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In this paper, an alternative proof is provided for a the-
orem of R.L.Graham concerning Chebyshev polynomi-
als. While studying the properties of a double star,
R.L.Graham [2] proved a theorem concerning Cheby-
shev polynomials of the first kind T, (x). The purpose
of this paper is to provide an alternative proof for his
theorem. Our method is based on the divisibility prop-
erties of the natural numbers. One may observe that the
Chebyshev polynomials evaluated at integers considered
by R.L.Graham match with the solutions of the Pell’s
equation for a general, square-free D € N.
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1 Introduction

Chebyshev polynomials of the first kind T,(x) are defined by To(z) = 1, Ti(z) = =,
Thio(z) = 22T 1 (x) — T,(x) for n > 0 (see for e.g., W.Magnus, F.Oberhettinger and
R.P.Soni [3]). Chebyshev polynomials of the second kind U,(x) are defined by Uy(z) = 1,
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Ui(z) = 2z, Upio(z) = 20U, 41(x) — Uy(2) for n > 0. While studying the properties of
a double star, R.L.Graham [2] proved a theorem concerning Chebyshev polynomials of
the first kind 7},(x). The purpose of this paper is to provide an alternative proof for his
theorem. Our method is based on the divisibility properties of the natural numbers.

2 Statement and proof

Theorem 1. (R.L.Graham [2])

A, B, C are integral solutions of the equation (A? — 1)(B* — 1) = C? with A,B > 0 if
and only if A =T,,(z), B = T,(x) for some choice of integers z > 0, m,n > 0.

Proof.

The basic tool to be employed is the prime factorization of a natural number. Suppose A,
B, C are three integers such that (4% —1)(B%—1) = C?%. Consider the prime factorization
of C. Let C' = pi'pi - pit — (1)

where pq, po, - -+, pr are distinct primes and 41, 49, - - -, i > 1. Then

C% = pi" 0 — (2)

E=A*—-1,— (3) and

F = B*—1. — (4) Since the squares of two integers do not differ by 1, neither £ nor F
can be a square.

Now EF = C?. — (5) If ged (E, F) = 1, then Equation (5) would imply that each
element in the set {E£, F'} is a square, which is a contradiction.Hence ged (E, F) # 1.
Now EF = p3'p3 ... p — (6) Each prime p; in the right side of Equation (??) divides
EF and so it divides E or F or both. Let us classify the prime factors of C' into three
mutually disjoint categories as follows:

(i) Primes oy, as, 7, which divide both F and F.
(ii) Primes f31, fo, 70, which divide E but not F'

(iii) Primes 1,72, 77, which divide F' but not E.
Since ged (E, F') # 1, the set in category (i) has at least one element.

Consider any prime [ in category (ii). It divides E but not F. This implies that all
the powers of 3 which divide C? must contribute the factors of E. Therefore, the factor
corresponding to (3 in the factorization of E appears with even exponent. With the same
reasoning for category (iii), the factor corresponding to any + in the factorization of F'
appears with even exponent.

Consider the primes oy, as, 7ay, in category (i). If each one of them were to appear with
even exponent in £ and F', then each one of F and F' is a square, which is a contradiction.
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Let a be a prime appearing with odd exponent in E. Since o appears with even ex-
ponent in KEF, it follows that o appears with odd exponent in F' and vice versa. Let
aq, 0, -+ ,a, be the primes appearing with odd exponents in £ and F', not necessarily
with the same exponents in £ and F. Let ay1, -+, a, be the primes appearing with
even exponents in £ and F', not necessarily with the same exponents in £ and F'. Then
FE and F' have prime factorizations of the forms

E =29t .ozig” o aZheg?higie g2 (7Y and

pt1

_ 20141 262 +1 26 +1 2XAu41 2Au A 201 202 20w
F =" e a0 T Ty — (8)

where the numbers appearing in the exponents are integers. Consequently, £ and F' re-
duce to the following expressions:

o N2
E=aas...04 (a?l o Loay aﬁfll cooale gt B 6{,”) ,— (9)
F = aas...q (a‘lsl ay ... ozf[‘ ai‘fll B e AV 75”) . — (10) Hence E =
F = Dy? — (12)
where

D = ooay...a,, — (13)

_ 91 92 Gu Pt hy pI1 pI2 j
y’!‘ — Ofl Oé2 e Of’u au_,’_l o e O[u“ /81 2 o e ,Uv, —> (14)
_ 01 02 Ou Ap+1 A o1 .02 o
ys = ait o oo al cant Tt sy — (15)
Since oy, ag, ..., «, aredistinct primes, D is a square-free natural number. Now we have

A% — 1= Dy? and B> — 1 = Dy>.
Therefore A? — Dy? = 1 and B? — Dy? = 1.

Consequently, A +y,v/D and A+ y,V/D are solutions of the Pell’s equation L? — DM? =
1. — (16)

Let z+yv/D denote the fundamental solution of the Pell’s equation (see for e.g., L.J.Mordell
[4]). Then A + y,V/'D and A + ysv/D are obtained as integral powers of = + yv/D.

E.I.Emerson [1] derived the following recurrence relations for the solutions z, + . v/D of
Equation 16:

To = 1,ZL'1 =T, Try2 = 2x Try1 — Ty,

Yo = 0,91 =Y, Yrr2 = 22 Yry1 — Yr,
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The relationship between Chebyshev polynomials of the first kind 7,,(x) and second kind
Un(x) has been dealt with in [3]. The two kinds of polynomials are related as follows:

T (z) — (2° — )UE(x) = 2° — (2® — 1).1% = 1,
T3(z) — (2% = DUf(2) = (2% = 1)* — (¢* — 1).(22)*
= (4o — 42 + 1) — (42" — 43:):1,
Ti(z) = (z* = DU (x) = (42° — 32)* — (2 — 1).(42* — 1)°
(162° — 242* + 92?) — (2* — 1)(162* — 8% 4 1)
= (1625 — 242 + 92?) — (162° — 242* + 92* — 1) = 1, ete.

In general, T?(z) — (z* — 1)U2_,(x) = 1.

It is seen that the sequence {z,} obtained from the solutions of Equation (16) is identical
with the sequence of Chebyshev polynomials of the first kind 7;, (z). It follows that the
sequence {y,} obtained from the solutions of Equation 16 is related to the sequence of
Chebyshev polynomials of the second kind {U, (x) } by

Dy = (2 = YU (x). — (17)

This implies that D is the square-free part of 22 — 1. From (13) and (17), it is seen that
Q10 - - -, equals the square-free part of (#? —1). Thus the value of D in (16) depends on
the value T (z) = x coming from the Chebyshev polynomials of the first kind. Therefore
A2 —1= (2> —1)U2_,(z) and B> — 1= (2> — 1) U?_,(z) for some m,n € N .

ie. A2— (2> —1)U2_,(z)=1and B*— (2> — 1) U?_;(z) = 1.
Consequently there exist m,n > 0 such that A =T, (z), B =T, (z).

For the converse, suppose A = T, (), B = T,, (z) for some choice of integers x > 0,
m,n > 0. Then we have T2 (z) — (z* — 1) U2_,(z) = 1 and T?(z) — (2*> = 1) U2_,(z) = 1.
Therefore A> = (22 — 1) U2 _,(z)+1 and BY— (22 —1)U2_,(x)+1. Hence (A?—1)(B*—
1) = ((22 = 1) Up_y () Up_y(x))>. Take C = (22 — 1) Up_y () Up_1(x). Then A, B,C
satisfy the equation (A? — 1)(B?* — 1) = C*%

This completes the proof.

For the double star problem, one requires A # B.

3 Solutions considered by R.L.Graham

Among the solutions of the equation (A? — 1)(B* — 1) = C?, R.L.Graham [2] has men-
tioned the following four solutions: (A, B,C') = (2,26,45), (3,17, 48), (5,49, 240),
(3,99, 280).
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These solutions emanating from the proof of R.L.Graham and the present proof are illus-
trated below.

Solution 1. A =2, B = 26, C = 45.

From Chebyshev polynomials of the first kind: Ty(z) = 1,T1(z) = 2,Tr(z) = 7, T3(z) =
26. Select x = 2, A = Ty(x), B = T3(x). Square-free part of (2% — 1) = 3.

From Pell’s equation:12 — 3.0? = 1,22 — 3.12 = 1,72 — 3.4 = 1,262 — 3.15% = 1. Select
D =3A=2 B =26.

Solution 2. A =3, B =17, C = 48.

From Chebyshev polynomials of the first kind: Ty(z) = 1,71 (z) = 3, Ta(z) = 17, T3(x) =
99. Select x = 3, A = Ty(x), B = Ty(z). Square-free part of (2% — 1) = 2.
From Pell’s equation: 12 —2.02 =1,3%2 —-2.2%2 =1,17* - 2.122 = 1,992 — 2.70? = 1. Select
D=2 A=3B=1T1.

Solution 3. A =5, B = 49, C = 240.

From Chebyshev polynomials of the first kind: Ty(z) = 1,71 (x) = 5,75 ( ) =49, T3(x) =
485. Select x = 5, A = Ty(z), B = Ty(x). Square-free part of (2% — 1) =

From Pell’s equation: 12 — 6.0 = 1,5% — 6.2 = 1,49% — 6.20%> = 1,485% — 6.198% = 1
Select D =6, A =5, B = 49.

Solution 4. A = 3, B =99, C = 280.

From Chebyshev polynomials of the first kind: Ty(x) = 1,T1(x) = 3, Ta(x) = 17, T3(x) =
99. Select x = 3, A = Ty(x), B = T3(z). Square-free part of (% — 1) = 2.
From Pell’s equation:12 — 2.02 = 1,32 — 2.22 = 1,17% — 2,122 = 1,992 — 2.70%? = 1. Select
D=2 A=3B=099.

One may observe that the Chebyshev polynomials evaluated at integers considered by
R.L.Graham match with the solutions of the Pell’s equation for a general, square-free
DeN.
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