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In this paper, a linear programming problem is in-
vestigated in which the feasible region is formed as
a special type of fuzzy relational equalities (FRE). In
this type of FRE, fuzzy composition is considered as
the weighted power mean operator (WPM). Some the-
oretical properties of the feasible region are derived
and some necessary and sufficient conditions are also
presented to determine the feasibility of the problem.
Moreover, two procedures are proposed for simplify-
ing the problem. Based on some structural properties
of the problem, an algorithm is presented to find the
optimal solutions and finally, an example is described
to illustrate the algorithm.
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1 Introduction

In this paper, we study the following linear optimization model whose constraints are
formed as a fuzzy system defined by the weighted power mean operator:

min cx
Apx=1> (1)
x€[0,1]"

where [ ={1,2,...m}, ] ={1,2,...,n}, A= (aij)mxn, 0<a;<1 (Vieland Vje]), isa
fuzzy matrix, b = (bi)mxl,O <b; <1 (Viel),is an m—dimensional fuzzy vector, and “¢”
is the max-weighted power mean composition, that is, ¢ (x,7) = (wx? + (1 — w)yP)" /P,
Furthermore, let S(A, b) denote the feasible solutions sets of problem (1), thatis, S(A,b) =
{xe€[0,1]" : A@px =Db}. Additionally, if a; denotes the i’th row of matrix A, then prob-
lem(1) can be also expressed as follows:

min cx

p(aj,x)=b;, i€l (2)

x€[0,1]"
where the constraints mean ¢ (a;,x) = r?éalx{(p(aij,xj)} =b; (Vi €I)and ¢(a;,xj) =
(wafj +(1 —w)xf)l/p.
The theory of fuzzy relational equations (FRE) was firstly proposed by Sanchez and
applied in problems of the medical diagnosis [39]. Nowadays, it is well known that
many issues associated with a body knowledge can be treated as FRE problems [35].
In addition to the preceding applications, FRE theory has been applied in many fields,
including fuzzy control, discrete dynamic systems, prediction of fuzzy systems, fuzzy
decision making, fuzzy pattern recognition, fuzzy clustering, image compression and
reconstruction, fuzzy information retrieval, and so on. Generally, when inference rules
and their consequences are known, the problem of determining antecedents is reduced
to solving an FRE [25,33].
The solvability determination and the finding of solutions set are the primary (and
the most fundamental) subject concerning with FRE problems. Actually, The solution
set of FRE is often a non-convex set that is completely determined by one maximum
solution and a finite number of minimal solutions [5]. This non-convexity property
is one of two bottlenecks making major contribution to the increase of complexity in
problems that are related to FRE, especially in the optimization problems subjected
to a system of fuzzy relations. The other bottleneck is concerned with detecting the
minimal solutions for FREs [2]. Markovskii showed that solving max-product FRE is
closely related to the covering problem which is an NP-hard problem [32]. In fact, the
same result holds true for a more general t-norms instead of the minimum and product
operators [2,3,12,13,15,16,28,29,32].
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Over the last decades, the solvability of FRE defined with different max-t compositions
have been investigated by many researchers [15,16,34,36,37,40,42,43,

45,48,51]. Moreover, some researchers introduced and improved theoretical aspects
and applications of fuzzy relational inequalities (FRI) [12 - 14,17,18,26

,50]. Li and Yang [26] studied a FRI with addition-min composition and presented
an algorithm to search for minimal solutions. Ghodousian et al. [13] focused on the
algebraic structure of two fuzzy relational inequalities A@x < bland Dex > b?, and
studied a mixed fuzzy system formed by the two preceding FRIs, where ¢is an operator
with (closed) convex solutions.

The problem of optimization subject to FRE and FRI is one of the most interesting and
on-going research topic among the problems related to FRE and FRI theory [1,8,11
-16,23,27,30,38,41,46,50]. Fang and Li [9] converted a linear optimization problem
subjected to FRE constraints with max-min operation into an integer programming
problem and solved it by branch and bound method using jump-tracking technique. In
[23] an application of optimizing the linear objective with max-min composition was
employed for the streaming media provider. Wu et al. [44] improved the method used
by Fang and Li, by decreasing the search domain. The topic of the linear optimization
problem was also investigated with max-product operation [20,31]. Loetamonphong
and Fang defined two sub-problems by separating negative and non-negative coeffi-
cients in the objective function and then obtained the optimal solution by combining
those of the two sub-problems [31]. Also, in [20] some necessary conditions of the
feasibility and simplification techniques were presented for solving FRE with max-
product composition. Moreover, some generalizations of the linear optimization with
respect to FRE have been studied with the replacement of max-min and max-product
compositions with different fuzzy compositions such as max-average composition [46]
and max-t-norm composition [15,16,21,27,41].

Recently, many interesting generalizations of the linear programming subject to a sys-
tem of fuzzy relations have been introduced and developed based on composite op-
erations used in FRE, fuzzy relations used in the definition of the constraints, some
developments on the objective function of the problems and other ideas
[6,10,15,16,18,24,30,47]. For example, Dempe and Ruziyeva [4] generalized the fuzzy
linear optimization problem by considering fuzzy coefficients.

The optimization problem subjected to various versions of FRI could be found in the
literature as well [12 - 14,17,18,49,50]. Xiao et al. [50] introduced the latticized linear
programming problem subject to max-product fuzzy relation inequalities. Ghodou-
sian et al. [12] introduced a system of fuzzy relational inequalities with fuzzy con-
straints (FRI-FC) in which the constraints were defined with max-min composition.
In this paper, an algorithm is proposed to find all the optimal solutions of problem
(1). Firstly, we describe some structural details of WPM-FREs such as the theoretical
properties of WPM-fuzzy equalities and necessary and sufficient conditions for the fea-
sibility of the problem. Then, the feasible region is completely determined by a finite
number of convex cells. Additionally, some simplification processes are introduced to
reduce the problem. Finally, an algorithm is presented to solve the main problem.
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The remainder of the paper is organized as follows. Section 2 gives some basic results
on the WPM-fuzzy equalities. Also, some feasibility conditions are derived. In section
3, the feasible region is characterized in terms of a finite number of closed convex cells.
In section 4, some simplification rules are presented. These rules convert the problem
into an equivalent one that is easier to solve. The optimal solution of the problem is
described in Section 5 and, finally in section 6 an example is presented to illustrate the
algorithm.

2 Basic properties of WPM - FREs

In this section, the structural properties of each fuzzy equation ¢ (a;, x) = b; is investi-
gated and its solutions are found. Let S(a;, b;) denote the feasible solutions set of i‘th
equation, thatis, S(a;,b;) ={x€[0,1]" : @(a;,x) =b;}. So, S(A,b) = (N;e; S(a;, b;).

Lemma 1. Leti €1, j, €] and 4;j, > b

T’E. Then, S(a;, b;) = 0.

Proof. Since ¢ is an increasing function on [0,1]? in both variables, we note that

@ (aijy, X ‘)>(p(b-/€/_ ‘)—(bp +(1- w)x] ) tr > b;. Thus, for each x € [0,1]" we have
Q(a;,x)= max{(p(a,], xj)} = ¢ (aij,, xj,) > b;. Hence, x  S(a;,b;), Yx € [0,1]". O
Jel

w )

% bPrw-1 1/p
Lemma 2. Let g;; < ef forsomei€land jo€]. If b >1-w and a;, < (’—)

then ¢ (a;;,, x;,) < b;, YVxj, €[0,1].

Proof. Since bip >1—w, then [(bip +w—1)/w]'/P > 0. Now, the result follows from the
relations @ (a;,,xj,) <@ ([(b) +w—1)/w]'/P,1)=b;. O

Lemma 3. Let g;; < b for some i € I and jo € J. Also, suppose that either bf <l-w

<%

bPrw-1 1/p by —w ijo /p . . . .
l . Then, xj, = —=7" is the unique solution to the equality

or ajj, = (
¢ (aijy, xj,) = b;.

Proof. It is easy to verify that go(aZ jo? ]O) = b;. Now, since ¢ is an increasing function,
we have(p(azj, xj) > by if x; > [(b) )( w)]'/P and @ (a;;,,x;) < b if x; < [(b) -

wa )/(1 w]l/p O

From Lemmas 1, 2 and 3, the following theorem is resulted that gives a necessary and
sufficient condition for the feasibility of the set S(a;,b;).
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Theorem 1. For a fixed i € I, S(a;, b;) = 0 if and only if
(a) aj; < b;[Sw, Vj €],

(b) There exist some jj € ] such that either bp <l-wora;j, >[(b Prw—1)/(w)]/P.

Definition 1. For an arbitrary fixed i € I, let J (i) = {] eJ : aj;> bi/W}. Additionally,
define J(i)={j €] : b/ 21-w, a; <[(b] +w—1)/w]'/Pland J(i) = T-{J ~() UT=(i)}.
According to Theorem 1, the following corollary is directly attained. This corollary
characterizes all the feasible solutions of S(a;,b;).

Corollary 1. x’ € S(a;,b,)if and only if J=(i) =0, J(i) # 0 and
(a) x] € [0,1], Y] € J=(i).
(b) x]swa”—wa V(1 =w)]'/P, V] e](i).

(c) There exist at least some jj € J(i) such that x]’-O = [(bp —wa /(1 —w)]H/P.

ijo

Defmltlon 2. Suppose that S(a;,b;) # O(hence, ] (i) = @ from Corollary 1). Define

) € [0,1]" such that
powa? \P
X(i)j_{ ( '1_w”) Jif je](i)

1 ,if je]®()

Theorem 2. Suppose that S(a;,b;) # (. Then, X(i) is the maximum solution of S(a;, b;).

Proof. Since S(a;,b;) # 0, then ] (i) = (. Based on Corollary 1, X(i) e S(a;, b;). Suppose
that x” € S(a;,b;). So, from Corollary 1, x (bp—wa )/(1 —w)]'/P,Vj e J(i), and x] <1,
Vj €] (i). Therefore, x; < X(i);, Vj €]. u

Definition 3. Let i € I and S(a;, b;) # 0. For each j € J(i), define X(, j) € [0,1]" such that

bp -wa: 1/p
1] 1
zu,]’)k—{( = ) k=]

0 , otherwise

Remark 1. Suppose that S(a;,b;) # 0 and j € J(i). Then, from Definitions 2 and 3, we
have Y(i)j = X(4,]);-

Theorem 3. Suppose that S(a;,b;) # 0 and j, € J(i). Then, X(i, jy) is a minimal solution
of S(a;, b;).

Proof. From Corollary 1, X(i,jo) € S(a;, b;). Suppose that x" € S(al,b ), x" < X(i, jo)and
x" # X(i, jy). So, x] < X(i,jo)j, Yj €] and x" # X(i,jo). Therefore, x =0,V¥je]-{jo}



140 A. Ghodousian / JAC 53 issue 1, June 2021, PP. 135 - 148

and X]'-O <[(bF - wazpjo)/(l —w)]'/P. Hence, from Lemmas 1, 2 and 3 we have ¢ (a;,x’) =

max { ma{x}{(p(aij,x;)}, (p(aijo,x;o)} @ (ajj,, x; i ) < b; that contradicts x” € S(a;,b;). O
j€l-{jo

The following theorem shows that S(a;, b;) can be stated in terms of the unique maxi-

mum solution and a finite number of minimal solutions.

Theorem 4. S(a;,b;) = Uy [X(1,7), X (i) ].

Proof. Let x" € S(a;,b;). From Theorem 2, x” < X(i). Furthermore, there exist at
least some jj € J(i) such that x = [( bp —wa )/(1 —w)]'/P (Corollary 1). Thus, from

Definition 3 we have X(i, jo) S x". Hence, x" € [X(i, (i,jo), X(i)]. Conversely, let x” €
Ujer)[X(, j), X(i)]. Therefore, (p(al-j,x]'-) < @ (a;;, X(i);) < b;, Yj € ]. Moreover, there

exists some jj € J(i) such that x” € [X(i, jo), X(i)]. So, Remark 1 implies x}o = X(i,jo)j, =
X(z)] and therefore, (p(a”o,x ) = b;. Thus, we have

¢ (aj,x) = f?gx{(P(aij:xj)} = max {J,gjﬁ}{@(ﬂi]’,xj)}' (P(aijo’xjo)} =@ (ajj,,x; ) = b;

which implies that x’ € S(a;,b;). O

3 Feasible region of Problem (1)

In this section, a necessary and sufficient condition is derived to determine the feasi-
bility of the main problem.

Definition 4. Let X(i) be as in Definition 2, Vi € I. We define X = miln {Y(i)}.
1€

Definition 5. Let e : I — J;J(i) so that e(i) € J(i), Vi € I, and let E be the set of all
vectors e. For the sake of convenience, we represent each e € E as an m-dimensional
vector e = [ji, ja,.-» ju] in which j =e(k), k=1,2,...,m

Definition 6. Let e = [ji,j,.., ju] € E. We define X(e) € [0,1]" such that X(e); =
max{X(i,e(i));} = max{X(i,j;);}, Vj €.
i€l

The following theorem indicates that the feasible region of problem 1 is completely
found by a finite number of closed convex cells.

Theorem 5. S(A,b) = U, cp[X(e), X].

Proof. Since S(A,b) = ();¢; S(a;, b;), from Theorem 4 we have
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S(A,b) = Nier Ujer,[X(i,), X(i)]. S0, S(A,b) = Ueep Nier[X (i, e(i)), X(i)] (see Defini-

tions 5 and 6), i.e.,

S(A,b) = Uper [malx {X(i,e(i))}, miIn {Y(i)}]. Now, the result follows from Definitions 4
1€ 1€

and 6. O

The following Corollary gives a simple necessary and sufficient condition for the fea-
sibility of S(A,b).

Corollary 2. S(A,b) = 0 iff X € S(A, b).

4 Simplification techniques

In practice, there are often some components of matrix A that have no effect on the
solutions to problem (1). Therefore, we can simplify the problem by changing the
values of these components to zeros. For this reason, various simplification processes
have been proposed by researchers. We refer the interesting reader to [13] where a brief
review of such these processes is given. Here, we present two simplification techniques
based on the weighted power mean operator.

Definition 7. If a value changing in an element, say a;;, of a given fuzzy relation
matrix A has no effect on the solutions of problem (1), this value changing is said to be
an equivalence operation.

Corollary 3. Suppose that ¢ (a;;,xj) < b;,Yx € S(A,b). In this case, it is obvious that
r??alx {go(ai]-,x]-)} = b; is equivalent to m%i( {(p(ai]-,x]-)} = b;, that is, “resetting a;;; to
= j=
J#Jo
zero” has no effect on the solutions of problem (1) (since component 4;;, only appears
in the i‘th constraint of problem (1). Therefore, if ¢ (a;j,,xj,) < b;,Yx € S(A,b), then
“resetting a;;, to zero” is an equivalence operation.

Lemma 4 (first simplification). Suppose that j, € J*(i), for some i € I and j, € J.
Then, “resetting a;;, to zero” is an equivalence operation.
Proof. The proof is directly resulted from Lemma 2. O

Lemma 5 (second simplification). Suppose that j, € J(k), where k € I and j, € J.
If there exists some i € [ (i # k) such that j, € J(i) and bip - b]f < w(af].0 - afjo), then
“resetting ay j, to zero” is an equivalence operation.

Proof. We show that ¢ (ayj,x;j) < b,¥x € S(A,b). Consider an arbitrary feasible so-
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lution x € §(A,b). Since x € §(A,D), it turns out that ¢ (ay;,,x) > bx never holds.

So, assume that ¢ (ay;,,x;,) = bx. Since jo € J(k), from lemma 3 we conclude that

Xj, = [(blf - wa,fjo)/(l —w)]l/l’. On the other hand, inequality blp - b,f < w(afjo - a,fjo)
implies that [(bip - waZ-O)/(l —w)|'/P < [(b,f —wa,fjo)/(l —w)]'/P. So, according to Def-

initions 3 and 4, on < [(bip - waZO)/(l —w)] /P < xj,- Therefore, x ¢ U.cp[X(e), X] that

means x € S(A,b) (Theorem 5). O

5 Resolution of Problem (1)

It can be easily verified that X is the optimal solution for

min {Zl = Z}q:l Cixj Apx=0b,x€]0, 1]”}, and the optimal solution for
min {22 = ?:1 c;ij :Apx=0b, x€|0, 1]”} is X(e*) for some e* € E, where c].+ = max{c;, 0}
and c]._ = min{cj, 0}forj=1,2,..,n[9,13,19,28]. According to the foregoing results, the
following theorem shows that the optimal solution of Problem (1) can be obtained by
the combination of X and X(e*).

Theorem 6. Suppose that S(A,b) = 0, and X and X(e*) are the optimal solutions of
sub-problems Z; and Z,, respectively. Then c’x" is the lower bound of the optimal
objective function in (1), where x* = [x], x3, ..., X};] is defined as follows:

* _' C]<0
X = A
PIT\ X(e"); ¢=0

forj=1,2,..,n.
Proof. For a general case, see the proof of Theorem 4.1 in [13]. O

Corollary 4. Suppose that S(A,b) # 0. Then, x* as defined in Theorem 5, is the optimal
solution of problem (1).

Proof. According to the definition of vector x*, we have g(e*)]' < x; < X]-, Vj e ], which

implies x* € ,cp[X(e), X] = S(A,b). O

6 Numerical example

Consider the following linear programming problem constrained with a fuzzy system
defined by the weighted power mean operator:
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min Z = -7.6582x; — 2.029x, + 6.6277 x3 — 6.3x4+0.0157 x5 — 7.4737 x4+7.2926 x7

0.6763 0.8969 0.8403 0.3000 0.0710 0.0758 0.3529 0.8657

0.3362 0.2721 0.1956 0.3396 0.0101 0.2557 0.1193 0.6520

0.1637 0.5426 0.2534 0.3701 0.4916 0.5761 0.2454 |@px=| 0.6926

0.5161 0.1330 0.9090 0.1477 0.3827 0.7212 0.2452 0.8833

0.2319 0.8371 0.1275 0.8609 0.5201 0.6163 0.0654 0.8350
x€[0,1]7

where |I| =5, |J]| =7 and ¢ (x,y) = (wxP + (1 —w)yp)l/p in which w = 3/4 and p = 3.
Moreover, Z; = -7.6582x1 —2.029x, — 6.3 x4 — 7.4737 xg and

Zy = 6.6277 x3+0.0157 x5+7.2926 x7. For each i € I, we have J~(i) = 0. Also, J(1) =
2,3}, J(2) =1{1,4}, J(3) = {2,5,6}, ](4) = {3} and J(5) = {2,4}. Therefore, by Theorem 1,
S(a;,b;) #0, Vi € I. According to Definition 2, the maximum solutions of S(a;, b;) = 0,
Vi eI, are attained as follows:

X(1)=[1,0.7552,0.9341,1,1,1, 1]
X(2)=[0.9982,1,1,0.9970,1,1, 1]
X(3)=[1,0.9471,1,1, 0.9908, 0.9107, 1]
X(4)=[1,1,0.7955,1,1,1,1]
X(5)=[1,0.8286,1,0.7456,1, 1, 1]

Hence, by Definition 4, we have

X =1[0.9982, 0.7552, 0.7955, 0.7456, 0.9908, 0.9107, 1].

Also, by Definition 3 and Theorem 3, for example, the minimal solutions of S(ay, b, )are
obtained as follows:
X(1,2)=10, 0.7552,0,0, 0,0, 0],X(1,3)=[0, 0, 0.9341, 0, 0, 0, 0]

Therefore, by Theorem 4, S(ay,b;) = [X(1,2), X(1)]U[X(1,3), X(1)].

According to Corollary 2, since X e S(A, D), then the problem is feasible. On the other
hand, from Definition 6, we have |E| = 24. Therefore, the number of all vectors e € E
is equal to 24. However, each solution X(e) generated by vectors e € E is not necessary
a feasible minimal solution.

Additionally, we have J*(1) = {1,4,5,6,7}, ]®(2) = {2,3,5,6,7}, J®(3) = {1,3,4,7}, ] ®(4) =
{1,2,4,5,6,7}and ] *°(5) = {1, 3,5, 6,7}. So, from the first simplification technique (Lemma
4), “resetting all the components a;; (i € I and j € J*(i)) to zeros” are equivalence
operations. Also, by Lemma 5 (second simplification), we can change the value of
components ay3, dp4, a3p and as, to zeros. For example, since 3 € J(1)|JJ(4) and
0.0404 = b} - b} <w(ak, —a};) = 0.1183, Lemma 5 implies a;3 = 0.

By applying the simplification methods, | E| is decreased from 24 to 2. Therefore, the
simplification processes reduced the number of the minimal candidate solutions from
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24 to 2, by removing 22 points X(e). Indeed, the feasible region has 2 minimal solutions
as follows:

e; =[2,1,6,3,4] = X(e;) = [0.9982, 0.7552, 0.7955, 0.7456, 0, 0.9107, 0]
ey =[2,1,5,3,4] = X(e,) = [0.9982, 0.7552, 0.7955, 0.7456, 0.9908, 0, 0]

By comparison of the values of the objective function for the minimal solutions, X(e;)
is optimal for Z, (i.e., e* = ;). Thus, from Theorem 6,
x*=[0.9982, 0.7552, 0.7955, 0.7456, 0, 0.9107, 0] and then Z* = ¢Tx* = —15.4085.

7 Conclusion

In this paper, we proposed an algorithm to solve the linear optimization model con-
strained with weighted power mean fuzzy relational equalities (WPM-FRE). The feasi-
ble solutions set of each WPM-FRE was obtained and their feasibility conditions were
described. Based on the foregoing results, the feasible region of the problem is com-
pletely resolved. It was shown that the feasible solutions set can be write in terms of
a finite number of closed convex cells. Moreover, two simplification operations (de-
pending on the max-WPM composition) were proposed to accelerate the solution of
the problem. Finally, a method was introduced for finding the optimal solutions of the
problem.
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