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orem of R.L.Graham concerning Chebyshev polynomi-
als. While studying the properties of a double star,
R.L.Graham [2] proved a theorem concerning Cheby-
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theorem. Our method is based on the divisibility prop-
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1 Introduction

Chebyshev polynomials of the first kind Tn(x) are defined by T0(x) = 1, T1(x) = x,
Tn+2(x) = 2xTn+1(x) − Tn(x) for n ≥ 0 (see for e.g., W.Magnus, F.Oberhettinger and
R.P.Soni [3]). Chebyshev polynomials of the second kind Un(x) are defined by U0(x) = 1,
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U1(x) = 2x, Un+2(x) = 2xUn+1(x) − Un(x) for n ≥ 0. While studying the properties of
a double star, R.L.Graham [2] proved a theorem concerning Chebyshev polynomials of
the first kind Tn(x). The purpose of this paper is to provide an alternative proof for his
theorem. Our method is based on the divisibility properties of the natural numbers.

2 Statement and proof

Theorem 1. (R.L.Graham [2])
A, B, C are integral solutions of the equation (A2 − 1)(B2 − 1) = C2 with A,B > 0 if
and only if A = Tm(x), B = Tn(x) for some choice of integers x > 0,m, n ≥ 0.
Proof.
The basic tool to be employed is the prime factorization of a natural number. Suppose A,
B, C are three integers such that (A2−1)(B2−1) = C2. Consider the prime factorization
of C. Let C = pi11 p

i2
2 · · · p

ik
k −→ (1)

where p1, p2, · · · , pk are distinct primes and i1, i2, · · · , ik ≥ 1. Then
C2 = p2i11 p2i22 ?2ikk −→ (2)
E = A2 − 1,−→ (3) and
F = B2− 1. −→ (4) Since the squares of two integers do not differ by 1, neither E nor F
can be a square.
Now EF = C2. −→ (5) If gcd (E,F ) = 1, then Equation (5) would imply that each
element in the set {E,F} is a square, which is a contradiction.Hence gcd (E,F ) 6= 1.
Now EF = p2i11 p2i22 · · · p

2ik
k −→ (6) Each prime pj in the right side of Equation (??) divides

EF and so it divides E or F or both. Let us classify the prime factors of C into three
mutually disjoint categories as follows:

(i) Primes α1, α2, ?αu which divide both E and F .

(ii) Primes β1, β2, ?βv which divide E but not F

(iii) Primes γ1, γ2, ?γw which divide F but not E.

Since gcd (E,F ) 6= 1, the set in category (i) has at least one element.

Consider any prime β in category (ii). It divides E but not F . This implies that all
the powers of β which divide C2 must contribute the factors of E. Therefore, the factor
corresponding to β in the factorization of E appears with even exponent. With the same
reasoning for category (iii), the factor corresponding to any γ in the factorization of F
appears with even exponent.

Consider the primes α1, α2, ?αu in category (i). If each one of them were to appear with
even exponent in E and F , then each one of E and F is a square, which is a contradiction.
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Let α be a prime appearing with odd exponent in E. Since α appears with even ex-
ponent in EF , it follows that α appears with odd exponent in F and vice versa. Let
α1, α2, · · · , αµ be the primes appearing with odd exponents in E and F , not necessarily
with the same exponents in E and F . Let αµ+1, · · · , αu be the primes appearing with
even exponents in E and F , not necessarily with the same exponents in E and F . Then
E and F have prime factorizations of the forms

E = α
2g1+1
1 α

2g2 +1
2 . . .α

2gµ +1
µ α

2hµ+1

µ+1 . . .α2hu
u β

2j1
1 β

2j2
2 . . .β

2jv
v ,−→ (7) and

F = α2δ1+1
1 α2δ2 +1

2 . . .α
2δµ +1
µ α

2λµ+1

µ+1 . . .α2λu
u γ2σ1

1 γ2σ2
2 . . .γ2σww . −→ (8)

where the numbers appearing in the exponents are integers. Consequently, E and F re-
duce to the following expressions:

E = α1α2. . .αµ

(
αg11 αg22 . . . α

gµ
µ α

hµ+1

µ+1 . . . αhuu βj11 βj22 . . . βjvv

)2

,−→ (9)

F = α1α2. . .αµ

(
αδ11 αδ22 . . . α

δµ
µ α

λµ+1

µ+1 . . . αλuu γσ11 γσ22 . . . γσww

)2

. −→ (10) Hence E =

Dy2r ,−→ (11)
F = Dy2s −→ (12)
where
D = α1α2. . .αµ,−→ (13)

yr = αg11 αg22 . . . α
gµ
µ α

hµ+1

µ+1 . . . αhuu βj11 βj22 . . . βjvv ,−→ (14)

ys = αδ11 αδ22 . . . α
δµ
µ α

λµ+1

µ+1 . . . αλuu γσ11 γσ22 . . . γσww . −→ (15)
Since α1, α2, . . . , αµ are distinct primes, D is a square-free natural number. Now we have

A2 − 1 = Dy2r and B2 − 1 = Dy2s .

Therefore A2 −Dy2r = 1 and B2 −Dy2s = 1.

Consequently, A+ yr
√
D and A+ ys

√
D are solutions of the Pell’s equation L2−DM2 =

1. −→ (16)
Let x+y

√
D denote the fundamental solution of the Pell’s equation (see for e.g., L.J.Mordell

[4]). Then A+ yr
√
D and A+ ys

√
D are obtained as integral powers of x+ y

√
D.

E.I.Emerson [1] derived the following recurrence relations for the solutions xr + yr
√
D of

Equation 16:

x0 = 1, x1 = x, xr+2 = 2x xr+1 − xr,
y0 = 0, y1 = y, yr+2 = 2x yr+1 − yr,
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The relationship between Chebyshev polynomials of the first kind Tn(x) and second kind
Un(x) has been dealt with in [3]. The two kinds of polynomials are related as follows:

T 2
1 (x)− (x2 − 1)U2

0 (x) = x2 − (x2 − 1).12 = 1,

T 2
2 (x)− (x2 − 1)U2

1 (x) = (2x2 − 1)2 − (x2 − 1).(2x)2

= (4x4 − 4x2 + 1)− (4x4 − 4x2) = 1,

T 2
3 (x)− (x2 − 1)U2

2 (x) = (4x3 − 3x)2 − (x2 − 1).(4x2 − 1)2

= (16x6 − 24x4 + 9x2)− (x2 − 1)(16x4 − 8x2 + 1)

= (16x6 − 24x4 + 9x2)− (16x6 − 24x4 + 9x2 − 1) = 1, etc.

In general, T 2
n(x)− (x2 − 1)U2

n−1(x) = 1.

It is seen that the sequence {xr} obtained from the solutions of Equation (16) is identical
with the sequence of Chebyshev polynomials of the first kind Tn (x). It follows that the
sequence {yr} obtained from the solutions of Equation 16 is related to the sequence of
Chebyshev polynomials of the second kind {Un (x) } by
D y2r = (x2 − 1)U2

r−1(x). −→ (17)
This implies that D is the square-free part of x2 − 1. From (13) and (17), it is seen that
α1α2 · · ·αµ equals the square-free part of (x2−1). Thus the value of D in (16) depends on
the value T1(x) = x coming from the Chebyshev polynomials of the first kind. Therefore
A2 − 1 = (x2 − 1)U2

m−1(x) and B2 − 1 = (x2 − 1)U2
n−1(x) for some m,n ∈ N .

i.e. A2 − (x2 − 1)U2
m−1(x) = 1 and B2 − (x2 − 1)U2

n−1(x) = 1.
Consequently there exist m,n ≥ 0 such that A = Tm (x), B = Tn (x).

For the converse, suppose A = Tm (x), B = Tn (x) for some choice of integers x > 0,
m,n ≥ 0. Then we have T 2

m(x)− (x2 − 1)U2
m−1(x) = 1 and T 2

n(x)− (x2 − 1)U2
n−1(x) = 1.

Therefore A2 = (x2 − 1)U2
m−1(x)+1 and B2 = (x2 − 1)U2

n−1(x)+1. Hence (A2−1)(B2−
1) = ((x2 − 1)Um−1 (x)Un−1(x))

2
. Take C = (x2 − 1)Um−1 (x)Un−1(x). Then A,B,C

satisfy the equation (A2 − 1)(B2 − 1) = C2.

This completes the proof.

For the double star problem, one requires A 6= B.

3 Solutions considered by R.L.Graham

Among the solutions of the equation (A2 − 1)(B2 − 1) = C2, R.L.Graham [2] has men-
tioned the following four solutions: (A,B,C) = (2, 26, 45), (3, 17, 48), (5, 49, 240),
(3, 99, 280).
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These solutions emanating from the proof of R.L.Graham and the present proof are illus-
trated below.

Solution 1. A = 2, B = 26, C = 45.

From Chebyshev polynomials of the first kind: T0(x) = 1, T1(x) = 2, T2(x) = 7, T3(x) =
26. Select x = 2, A = T1(x), B = T3(x). Square-free part of (x2 − 1) = 3.

From Pell’s equation:12 − 3.02 = 1, 22 − 3.12 = 1, 72 − 3.42 = 1, 262 − 3.152 = 1. Select
D = 3, A = 2, B = 26.

Solution 2. A = 3, B = 17, C = 48.

From Chebyshev polynomials of the first kind: T0(x) = 1, T1(x) = 3, T2(x) = 17, T3(x) =
99. Select x = 3, A = T1(x), B = T2(x). Square-free part of (x2 − 1) = 2.

From Pell’s equation: 12− 2.02 = 1, 32− 2.22 = 1, 172− 2.122 = 1, 992− 2.702 = 1. Select
D = 2, A = 3, B = 17.

Solution 3. A = 5, B = 49, C = 240.

From Chebyshev polynomials of the first kind: T0(x) = 1, T1(x) = 5, T2(x) = 49, T3(x) =
485. Select x = 5, A = T1(x), B = T2(x). Square-free part of (x2 − 1) = 6.

From Pell’s equation: 12 − 6.02 = 1, 52 − 6.22 = 1, 492 − 6.202 = 1, 4852 − 6.1982 = 1.
Select D = 6, A = 5, B = 49.

Solution 4. A = 3, B = 99, C = 280.

From Chebyshev polynomials of the first kind: T0(x) = 1, T1(x) = 3, T2(x) = 17, T3(x) =
99. Select x = 3, A = T1(x), B = T3(x). Square-free part of (x2 − 1) = 2.

From Pell’s equation:12 − 2.02 = 1, 32 − 2.22 = 1, 172 − 2.122 = 1, 992 − 2.702 = 1. Select
D = 2, A = 3, B = 99.

One may observe that the Chebyshev polynomials evaluated at integers considered by
R.L.Graham match with the solutions of the Pell’s equation for a general, square-free
D ∈ N .
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