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ABSTRACT ARTICLE INFO

Graph matching is one of the most important prob-
lems in graph theory and combinatorial optimization,
with many applications in various domains. Although
meta-heuristic algorithms have had good performance
on many NP-Hard and NP-Complete problems, but for
graph matching problem, there were not reported supe-
rior solutions by these sort of algorithms. The reason of
this inefficiency has not been investigated yet. In this
paper it has been shown that Simulated Annealing (SA)
as an instance of a meta-heuristic method is unlikely to
be even close to the optimal solution for this problem.
Mathematical and experimental results showed that the
chance to reach to a partial solution, is very low, even
for small number of true matches. In addition
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Figure 1: Two car images’ key points are considered as graphs and a partial solution of
graph matching is demonstrated by blue/red lines; incorrect matches are shown with red
lines.

1 Abstract continued

to theoretical discussion, the experimental results also verified our idea; for example, in
two sample graphs with 10000 vertices, the probability of reaching to a solution with at
least three correct matches is about 0.02 with simulated annealing.

2 Introduction

Graph matching, which is the problem of finding a similarity between graphs [3] is one of
the oldest problems in Graph theory and combinatorial optimization. The case of exact
graph matching is known as the graph isomorphism problem [3] which has various applica-
tions such as image matching in computer vision [16, 30]. Several important applications
in computer vision, such as 3D reconstruction from stereo images, object matching, object
category and action recognition [25] require the ability to efficiently match features of two
sets. Image features are considered as graph vertices for modeling the matching problem
as a graph matching problem.
2D Image matching problem is an example of exact matching problem. Figure 1 shows
a pair of car images along with their corresponding feature (key) points. The number
of key points in two images are identical. The set of key points in each image indicate
the vertices of a graph. The graph edges were not shown here. Graph matching problem
for these images, means finding the corresponding points of two images. With a perfect
solution, each point in the left image should be related to its correspondence point in the
right image. Figure 1 represents a partial solution, in which the true/false matches are
demonstrated by blue/red lines. For this problem, there exisits only one exact solution,
hence the problem is an exact graph matching problem.
Graph matching is an NP-hard problem [30] with complexity of O(n!) in its general form.
Consider two graphs with n vertices in each graph, the number of all possible matching
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cases between them is n!. Each permutation of numbers {1, . . . , n} shows a point in the
solution space. In many applications such as figure 1 only just one permutation among
n! possible solutions is acceptable. Meta-heuristic algorithms which are mainly based
on random search are used on many NP-Hard and NP-Complete problems successfully.
For example, they are efficient on many famous problems such as: traveling salesman
problem, N-Queen, facility location, graph coloring, max-cut problem, bin-packing and
time tabling [24, 26, 12, 21, 14]; but the reported works on graph matching based on
meta-heuristic algorithms which handle the problem efficiently, are rare.
We divided the published related works to journal and non-journal papers:

Journal Papers: Egozi et. al. [8] reported an spectral approach for graph matching.
Qiao et. al. [19] also used spectral graph matching in remote sensing. Finch et.al.
[9] and Luo and Hancock [18] reported expectation maximization and singular value
decomposition methods for dealing the problem. Almohamad and Duffuaa [1] used
linear programming. Gradient descent approach was used in [28]. Shapiro and
Brady [23] and Umeyama [27] solve the matching problem by eigen decomposition.
Brown et.al. [4], Auwatanamongkol [2], Cross et. al. [7, 6] and Fröhlich and Košir
[10] used genetic algorithm (GA).

Non-Journal Papers: Leordeanu and Hebert [17] reported spectral method. Using
simulated annealing (SA) [11], ant colony optimization [22, 29] and tabu search
(TS) [16] also reported by the researchers. In [5, 13] also GA has been used for the
problem.

As can be seen, meta-heuristic approaches – except GA – were only reported in non-
journal published papers. In this paper we will discuss why this sort of approaches are
not efficient to solve the graph matching problem.
Some meta-heuristic approaches like SA and TS are based on defining a neighboring
structure and move from one point in solution space to another point. The published
journal papers about graph matching show that stochastic optimization methods like
SA are not attractiveness for researchers. This fact and the authors failure to solve the
matching problem by SA, makes this intuitive result that methods like as SA are not
effective for matching problem. GA in contrast to SA, which only moves to neighborhood
point, uses crossover and mutation on a population of state space points, hence here the
performance of this algorithm is not investigated.
Simulated annealing is a kind of an stochastic optimization methods; these methods start
from a random point in the solution space and produce neighbors by applying random
operators. In this study, we will show that why SA is not suitable for graph matching, by
discussing that the probability of reaching the optimal solution (success rate) is close to
zero, with SA. The experimental results verifies theoretical discussion.
A main reason that SA is not successful for handling graph matching is due to the nature
of exact graph matching. In some problems , there are many optimal points in the solution
space, which makes finding the solution, easy. Finding the optimal point, takes more time,
when the optimal points in solution space are rare. N-Queen problem [15] is a problem
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Table 1: Number of solutions of N-Queen problem on various number of Queens (N) [15].
N Number of Solu-

tions
1 1
2 0
3 0
4 2
5 10
6 4
7 40
8 92
9 352
10 724
11 2,680
12 14,200
13 73,717
14 365,596
15 2,279,184
16 14,772,512
17 95,815,104
18 666,090,624

with so many correct solutions. For example there are about 100 millions correct answers
for n = 17. As can be seen in table 1, the number of solutions rapidly grows, when n
increases. But in some problems such as exact graph matching, only one correct solution
exist. Our goal is to prove that the ratio of partially good solutions decreases, when the
number of graph vertices increases, for graph matching. The goodness of the solution is
related to the number of true matches in the solution.
The rest of the paper organized as follows: In section 3 some basic definitions are men-
tioned. Section 4 devoted to theoretical aspects of an upper bound on success rate in
SA. Section 5, shows experimental results on various graphs for inspecting the theoretical
results and the last section is about to conclusion remarks.

3 Basic Definitions

Definition 3.1 (Graph Matching). Consider two graphsG1 andG2, a one-to-one mapping
fromG1 to G2 represents a matching between the two graphs [24].

Definition 3.2 (Isomorphism). Consider two graphs G1 and G2, they are isomorphic
if and only if there is a mapping φ : V (G1) −→ V (G2) as each vertex of G1 exactly
corresponds to a vertex of G2 (Any two vertices x and y of G1 are adjacent in G1 if and
only if φ(x) and φ(y) are adjacent in G2)[24].

Simulated Annealing Algorithm: SA algorithm starts from a random point, and picks
a random move to go to a new point in the neighbor of the previous point. If the new
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point improves the solution (decreases energy), then it is always accepted. Other-
wise, it is accepted with some probability. This probability decreases exponentially
over time and with the badness of the move.

Feasible Solution: A feasible solution or a point in the solution space is a permutation
of {1, . . . , n}, in matching problem.

True Solution: In this paper it is supposed that the true solution is numbers {1, . . . , n}
in ascending order.

Energy (Error): The number of elements that are not in their true positions, is the
solution energy (error), which should be minimized. This measure is normalized by
dividing by n. For example suppose that the true solution of a matching problem be
{1,2,3,4,5} and a random solution be {3,2,1,4,5}. In this permutation 1, 3 are not in
their right places, hence its corresponding error is 2/5. In stochastic optimization
methods like SA, in each run, the starting point is selected randomly; the mean
error is computed by averaging the errors over multiple runs.

Precision: Precision is 1 minus error, which is equal to the rate of correct matches.

Derangement: a derangement is a permutation of the elements of a set, such that no
element appears in its original position. The number of derangements of a set of
size n, usually written Dn, dn, or !n, is called the “derangement number”.

Generally the rate of correct matches is reported as the precision of graph matching
algorithm. In the following section we will show that with SA for exact graph matching,
the precision, approaches zero, when the graph size increases.

4 Theoretical Discussion

Each feasible solution is a random permutation of {1, . . . , n}, in stochastic optimization
approaches like SA, the new solution is produced by perturbing the current solution. The
common methods for permutation perturbation are swapping, insertion, inversion and
scramble operators. All of these operators make a new vector (solution) from the current
vector by altering some part of the vector. In fact, moving to the new point is just moving
to a new random point, around the previous point. Here we discuss the probability of
“goodness” of a random point.
In a solution space of permutations vectors, there are n! points. Remmel [20] showed that
the number of permutations of {1, . . . , n}, that no number is located in its true position
(known as derangement) is:

D(n) = (n− 1)(D(n− 1) +D(n− 2)), n ≥ 1 (1)

D(0) = 1, D(1) = 0
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which is equivalence to following non-recursive summation [20]:

D(n) = n!
n∑

k=0

−1k

k!
(2)

For demonstrating that the SA move operator is weak to produce good results, it is
sufficient to show that the probability of producing good solutions is very low with this
manner. In the following it is shown that the expected value for having a solution with
only 3 correct matches is about 0.02. Before that, some preliminary theorems should be
explained.

Lemma 4.1. The number of permutations of {1, . . . , n}, that exactly m < n elements are
located in their true positions is:

G(n,m) =

(
n
m

)
D(n−m)

Proof. The proof is obvious, if m elements are located correctly, n−m elements are not
on their true positions. Derangement number of these elements is D(n −m). Since the

number of m-combinations of n elements is

(
n
m

)
, the total number of the mentioned

permutations is:

G(n,m) =

(
n
m

)
D(n−m)

In the following, the probability of being m < n elements in their true positions, denoted
by P n

m.

Theorem 4.2. The probability of being m < n elements of n elements on their true
positions in a random permutation – denoted by P n

m – is D(n−m)
m!×(n−m)!

.

Proof. The total points in the solution space is n!; by using Lemma 4.1 we have:

P n
m =

G(n,m)

n!

=

(
n
m

)
D(n−m)

n!
=

n!×D(n−m)

n!×m!× (n−m)!

=
D(n−m)

m!× (n−m)!
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Corollary 4.3. limn→∞ P
n
m = e−1

m!
.

Proof.

lim
n→∞

P n
m = lim

n→∞

D(n−m)

m!× (n−m)!

=
1

m!
× lim

n→∞

D(n−m)

(n−m)!

Substituting n−m by L and using eq. (2) yields:

lim
n→∞

P n
m =

1

m!
× lim

L→∞

L!

L!

L∑
k=0

−1k

k!

since:

ex =
∞∑
n=0

xn

n!

hence:

lim
n→∞

P n
m =

e−1

m!
(3)

Corollary 4.4. limn→∞ P
n
0 is e−1.

Corollary 4.5. For large n, the probability of being at most m elements of n elements
in their true positionsis:

e−1 +
e−1

1!
+
e−1

2!
+ ...+

e−1

m!

Corollary 4.6. For large n, the probability of being at least m elements of n elements
in their true positions– denoted by P n

1:m – is:

P n
1:m = 1− (e−1 +

e−1

1!
+
e−1

2!
+ ...+

e−1

m!
) (4)

If the rate of true matches, which is related to the number of elements lying in their true
positions (m), regarded as the goodness of the solution, from the above Corollary it is
obvious that, increasing the m, reduces this probability (goodness of the solution). The
bad news is that this probability is close to zero, even for small values of m.

Proposition 4.7. The probability of being at least 3 of n elements on their correct posi-
tions is 0.02:
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Table 2: The probability of being at least 3 elements on their true positions for different
values of n. In each row 100000 permutations were generated randomly.

Number
of Ver-
tices
(n)

Number of permutations with at
least 3 elements in their true posi-
tions

P n
1:3

20 1827 0.0183
50 1856 0.0186
100 1874 0.0187
300 1943 0.0194
500 1872 0.0187
1000 1939 0.0193
10000 1862 0.0186

Proof. By using Corollary 4.6, we will have:

P n
1:3 = 1− (e−1 +

e−1

1!
+
e−1

2!
+
e−1

3!
)

= 1− (e−1 × (1 +
1

1!
+

1

2!
+

1

3!
))

= 1− (e−1 × (2.6666)) ≈ 0.02

Suppose that the goodness of a solution (its precision) is the total number of its elements
(m) that are located on their true positions. The above inference showed that, as m
increases, the probability to have a partially good solution decreases. In addition, the
probability to have at least m true matches in a solution vector is bounded by a small
number, which makes SA non-effective to solve graph matching problem.

5 Experimental Results

The previous theoretical discussion is verified by experimental results in this section. The
experiments performed in this section are divided into two parts. In the first part, a
large number of random permutations is generated and the correctness of proposition 4
is shown. In second part, this is verified by applying SA algorithm on random graphs.

5.1 Random permutations results

In order to have some experimental evidence for aforementioned theorems, some artificial
graph matching problems, with known solutions are generated. Each sequences 1, 2, . . . , n
is considered as the vertices of the target (model) graph, and each of the n! − 1 permu-
tations is the corresponding graph that should be matched with the target graph. The
experiments are done for n =20, 50, 100, 300, 500, 1000, 10000. Investigation of all
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Table 3: Simulated annealing results on graphs with various sizes. As the number
of vertices increases, the value of the second column approaches to 0.02, which verifies
propos. 4.

Number of ver-
tices

P n
1:3

20 0.409
50 0.182
100 0.095
300 0.041
500 0.032
1000 0.025
10000 0.02

solutions is not tractable, hence 100000 random permutations for each value of n are
generated. For example for n = 100, 100000 random permutation is generated and the
number of those permutations that at least 3 elements are located on their true positions
is counted. The results is shown in table 2. The last column of the table shows P n

1:3,
which according to proposition 4 should be equal 0.02. As can be seen, the experimental
results confirms that the probability of being 3 of n elements on their correct positions is
0.02 (proposition 4).

5.2 Simulated Annealing Results

Table 3 shows simulated annealing results. The graphs are produced according to [16].
For each number of verices (n), we have 100000 runs of SA. The average value of P n

1:3, as
the expected value for having a solution with at least 3 correct matches, are reported. As
can be seen, as the number of vertices increases, the value of the last column approaches
to 0.02, which verifies proposition 4.
All experiments using MATLAB R2018a were carried out on an Intel 2.4 GHz with 4
GB RAM and also were spent 6 hours rather. Our database and MATLAB codes are
accessible from Mendeley1.

6 Conclusions

In this study, an upper bound for minimum true matches in graph matching problem
using simulated annealing has been proposed. Graph matching problem for applications
like image stereo matching, has just one optimal solution. We argued that finding the
optimal solution with stochastic optimization methods are not feasible, due to the low
probability of the number of true matches. Mathematical derivation showed that the
success rate is very low, in a random based search method. For example the probability

1http://dx.doi.org/10.17632/5vtn4h49p3.1

http://dx.doi.org/10.17632/5vtn4h49p3.1
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that at least 3 nodes are matched correctly is about 0.02. Experimental results verified
theoretical discussion.
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