of practical variables to 
prepare a compact and uniform nanocomposite 
has a strategic importance [1].

Applying a soft computing tool such as artificial 
intelligence to determine of the effect of the 
practical parameters is an efficient approach [12]. 
Support vector machine, adaptive neuro-fuzzy 
inference system, artificial neural networks and 
gene expression programming (GEP), are the 
typical strategies to be optimized in the artificial 
intelligence approach [13]. The advantages of 
GEP including easy coding, fast computations 
and easy modeling proposed this strategy as a 
suitable approach for optimization [14]. GEP was 
invented by Ferreira [15], which is the evolutionary 
computing algorithm. GEP processes the evolution 
to find a suitable function and to determine the 
effective parameters with acceptable efficiency. 
Utilizing GEP strategy and the selected data set 
prepared by the practical experiments, the output 
can be presented as a function of the input variables 
in the form of an appropriate mathematical 
equation [16]. To the best of our knowledge, GEP 
strategy was successfully applied for a different 
practical engineering processing [17-22].

According to the literature, there are not any 
reports on the prediction of the microhardness 
of Ni/Al2O3 nanocomposite coatings prepared 
by electrodeposition. Accordingly, current study 
preliminary attempts to express some mathematical 

equations by applying the GEP strategy to predict 
microhardness of such coatings. In this regard, 
six independent practical electrodeposition 
variables were selected as the input, and the 
microhardness of the coatings as the output of 
model. The experimental data set were collected by 
the factorial D-optimal array and performing 105 
various reliable trials. For the first time an equation 
for Ni/Al2O3 nanocomposite microhardness was 
proposed by the GEP approach. It is believed that 
the proposed model can be applied to surface 
engineering.

2. Experimental procedure
10 × 10× 1 mm3 stainless steel plates were used as 

the cathode. Firstly, the cathode was polished with 
100 grit finish, then for 60 seconds floated in 15% 
HCl, and finally washed with acetone. A 20 × 100 × 
20 mm3 nickel plate was selected as the anode. Both 
electrodes were positioned in a vertical situation 
at the distance 3 cm. The α-Al2O3 diameters were 
mainly 30 nm (CRM of china, 99.99% purity). Ni/
Al2O3 nanocomposite coatings were prepared by 
using the deposition with a direct current. The 
chemical composition of the Watts bath is given in 
Table 1.

To collect the experimental data using the 
factorial D-optimal array, 105 reliable experiments 
were conducted by changing six practical 
parameters (vis., the amount of Al2O3 nanoparticles 
in the bath, current density, temperature, 
magnetic stirring rate, time of stirring and plating 
time) at various ranges (Table 2). The ranges of 
experimental variable selected in this study are 
based on literatures [23-24].

After the electrodeposition, the surface hardness 
of Ni/Al2O3 nanocomposite coatings was measured 
using a microhardness tester (Shimadzu) by 
applying a 50 g load. The surface morphology of 
nanocomposite coating was investigated by SEM 
(Cam scan 2300 Mv), and the chemical composition 
of the prepared coatings was determined by 
EDS. The structural features of the coatings were 
studied by XRD (Philips X΄pert MPD) and Cu-Kα 
radiation. The typical XRD spectra of the prepared 

Table 1-  Solution composition for Ni/Al2O3 nanocomposite 
coatings

־

 
ͦ

Table 1- Solution composition for Ni/Al2O3 nanocomposite coatings. 
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sample at the temperature of 45 ˚C, current density 
of 0.04 A/cm2, magnetic stirring rate of 450 rpm, 
time of stirring of 24 h, with 10 g/L of nano-Al2O3 
in plating solution and plating time of 1 h was 
shown in Fig. 1. Accordingly, the formation of Ni-
based composite coatings on the substrate of steel 
was confirmed. Also, the mean crystallite size of 
Ni matrix was found to be of about 22 nm by the 
Scherrer equation.

The SEM image (with backscatter detector) 
of this sample illustrates the relatively smooth 
and compact without any pores or fissures on 
the surface of the prepared sample (Fig. 2). As 
observed, the Al2O3 nanoparticles (dark spots 
in SEM image due to their lower average mass 
unit with respect to the Ni substrate) were 

Fig. 1-  Typical illustration of the XRD pattern of the Ni/Al2O3 
nanocomposite coating prepared at the temperature of 45 
˚C, current density of 0.04 A/cm2, magnetic stirring rate of 
450 rpm, time of stirring of 24 h, with 10 g/L of nano-Al2O3 in 
plating solution and plating time of 1 h.

Table 2-  Ranges of microhardness and practical variables through preparing Ni/Al2O3 
nanocomposite coatings by electrodeposition

־

 
ͦ

Table 1- Solution composition for Ni/Al2O3 nanocomposite coatings. 

distributed homogeneously through the Ni matrix.

3. Model development
GEP is extended version genetic algorithm (GA) 

and genetic programming (GP). Similar to the GP 
and GA, GEP has been constructed from random 
generation of initial populations of chromosomes 
in the form of solutions and individuals. Moreover, 
the genetic operators were utilized on the proposed 
chromosomes and the optimum point was 
determined. The structure of the individuals is the 
main difference between in three strategies [25]. 
As shown in Fig. 3(a), the chromosomes in GAs 
have binary linear-coded string with a constant 
length. While, the individuals in GP (Fig. 3(b)) are 
depicted as computer programs developed based 

Fig. 2-  An example of SEM micrograph of morphology of the 
surface of Ni/Al2O3 nanocomposite coatings prepared at the 
temperature of 45  ⁰C, current density of 0.04 A/cm2, magnetic 
stirring rate of 450 rpm, time of stirring of 24 h, with 10 g/L of 
nano-Al2O3 in plating solution and plating time of 1 h.

Fig. 3- Comparison between the expression of individuals in (a) GA, (b) GP and (c) GEP.
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on LISP language and provide the possibility of 
representation of their structure as tree structures 
in various shapes and sizes named a parse trees. In 
the hybrid strategy of GA and GP, the individuals 
depicted as linear-coded strings that followed the 
Karva language proposed by Ferreira [15] for GEP. 
This language is designed to read and depict the 
coded programs in the chromosomes (Fig. 3(c)). 
The possibility of illustration of Karva language 
in the form of expression trees (Ets) is another 
advantage of GEP. Accordingly, the GEP strategy 
is composed of two main parts including the 
chromosomes and Ets.

There are one or more genes in each chromosome 
of GEP made of a head and a tail. GEP designer 
determines the length of the head while the tail 
length is calculated by following equation [15, 25].

t = h(nmax − 1) + 1

1
n [

∑ |ti−pi|n
i=1
∑ tin
i=1

]

RRSE = √
∑ (ti − pi)2n
i=1

∑ (ti − t¯i)2n
i=1

R2 = 1 −
∑ (ti −n
i=1 pi)2

∑ (ti −n
i=1 t¯i)2

                                                 (1)

Where t, h and nmax are the length of chromosome 
head, length of chromosome tail, and number of 
arguments, respectively. Function sets (such as “+,  
-, /, *, Sqrt, 3Rt, Sin, Cos, Tan, Arctan, Ln, Exp”), 
and logic function (such as and, or) with terminals 
(model input) are the components of each linear 
strings. The schematic of the process of GEP is 
shown in Fig. 4. Accordingly, at first, an initial 
population of chromosomes as a random way is 
produced. Then, these chromosomes are encoded 
as Fig. 4 (a) or depicted as ET in Fig. 4 (b). Finally, 

in the Fig. 4 (c), the mathematical function of the 
proposed ETs was extracted. The fitting parameters 
of each model were estimated by applying the 
fitness function.

In order to satisfy the number of generation 
or the best solution, the modeling process will 
be continued. If the process doesn’t stop, genetic 
operators are applied. In this regard, the generation 
with a better chromosome will be selected by 
means of try and error with considering its 
fitness as a criteria and it is replicated into the 
next generation. Then, the mutation operator was 
utilized in a way that the length of chromosome 
is kept constant. This operator is able to perform 
in both sections of chromosome. As an example, 
mutation is able to change any terminal with a 
function or together in the head. This operator can 
just replace the terminal with the other terminal 
in the tail. The rate of mutation (between 0.01 and 
0.1) can be occurred in the length of chromosome. 
Insertion sequence is the other operator in GEP 
which can be applied to the chromosome and 
provides the movement of the fragment. Crossover 
or recombination operators utilized on the 
chromosome, providing the possibility of changing 
the fragments between two selected chromosomes. 
One-point, two-point and gene recombination 
are the three types of recombination. When 
these three genetic operators are applied, the 
second generation is generated and this process 
is kept on to meet the termination criteria [15, 

Fig. 4- The structure of simple chromosome with (a) 
K-Expression, (b) ET and (c) mathematical function. Fig. 5- GEP strategy flowchart.
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25, 27, 28]. Fig. 5 is illustrated the GEP flowchart.
The most appropriate solution of GEP strategy is 

obtained, when one or more genetic chromosomes 
have been used. Each chromosome is considered 
as sub-ET, and by linking of all sub-ET will prepare 
the complex ET. There are various linking functions 
including addition and multiplication that are the 
most common types. 

In this context, for the first time an important 
branch of artificial intelligence named GEP was 
utilized to model the microhardness of Ni/Al2O3 
nanocomposites. In this regard, 105 microhardness 
measurements were made. The practical data 
was randomly divided into 2 parts (training and 
testing). Two separate sets introduced to the GEP 
models. Testing data (including 30 datasets) is 
randomly chosen from the total data to generalize 
the model while the rest is the training data which 
is used to train the model. This ensures that if 
the regression of the testing data was high, the 
regression got from the training data is not false. 
This action increases the model accuracy several 
times. Before training the GEP model, each 
parameter has been normalized to a certain range 
of (0, 1). 

To validate the models and select the most 
appropriate one, various statistical criteria were 
utilized. The mean absolute error (MAE), root 
relative squared error (RRSE) and coefficient 

Table 3-  Parameters of GEP models

of determination (R2) are the most common of 
these criteria. R2 was employed to determine the 
compatibility of the predicted data compared to 
the experimental ones. Their values are obtained 
from the following equations:t = h(nmax − 1) + 1

1
n [

∑ |ti−pi|n
i=1
∑ tin
i=1

]

RRSE = √
∑ (ti − pi)2n
i=1

∑ (ti − t¯i)2n
i=1

R2 = 1 −
∑ (ti −n
i=1 pi)2

∑ (ti −n
i=1 t¯i)2

                                                       (2)

t = h(nmax − 1) + 1

1
n [

∑ |ti−pi|n
i=1
∑ tin
i=1

]

RRSE = √
∑ (ti − pi)2n
i=1

∑ (ti − t¯i)2n
i=1

R2 = 1 −
∑ (ti −n
i=1 pi)2

∑ (ti −n
i=1 t¯i)2

                                            (3)

t = h(nmax − 1) + 1

1
n [

∑ |ti−pi|n
i=1
∑ tin
i=1

]

RRSE = √
∑ (ti − pi)2n
i=1

∑ (ti − t¯i)2n
i=1

R2 = 1 −
∑ (ti −n
i=1 pi)2

∑ (ti −n
i=1 t¯i)2

                                                (4)

Where pi is predicted microhardness, ti, t ̅i and n are 
actual microhardness, average of microhardness 
during two runs of measurement, and number of 
samples, respectively. 

4. Results and discussion
Various configurations of GEP models with 

various parameters including chromosomes 
number, length of head, genes number and linking 
function are investigated. Among them, only 
models with the higher accuracy were selected as 
candidate for further analysis. Selected parameters 
and the list of function sets of the investigated GEP 
models are abbreviated in Tables 3 and 4.

The performance of each GEP model was 

Table 4-  List of function sets

Table 2- Ranges of microhardness and practical variables through preparing Ni/Al2O3 nanocomposite coatings 
by electrodeposition. 

 
Table 3- Parameters of GEP models. 
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investigated in terms of the statistical indices viz. 
R2, MAE, RRSE. In this regard, closer R2 values to 1 
and error indices to zero are the sign of the higher 
precision. Table 5 summarizes the compared values 
of the statistical indices for 6 GEP models.

The comparison of the validated GEP models 
criteria R2, MAE and RRSE values to train and to 
test the datasets are shown in Fig. 6. Based on Fig. 6 
(a), GEP 1, GEP 6, GEP 3, GEP 4, GEP 5 and GEP 
2 have R2 values closer to 1 during the training 
mode, respectively. While this rank in the testing 
mode are as GEP 1, GEP 6, GEP 3, GEP 4, GEP 2 
and GEP 5, respectively. As a consequence, from 
R2 values, all 6 GEP models have an acceptable 
accuracy to predict microhardness of Ni/Al2O3 
nanocomposite coating. However, GEP 1 is 
preferable to the others. By consideration of RRSE 
as the criteria to validate the performance, GEP 1 
with the RRSE equals to 0.158 and 0.122 have the 
lowest values in training and testing mode.

Before choosing GEP 1 as the most appropriate 

Fig. 6- The variation of (a) R-Square, (b) MAE, and (c) RRSE versus the validated GEP models.

Table 5-  Comparison of R2, MAE and RRSE for the best GEP models

model in Table 5, examination of GEP setting 
parameters effect on the performances of GEP 1 
would be significantly beneficial. In this regards, 
the selection of optimum setting parameters (i.e., 
number of chromosomes, number of gene, linking 
function and gene head size) plays a key role in 
the performance of GEP models. Accordingly, 
to investigate the effect of the setting parameters 
on the performance of GEP 1 model (as the best 
proposed model), the number of chromosomes, 
head size, genes number in two modes of linking 
function viz., multiplication and addition have 
been changed. It was necessary to note that, the 
selection of suitable values during the setting is 
a function of the number of possible solution as 
well as complexity of the problem. A number of 
chromosomes in two modes of the linking function 
viz., multiplication and addition were changed in 
GEP 1. Table 6 summarized various changes in 
GEP 1 configuration to investigate the possibility 
through improving of its performance.

Table 5- Comparison of R2, MAE and RRSE for the best GEP models. 
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Table 5- Comparison of R2, MAE and RRSE for the best GEP models. 

Table 6-  Change in number of chromosomes for GEP 1 model upon criteria R2, MAE and RRSE in multiplication 
and addition mode

Fig. 7 shows the values of R2, MAE and RRSE 
indices at different chromosome number of GEP 
1. As observed, the best value of R2 (closer to 1) 
and MAE, RRSE (closer to zero) belong to the 
chromosome number 40 (P1=3) with linking 
function of multiplication. There is a direct 
dependency between the complexity of variables 
and the head size of GEP model evolutions. In 
other words, higher head size number or higher 
nodes size in ETs corresponds to the higher 
complexity of GEP models [15]. To obtain the 
optimum head size in current study, the head size 
of GEP 1 changed in two modes of linking function 
including multiplication and addition.  

Based on the performance strategy discussed 
above (i.e. the models with higher R2 and lower 
errors as well as smaller head size), it can be 
concluded that GEP 1/1 with multiplication mode 

in Table 7 and Fig. 8 has the best performance with 
the proposed models. From this, a simple function 
for microhardness of Ni/Al2O3 nanocomposites 
could be derived when the head size is chosen as 
small within the size range.

At the next step, the changes in genes number 
were investigated. According to the Ferreira [15], 
the enhanced number of the genes from one to 
three would considerably increase the success 
rate. It was observed that more than 4 genes did 
not have any effect on GEP model performance 
[14]. Hence, the effects of genes number have been 
investigated by changing its value from 1 to 4 on 
the best proposed model (GEP 1).

Based on Table 8 and Fig. 9, GEP 1(2) 
model with head size 4 (P3=2) shows the best 
performances. Accordingly, by variation of 
effective parameter through the GEP settings (viz., 

Fig. 7- The variation of (a) R2, (b) MAE, and (c) RRSE in multiplication and addition mode versus 
number of chromosomes for GEP 1.
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number of chromosomes, head size and number of 
genes) provide the possibility of determination of 
the optimal configurations. As shown, there are not 
a regular and consistent trend through changing in 

GEP settings and performance criteria (i.e., error 
and R2). Consequently, GEP 1 with chromosomes 
number of 40 head size 9 and genes number 4 
with multiplication as linking function satisfied 

Fig. 8- The variation of (a) R2
, (b) MAE, and (c) RRSE in multiplication and addition mode versus Head size for GEP 1.

Table 8-  Changes in genes number for GEP 1 model upon criteria R2, MAE and RRSE in multiplication and additionTable 8- Changes in genes number for GEP 1 model upon criteria R2, MAE and RRSE in multiplication and addition. 

Table 9- Representation of the most appropriate model estimated from GEP-1 
approaches. 

Sub −  ET1 × Sub −  ET2 × Sub −  ET3 × Sub −  ET4

(√ √(exp (( d2
−0.548) + ( d1

−0.548)) × exp( √(−0.548) − d2
534

))

√(√( √6.4234 × (6.423 + d5))5 + ( √d0
43 + √d3))2

5
 

((( √d4 × d1
5 ) − ( √d1

5 × 0.497)) × √ √d2
35  )3

( √d4 × √((d0 × (−0.880))5 + (−0.88
−0.88)5 )

4
)5 d3

 

Table 5- Comparison of R2, MAE and RRSE for the best GEP models. 

Table 7-  Changes in head size for GEP 1 model upon criteria R2, MAE and RRSE in multiplication and addition mode
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Fig. 9- The variation of (a) R2, (b) MAE, and (c) RRSE in multiplication and addition mode versus genes number for GEP 1.

the predictions with a better accuracy through 
the training and testing data. The mathematical 
functions of the microhardness of Ni/Al2O3 
nanocomposite coating as a function of practical 
variables derived from proposed GEP model and 
expressed in Table 9. The ETs of optimum proposed 
model for the prediction of microhardness 
are displayed in Fig. 10. As shown, this model 
including of 4 sub-ETs with the linking function of 
multiplication.

To provide a deeper explanation from the 
prediction capability of the proposed GEP model, 

the predicted values of the GEP 1 based on proposed 
formulas (Table 9) are graphically compared with 
the experimental measured values through the 
training and testing phases. Fig. 11 confirmed that 
the predicted values reasonably are in agreement 
with the measured values at the training and 
testing data. The prediction is well matched with 
the measured data and this caused an increase in 
the generalization performance and provides the 
model prediction with a higher quality.

There is a strong dependency between the quality 
of the prepared coatings and electrochemical 

Table 9-  Representation of the most appropriate model estimated from GEP-1 approaches

Table 8- Changes in genes number for GEP 1 model upon criteria R2, MAE and RRSE in multiplication and addition. 

Table 9- Representation of the most appropriate model estimated from GEP-1 approaches. 

Sub −  ET1 × Sub −  ET2 × Sub −  ET3 × Sub −  ET4

(√ √(exp (( d2
−0.548) + ( d1

−0.548)) × exp( √(−0.548) − d2
534

))

√(√( √6.4234 × (6.423 + d5))5 + ( √d0
43 + √d3))2

5
 

((( √d4 × d1
5 ) − ( √d1

5 × 0.497)) × √ √d2
35  )3

( √d4 × √((d0 × (−0.880))5 + (−0.88
−0.88)5 )

4
)5 d3
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Fig. 10- Expression tree (ET) of the GEP-1 model. (Sub- ET1 C0=-0.548 Sub- ET2 C0=6.422, Sub- ET3 C0=0.497 and Sub- ET4 C0=-0.880).

Fig. 11-  Measured and predicted microhardness to train and test datasets by using GEP 1 model.
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Fig. 12- Sensitivity analysis of practical parameter.

deposition parameter during the preparation of 
composite coating [23]. Sensitivity analysis has 
been employed to determine such dependency. As 
illustrated, current density is the most important 
one having a significant potential influence on the 
amount of Al2O3 of the prepared composite coating 
and consequently its microhardness [9]. Such a 
strong dependency between the microstructure 
and morphology of the electrodeposited composite 
coatings has been reported in the literature [23]. 
Goral [29] showed that any increment in current 
density enhanced the coating microhardness and 
due to the higher content of ceramic particles 
incorporated in the Ni matrix. Also, homogeneous 
distribution of the ceramic particles was found to 
be enhanced. It was necessary to note that there 
is a threshold for direct dependency between the 
current density and microhardness of prepared 
composites. As shown in Fig. 12, when the current 
density beyond from this threshold, does not have 
the positive effect on the microhardness of the 
prepared samples.

5. Summary
To predict microhardness of Ni/Al2O3 

nanocomposite that prepared by electrochemical 
deposition, gene expression programming 
(GEP) is employed as a promising evolutionary 
algorithm to construct a reliable model in this 
study. Optimization of the best GEP model has 
been continued by changes in the effective GEP 
parameters, viz., the chromosomal architecture 

(the head length, chromosomes and genes 
numbers), and the type of linking function. To 
conclude, the GEP structure with 4 genes, 9 head 
size and 40 chromosomes is proposed as the most 
appropriate training modeling strategy. The values 
of R2, MAE and RRSE related to the optimized GEP 
model were estimated to be about 0.9752, 0.030 and 
0.158, respectively. Also, the sensitivity analysis 
illustrated that in our investigated regions, current 
density was the most dominant parameter on the 
microhardness of the prepared samples.
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